9 research outputs found

    Enabling Fine-Grain Restricted Coset Coding Through Word-Level Compression for PCM

    Full text link
    Phase change memory (PCM) has recently emerged as a promising technology to meet the fast growing demand for large capacity memory in computer systems, replacing DRAM that is impeded by physical limitations. Multi-level cell (MLC) PCM offers high density with low per-byte fabrication cost. However, despite many advantages, such as scalability and low leakage, the energy for programming intermediate states is considerably larger than programing single-level cell PCM. In this paper, we study encoding techniques to reduce write energy for MLC PCM when the encoding granularity is lowered below the typical cache line size. We observe that encoding data blocks at small granularity to reduce write energy actually increases the write energy because of the auxiliary encoding bits. We mitigate this adverse effect by 1) designing suitable codeword mappings that use fewer auxiliary bits and 2) proposing a new Word-Level Compression (WLC) which compresses more than 91% of the memory lines and provides enough room to store the auxiliary data using a novel restricted coset encoding applied at small data block granularities. Experimental results show that the proposed encoding at 16-bit data granularity reduces the write energy by 39%, on average, versus the leading encoding approach for write energy reduction. Furthermore, it improves endurance by 20% and is more reliable than the leading approach. Hardware synthesis evaluation shows that the proposed encoding can be implemented on-chip with only a nominal area overhead.Comment: 12 page

    Architectural Techniques for Disturbance Mitigation in Future Memory Systems

    Get PDF
    With the recent advancements of CMOS technology, scaling down the feature size has improved memory capacity, power, performance and cost. However, such dramatic progress in memory technology has increasingly made the precise control of the manufacturing process below 22nm more difficult. In spite of all these virtues, the technology scaling road map predicts significant process variation from cell-to-cell. It also predicts electromagnetic disturbances among memory cells that easily deviate their circuit characterizations from design goals and pose threats to the reliability, energy efficiency and security. This dissertation proposes simple, energy-efficient and low-overhead techniques that combat the challenges resulting from technology scaling in future memory systems. Specifically, this dissertation investigates solutions tuned to particular types of disturbance challenges, such as inter-cell or intra-cell disturbance, that are energy efficient while guaranteeing memory reliability. The contribution of this dissertation will be threefold. First, it uses a deterministic counter-based approach to target the root of inter-cell disturbances in Dynamic random access memory (DRAM) and provide further benefits to overall energy consumption while deterministically mitigating inter-cell disturbances. Second, it uses Markov chains to reason about the reliability of Spin-Transfer Torque Magnetic Random-Access Memory (STT-RAM) that suffers from intra-cell disturbances and then investigates on-demand refresh policies to recover from the persistent effect of such disturbances. Third, It leverages an encoding technique integrated with a novel word level compression scheme to reduce the vulnerability of cells to inter-cell write disturbances in Phase Change Memory (PCM). However, mitigating inter-cell write disturbances and also minimizing the write energy may increase the number of updated PCM cells and result in degraded endurance. Hence, It uses multi-objective optimization to balance the write energy and endurance in PCM cells while mitigating intercell disturbances. The work in this dissertation provides important insights into how to tackle the critical reliability challenges that high-density memory systems confront in deep scaled technology nodes. It advocates for various memory technologies to guarantee reliability of future memory systems while incurring nominal costs in terms of energy, area and performance

    The Fifth NASA Symposium on VLSI Design

    Get PDF
    The fifth annual NASA Symposium on VLSI Design had 13 sessions including Radiation Effects, Architectures, Mixed Signal, Design Techniques, Fault Testing, Synthesis, Signal Processing, and other Featured Presentations. The symposium provides insights into developments in VLSI and digital systems which can be used to increase data systems performance. The presentations share insights into next generation advances that will serve as a basis for future VLSI design

    Space Programs Summary no. 37-38, volume IV FOR the period February 1, 1966 to March 31, 1966. Supporting research and advanced development

    Get PDF
    Supporting research in systems analysis, guidance and control, environmental simulation, space sciences, propulsion systems, and radio telecommunication

    Book of abstracts

    Get PDF

    Review of Particle Physics

    Get PDF
    The Review summarizes much of particle physics and cosmology. Using data from previous editions, plus 2,873 new measurements from 758 papers, we list, evaluate, and average measured properties of gauge bosons and the recently discovered Higgs boson, leptons, quarks, mesons, and baryons. We summarize searches for hypothetical particles such as supersymmetric particles, heavy bosons, axions, dark photons, etc. Particle properties and search limits are listed in Summary Tables. We give numerous tables, figures, formulae, and reviews of topics such as Higgs Boson Physics, Supersymmetry, Grand Unified Theories, Neutrino Mixing, Dark Energy, Dark Matter, Cosmology, Particle Detectors, Colliders, Probability and Statistics. Among the 118 reviews are many that are new or heavily revised, including a new review on Neutrinos in Cosmology. Starting with this edition, the Review is divided into two volumes. Volume 1 includes the Summary Tables and all review articles. Volume 2 consists of the Particle Listings. Review articles that were previously part of the Listings are now included in volume 1. The complete Review (both volumes) is published online on the website of the Particle Data Group (http://pdg.lbl.gov) and in a journal. Volume 1 is available in print as the PDG Book. A Particle Physics Booklet with the Summary Tables and essential tables, figures, and equations from selected review articles is also available. The 2018 edition of the Review of Particle Physics should be cited as: M. Tanabashi et al. (Particle Data Group), Phys. Rev. D 98, 030001 (2018)

    Review of Particle Physics: Particle Data Group

    Get PDF
    The Review summarizes much of particle physics and cosmology. Using data from previous editions, plus 2,873 new measurements from 758 papers, we list, evaluate, and average measured properties of gauge bosons and the recently discovered Higgs boson, leptons, quarks, mesons, and baryons. We summarize searches for hypothetical particles such as supersymmetric particles, heavy bosons, axions, dark photons, etc. Particle properties and search limits are listed in Summary Tables. We give numerous tables, figures, formulae, and reviews of topics such as Higgs Boson Physics, Supersymmetry, Grand Unified Theories, Neutrino Mixing, Dark Energy, Dark Matter, Cosmology, Particle Detectors, Colliders, Probability and Statistics. Among the 118 reviews are many that are new or heavily revised, including a new review on Neutrinos in Cosmology. Starting with this edition, the Review is divided into two volumes. Volume 1 includes the Summary Tables and all review articles. Volume 2 consists of the Particle Listings. Review articles that were previously part of the Listings are now included in volume 1. The complete Review (both volumes) is published online on the website of the Particle Data Group (http://pdg.lbl.gov) and in a journal. Volume 1 is available in print as the PDG Book. A Particle Physics Booklet with the Summary Tables and essential tables, figures, and equations from selected review articles is also available
    corecore