
ARCHITECTURAL TECHNIQUES FOR DISTURBANCE

MITIGATION IN FUTURE MEMORY SYSTEMS

by

SeyedMohammad SeyedzadehDelcheh

B.S., Shiraz Univ. of Technology, 2007

M.S., Iran Univ. Science and Technology, 2011

Submitted to the Graduate Faculty of

the School of Computing and Information in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy

University of Pittsburgh

August 2018

UNIVERSITY OF PITTSBURGH

SCHOOL OF COMPUTING AND INFORMATION

This dissertation was presented

by

SeyedMohammad SeyedzadehDelcheh

It was defended on

August 31th 2018

and approved by

Rami Melhem, School of Computing and Information

Alex K. Jones, Swanson School of Engineering

Youtao Zhang, School of Computing and Information

Jun Yang, Swanson School of Engineering

Feng Xiong, Swanson School of Engineering

Dissertation Director: Rami Melhem, School of Computing and Information

ii

ARCHITECTURAL TECHNIQUES FOR DISTURBANCE

MITIGATION IN FUTURE MEMORY SYSTEMS

SeyedMohammad SeyedzadehDelcheh, PhD

University of Pittsburgh, August 2018

With the recent advancements of CMOS technology, scaling down the feature size has im-

proved memory capacity, power, performance and cost. However, such dramatic progress in

memory technology has increasingly made the precise control of the manufacturing process

below 22nm more difficult. In spite of all these virtues, the technology scaling road map

predicts significant process variation from cell-to-cell. It also predicts electromagnetic dis-

turbances among memory cells that easily deviate their circuit characterizations from design

goals and pose threats to the reliability, energy efficiency and security.

This dissertation proposes simple, energy-efficient and low-overhead techniques that com-

bat the challenges resulting from technology scaling in future memory systems. Specifically,

this dissertation investigates solutions tuned to particular types of disturbance challenges,

such as inter-cell or intra-cell disturbance, that are energy efficient while guaranteeing mem-

ory reliability.

The contribution of this dissertation will be threefold. First, it uses a deterministic

counter-based approach to target the root of inter-cell disturbances in Dynamic random-

access memory (DRAM) and provide further benefits to overall energy consumption while

deterministically mitigating inter-cell disturbances. Second, it uses Markov chains to reason

about the reliability of Spin-Transfer Torque Magnetic Random-Access Memory (STT-RAM)

that suffers from intra-cell disturbances and then investigates on-demand refresh policies to

recover from the persistent effect of such disturbances. Third, It leverages an encoding

technique integrated with a novel word level compression scheme to reduce the vulnerability

iii

of cells to inter-cell write disturbances in Phase Change Memory (PCM). However, mitigating

inter-cell write disturbances and also minimizing the write energy may increase the number

of updated PCM cells and result in degraded endurance. Hence, It uses multi-objective

optimization to balance the write energy and endurance in PCM cells while mitigating inter-

cell disturbances.

The work in this dissertation provides important insights into how to tackle the critical

reliability challenges that high-density memory systems confront in deep scaled technology

nodes. It advocates for various memory technologies to guarantee reliability of future memory

systems while incurring nominal costs in terms of energy, area and performance.

Keywords: Technology Scaling, Inter/Intra Cell Disturbance, STT-RAM, DRAM, PCM.

iv

TABLE OF CONTENTS

1.0 INTRODUCTION . 1

1.1 Scalability Challenges in Future Memory Systems 2

1.2 Research Overview . 4

1.2.1 Mitigating Wordline disturbances in DRAM using Adaptive Trees of

Counters . 5

1.2.2 Leveraging ECC to Mitigate Read Disturbances, in addition to False

Reads and Write Faults in STT-RAM 6

1.2.3 Integrating Multi-Tiered Compression with Coset Coding for PCM to

Mitigate Write Disturbances . 6

1.3 Thesis Contribution . 7

1.4 Organization . 8

2.0 BACKGROUND AND RELATED WORK 9

2.1 Inter-Cell Read Disturbance (Wordline Crosstalk) 9

2.1.1 DRAM Organization . 9

2.1.2 Related Work . 9

2.2 Intra-Cell Read Disturbance . 11

2.2.1 STT-RAM . 11

2.2.2 Errors in read and write operations 12

2.2.3 Related work . 13

2.3 Inter-Cell Write Disturbance . 15

2.3.1 Single Level Cell PCM . 15

2.3.2 Multi Level Cell PCM . 16

v

2.3.3 Related Work . 17

3.0 MITIGATING WORDLINE CROSSTALK USING TREES OF

COUNTERS . 19

3.1 Motivation . 19

3.1.1 Probabilistic Refresh Analysis . 20

3.1.2 Static Counter Assignment (SCA) Analysis 21

3.2 Counter-Based Adaptive Tree . 24

3.2.1 A simple CAT Example . 24

3.2.2 Constructing the CAT . 26

3.2.3 Efficient CAT Management Using SRAM 28

3.2.4 Determining Split Threshold Values 30

3.3 Reconfiguring the CAT to Track Changes in Access Patterns 35

3.3.1 Periodically Reset CAT (PRCAT) . 35

3.3.2 Dynamically Reconfigured CAT (DRCAT) 35

3.4 Experimental Methodology . 37

3.5 Evaluation . 39

3.5.1 Hardware Overhead . 39

3.5.2 CMPRO . 42

3.5.3 Execution Time Overhead . 42

3.6 Sensitivity Study . 44

3.6.1 Sensitivity to the Number of Counters and the Maximum CAT depth 44

3.6.2 Sensitivity to Mapping Policy and Number of Cores 46

3.6.3 Sensitivity to Refresh Thresholds . 48

3.6.4 Performance Under Malicious attacks 49

3.7 Conclusion . 50

4.0 LEVERAGING ECC TO MITIGATE READ DISTURBANCES,

FALSE READS AND WRITE FAULTS IN STT-RAM 51

4.1 Motivation for Intra-cell Disturbance Mitigation 51

4.2 Using Markov Chains to Model Read Disturbance, False Reads and Write

Faults . 53

vi

4.3 Revisiting write back after user read . 56

4.4 On-demand write back policies . 58

4.5 Reliability analysis of the different schemes via Markov Models 61

4.5.1 Write back After Error detection (WAE) 62

4.5.2 Write back After Persistent error detection (WAP) 63

4.5.3 Write back After error Threshold (WAT) 66

4.5.4 Accounting for miscorrections and undetected errors 67

4.5.5 Markov models for other memory technologies 67

4.6 Evaluation . 67

4.6.1 Baseline . 67

4.6.2 Uncorrectable Bit Error Rate . 69

4.6.3 Energy Overhead Evaluation . 71

4.6.4 Energy Reliability Product . 73

4.7 Sensitivity Analysis . 75

4.8 Conclusion . 77

5.0 INTEGRATING MULTI-TIERED COMPRESSION WITH COSET

CODING FOR PCM . 79

5.1 Multi-Tiered Compression (MTC) . 80

5.2 Reducing write disturbance in MLC PCM 82

5.2.1 Motivation . 83

5.2.2 Revisiting Coset Candidates . 85

5.2.3 Restricted Coset Coding . 88

5.2.4 WLCRC: Integrating WLC with Restricted Coset Encoding 89

5.2.4.1 WLCRC Architecture . 93

5.2.4.2 Hardware Overhead . 94

5.2.5 Experimental Settings . 95

5.2.6 Workloads . 97

5.2.7 Evaluation . 97

5.2.7.1 Write Energy . 99

5.2.7.2 Endurance . 101

vii

5.2.7.3 Write Disturbance . 102

5.2.7.4 Multi-objective Optimization in MLC PCM 103

5.2.8 Sensitivity to Granularity . 104

5.2.8.1 Impact of Granularity on Write Energy 104

5.2.8.2 Impact of Granularity on Endurance 107

5.2.8.3 Impact of Granularity on Disturbance 107

5.2.9 Sensitivity to Energy Levels . 108

5.3 Reducing write disturbance in SLC PCM 109

5.3.1 Coset Coding vs. Pointer Approach 109

5.3.2 Combined Compression and Encoding 113

5.3.3 Evaluation . 115

5.3.3.1 Comparison to the State-of-the-art Approach 115

5.3.3.2 Multi-Objective Optimization in SLC PCM 116

5.4 Conclusion . 119

6.0 SUMMARY AND CONCLUSION OF THE THESIS 122

BIBLIOGRAPHY . 126

viii

LIST OF TABLES

1 System configuration . 38

2 Hardware energy (per bank) of DRCAT, PRCAT and SCA 40

3 Area (per bank) of DRCAT, PRCAT and SCA 41

4 Comparison of WAR and ECC64
1 in terms of UBER 57

5 The interpretation of states for WAE and WAP. 61

6 The interpretation of states for WAT. 62

7 Bit error rates of different types of errors for single MTJ STT-RAM 68

8 Bit error rates of different types of errors for dual-MTJ STT-RAM 68

9 Write bit error rate by changing the write pulse width. 69

10 The comparison of different policies across different RBERs for STT-RAM . . 71

11 Four coset candidates for data mapping in MLC PCM 86

12 System configuration . 96

ix

LIST OF FIGURES

1 Scope of the dissertation. 4

2 DRAM organization. 10

3 Spin-Transfer Torque Magnetic Random-Access Memory. 12

4 Write disturbance crosstalk in the deep scaled PCM cells 15

5 PRA unsurvivability for refresh thresholds 32k, 24k, 16k and 8k. 21

6 The energy overhead of SCA and the counter cache approach 22

7 Row address frequency in a DRAM bank with 64K rows. 24

8 The adaptive tress of counters for different workloads 26

9 The CAT approach using pointer chasing . 29

10 Two possible evolutions of the CAT . 31

11 A CAT with one of the counters at level m 33

12 The CAT of Figure 9 after reconfiguration. 37

13 The CMRPO . 43

14 ETO resulting from refreshing vulnerable rows 44

15 CMRPO per bank for DRCAT . 45

16 Effect of different mapping polices and number of cores on CMRPO 47

17 CMRPO for refresh thresholds . 48

18 ETO for three kernel attack modes . 49

19 Probability of at least one error resulting from read disturbance 52

20 Modeling the state of a data block protected by ECC1. 55

21 Modeling write back after read (WAR). 56

22 The flowcharts of on-demand write-back policies. 59

x

23 The Markov models for on-demand write-back policies 64

24 UBER vs. RBERs for single MTJ STT-RAM as approaches leverage ECC1 . 70

25 UBER vs. RBERs for single MTJ STT-RAM as approaches leverage ECC2 . 70

26 The average energy overhead of different approaches for single MTJ STT-RAM 72

27 The average energy overhead of different approaches for dual-MTJ STT-RAM 72

28 Energy reliability product of different approaches for single MTJ STT-RAM . 74

29 Energy reliability product of different approaches for dual-MTJ STT-RAM . 74

30 Energy reliability product of the different policies for six different scenarios. . 76

31 Multi-Tiered Compression (MTC) . 82

32 Comparison of the percentage of compressed memory lines 83

33 Write energy analysis. 84

34 Write energy analysis for 200 million random data blocks 87

35 Write energy analysis for SPEC2006 and PARSEC benchmarks 88

36 Write energy analysis for restricted and non-restricted approaches 90

37 Integrating WLC with restricted coset coding. 91

38 On-chip WLCRC architecture for 16-bit granularity. 94

39 Comparison of write energy for various schemes 99

40 Average number of updated cells per memory line 101

41 Average number of disturbance errors per memory line 103

42 Write energy comparison for four different data block granularities 105

43 The average updated cells per memory line for different data block granularities106

44 The write disturbance errors per memory line for different data block granularities107

45 Sensitivity of WLCRC-16 to energy levels. 108

46 Write disturbance crosstalk in super dense PCM cells 110

47 Comparison of extra writes of ADAM, 4pointers and CosetCoding. 112

48 Comparison of endurance of ADAM, 4pointers and CosetCoding. 112

49 Comparison of energy efficiency of ADAM, 4pointers and Coset Coding. . . . 112

50 The block diagram of the proposed holistic approach. 114

51 Comparison of extra writes of ADAM and the proposed approach 116

52 Comparison of # reset cells (endurance) of ADAM and the proposed approach 117

xi

53 Comparison of energy efficiency of ADAM and the proposed approach 117

54 Extra writes when the threshold changes from 0.15 to 1 119

55 The number of reset cells when the threshold changes from 0.15 to 1 119

56 Write+Read energy when write disturbance threshold changes from 0.15 to 1 120

xii

1.0 INTRODUCTION

Memory Technology has kept pace with Moores Law over the past few decades and has

reduced the cost per bit of memory through increasing the memory cell density and capacity.

The basic building block for main memory in modern systems is Dynamic Random Access

Memory (DRAM) that is built from a two-dimensional array of cells. It encompasses memory

cells at the intersections of bitline pairs and wordlines. Unfortunately, DRAM is becoming

limited by power and scalability challenges, thus, endangering the evolution of the memory

system [Aggarwal et al.; David et al.; Kim]. Accordingly, alternative memory technologies

that can either replace or augment DRAM need to be considered to build a large and reliable

memory system. Amongst several memory candidates, both Spin-Transfer Torque Random

Access Memory (STT-RAM) and Phase Change Memory (PCM) are emerging as promising

technologies due to their desirable characteristics in terms of low access latency, non-volatility

and negligible stand-by power.

An STT-RAM cell structure is composed of a Magnetic Tunneling Junction (MTJ) con-

nected in series with a transistor. This cell is connected between the bitline and the source

line whereas the wordline is responsible for switching off the transistor. An MTJ device

consists of a reference (fixed) layer and a free layer, which are separated by an oxide barrier

layer [Hosomi et al.]. In contrast, a Single Level Cell (SLC) PCM is programed by switching

the chalcogenide material between a high resistance amorphous state (RESET) and a low

resistance crystalline state (SET) through the application of a programming current [Kim

and Ahn; Zhang and Li]. The large resistance contrast between the SET and RESET states

enables the exploitation of partially crystallized states to store more than one bit per cell

resulting in Multi Level Cells (MLCs). In current MLC PCM, the resistance range between

the RESET and the SET states is split into four regions that represent the logic values ‘00’,

1

‘01’, ‘10’, and ‘11’.

Decreasing the feature size of each memory cell further reinforces a common phenomena

among future memory systems, referred to as disturbance, that will negatively impact the

memory reliability, energy efficiency and performance [Cha, 2011; Lee et al.; Mandelman

et al.; Naeimi et al., 2013]. Unfortunately, recent studies have shown that the read distur-

bance rate that originates from intra-cell thermal interferences in STT-RAM [Naeimi et al.,

2013] is growing with aggressive scaling and is going to be a major reliability issue in future

technology nodes. While inter-cell thermal interferences in PCM cells was first observed at

54nm regime [Lee et al.], research on cell structures scaled below 22nm technology node [Ahn

et al.; Kim et al., 2011] shows that they can negatively impact the system performance and

energy efficiency.

In DRAM, vulnerability to wordline electromagnetic fluctuations exists in recent sub

40nm commodity chips due to physical limitations of process technology. When the cumula-

tive voltage interference to the DRAM wordline becomes strong enough, the state of nearby

cells can change leading to memory errors. Research [Kim et al., 2015, 2014] showed that

through frequently alternating the charge of specific memory locations, voltage fluctuations

can be used, intentionally, to affect the charge of adjacent cells [Gruss et al., 2016]. However,

in addition to intentional malicious attacks [Aweke et al., 2016; Ghasempour et al., 2015],

the unbalanced nature of some applications access patterns induce voltage fluctuations.

The current memory systems incur high energy, performance and area overhead to obtain

a bare-minimum satisfactory reliability. The goal of my research is to achieve strong memory

reliability and high energy efficiency while taking advantage of continued scalability with

minimal hardware overheads in future memory systems.

1.1 SCALABILITY CHALLENGES IN FUTURE MEMORY SYSTEMS

When DRAM cells are scaled at sub-22nm nodes, coupling capacitances between wordlines

can cause data retention problems [Cha, 2011; Mandelman et al.; Redeker et al.]. Due to

capacitive coupling between memory cells on adjacent wordlines, voltage levels used while

2

accessing data on one wordline can affect data quality on non-accessed neighboring wordlines.

This is the root of the voltage fluctuations in DRAM and is sometimes referred to as “Inter-

cell read disturbance , or “Wordline crosstalk.” To this end, this dissertation explores

a low-cost hardware solution that deterministically tackles scaling-related wordline crosstalk.

Although, the recent STT-RAM technology does not suffer from inter-cell disturbances,

its reliability can be affected by “intra-cell read disturbance” which is mainly caused

by the limited thermal stability and accumulated read current pulses [Naeimi et al., 2013].

When a large current during read is applied, the intra-cell read disturbance accidentally

flips the value stored within the MTJ cell resulting in an error that persists in subsequent

reads until the cell is rewritten [Sun et al.]. While the intra-cell read disturbance is nearly

negligible (≈ 10−9) at 65nm, it will exceed 10−5 per bit read at 22nm technology node and

will continue to increase as the technology node descends [Sun et al.; Zhang et al., 2015].

The traditional approaches took the mitigation of write errors and false reads into account

via deploying error correcting codes (ECC). This dissertation relies on the error detection

capability of ECC to mitigate intra-cell disturbances in addition to alleviating false reads

and write faults.

Finally, memory systems based on PCM technology can also suffer from “inter-cell

write disturbances” [Ahn et al.; Jiang et al.; Kim et al., 2011] when the bitline and

wordline distances in PCM contract. Specifically, the heat used for resetting cells in the active

wordline can bleed to neighboring cells (victim cells) in the same wordline or neighboring

wordlines intensifying inter-cell write disturbances. Specifically, the generated heat reduces

the resistance of the victim cell and may unintentionally change its chosen state. The sneak

heat slowly decays vertically along the bitline while it diminishes fast horizontally along

the wordline. Thus, likelihood of incidence of write disturbance errors along the bitline is

more than that along the wordline. To highly diminish the incidence of bitline disturbance

errors in SLC PCM, only inter-cell spacing along the bitline is reduced sacrificing memory

capacity. However MLC PCM delivers high memory capacity at the expense of higher

write energy compared to SLC PCM. Note that it is impractical to precisely program cells

through a single pulse in MLC PCM; therefore, industrial prototypes and academic research

resort to an iterative program-and-verify (P&V) policy [Nirschl et al.; Pantazi et al., 2009].

3

Intra-Cell	Read	Disturbance	In	STT-RAM:	
Repeatedly	reading	a	cell	may	change	the	stored	value	

Inter-Cell	Read	Disturbance	In	DRAM:	
Repeatedly	reading	a	cell	may	disturb	neighboring	cells	

Inter-Cell	Write	Disturbance	In	PCM:	
Repeatedly	wri7ng	a	cell	may	disturb	neighboring	cells	

Figure 1: Scope of the dissertation.

Unfortunately, P&V programming increases the write energy by factors reaching 10× that

of programming an SLC PCM [Wang et al.]. One of my objectives in this dissertation is to

reduce write energy in MLC PCM by designing a simple and effective mechanism while still

not adversely affecting susceptibility to inter-cell write disturbances.

1.2 RESEARCH OVERVIEW

The goal of my dissertation is to devise solutions that provide satisfactory energy efficiency in

deep-scaled memory systems while achieving strong reliability via mitigating inter-cell/intra-

cell disturbance errors.

The scope of the dissertation is depicted in Figure 1. Few effective solutions are available

to support the poisonous challenges that these technologies face due to disturbances at deep

scaling. In this realm, I am interested in finding effective solutions to the following research

questions:

RQ1. How to design a low-overhead hardware structure that deterministically determines the

most frequently access rows in DRAM and then mitigates the corresponding neighboring

rows vulnerable to inter-cell read disturbances (wordline crosstalk)?

4

RQ2. How to tolerate both transient errors (false reads) and persistent errors (write faults and

intra-cell read disturbance errors) in STT-RAM?

RQ3. How to manage the tradeoff among inter-cell write disturbances, energy and endurance

in PCM while reducing the number of reset cells in order to minimize their impact on

their neighboring cells?

In what follows, I elaborate on each of these research questions.

1.2.1 Mitigating Wordline disturbances in DRAM using Adaptive Trees of

Counters

The conventional approach to mitigate wordline crosstalk in DRAM is to increase the re-

fresh rate for all rows. Although, this approach is effective, it imposes an unnecessarily high

power and performance overhead [Arjomand et al., 2016; Aweke et al., 2016; Kim and Pa-

paefthymiou, 2003; Kotra et al.; Liu et al., 2012; Mukundan et al., 2013; Nair et al.; Ohsawa

et al.; Rahmati et al.]. One hardware solution to mitigate wordline crosstalk in DRAM is to

detect the most frequently accessed rows, or aggressor rows, and then refresh the rows that

are adjacent to it, or victim rows. A simple method to recognize aggressor rows, called Static

Counter Assignment (SCA), is to dedicate a counter per row to keep track of the number of

row activations. However, having one counter per row induces a significant area and power

overhead to the memory system. Due to row access locality in DRAM [Jeong et al.], many

counters in SCA would be underutilized.

This dissertation proposes a Counter-based Adaptive Tree (CAT) approach that dynam-

ically assigns counters to frequently accessed aggressor rows. Hence, with a small number

of on-chip counters it is possible to deterministically refresh victim rows. When CAT re-

sults in a highly unbalanced tree, it provides a significant advantage in refresh energy over

a block-based uniform counter distribution with a similar number of counters. In contrast,

CAT converges to a balanced tree when accesses in memory are uniform. The key feature

of CAT is that hot rows are instrumented using smaller groups, while rows with low access

frequency are unlikely to induce crosstalk and are instrumented using larger groups.

5

1.2.2 Leveraging ECC to Mitigate Read Disturbances, in addition to False

Reads and Write Faults in STT-RAM

The relatively unreliable reads of STT-RAM due to read disturbances degrades system reli-

ability and precludes the integration of STT-RAM into the memory stack. The traditional

ECC can detect latent read disturbances, as it does not differentiate between persistent

errors (intra-cell read disturbances and write faults) and transient errors (false reads). Es-

sentially, any error detected and corrected by ECC is treated as a potential read disturbance.

Subsequently, either the data is written back or a second read is used to discover the nature

of the error. Thus, a memory block is refreshed on demand upon error detection.

To this end, this dissertation first uses Markov modeling to build a strong understanding

and characterization of how different types of errors and faults affect user operations. Then,

based on this understanding, it studies low cost read disturbance policies that utilize the

error detection capability of ECC to mitigate read disturbances. Finally, it takes advantage

of the unique properties of the Markov chain process to estimate the reliability and overhead

of the policies. Because of the cumulative effect of the read disturbance, even relatively low

fault probabilities (raw bit error rate or RBER) can result in a relatively high probability

of failure (unrecoverable bit error rate or UBER). Consequently, as Monte-Carlo simulation

is only feasible for high RBER, it is inadequate for systems with persistent errors since it

requires prohibitive simulation times to capture the effect of low RBER. This is the reason

for using the proposed Markov Modeling in the evaluation.

1.2.3 Integrating Multi-Tiered Compression with Coset Coding for PCM to

Mitigate Write Disturbances

This work integrates encoding techniques to compression techniques with the goal of using

reclaimed bits for storing encoding meta data while salvaging memory capacity and making

a trade-off among inter-cell write disturbances, write energy and endurance.

Typically, several adjacent data elements of a given size form a 64-byte cache line. For

example, the cache line may encompass eight 64-bit double-precision floating-point values,

sixteen 32-bit integers, or thirty-two 16-bit floating-point values. The significant similarities

6

in adjacent data elements stored in on-chip caches and off-chip memories have been observed

in prior works [Kim et al., a; Yang et al., 2000; Zhang et al., 2000]. The main core of

compression algorithms is based on exploring similarity among data elements. The similarity

exploration can be conducted within data elements or across data elements. Unfortunately,

the existing compressors change the bits in the data elements and do not allow the differential

write to take advantage of in-place similarity1 in PCM. The objective is to propose Multi-

Tiered Compression (MTC) via exploring similarity within/across data elements to achieve

the high percentages of compressed cache lines and reclaimed bits in PCM.

In contrast, the coset coding technique [Jacobvitz et al.; Seyedzadeh et al., 2016b] is

an effective solution to minimize the cost function by expanding encoding space. It first

maps each dataword to multiple coset candidates and then selects the coset candidate that

minimizes the corresponding cost function. Finally, the selected coset candidate encodes the

cacheline. To retrieve the original dataword in the decoder, the corresponding codeword is

indexed by auxiliary bits that sacrifice the memory capacity. While encoding techniques

work on the typical cacheline size to improve reliability, energy efficiency and endurance via

sacrificing memory capacity, this dissertation revisits encoding techniques for PCM when

lowering the encoding granularity below the typical cache line size.

1.3 THESIS CONTRIBUTION

This dissertation makes the following contributions:

1) For mitigating inter-cell read disturbances in DRAM:

∗ It demonstrates that, due to access locality in DRAM [Jeong et al.], instead of

over-provisioning with one counter per row, a small number of counters can be

implemented on-chip to refresh victim rows, while achieving low latency and low

power consumption.

∗ It introduces a dynamically reconfigurable CAT scheme (DRCAT), that tracks and

reacts to temporal changes in memory access patterns resulting from either appli-

1In-place similarity is the similarity of the old data to the corresponding new data in the memory line.

7

cation context switching or different phases of a particular application in order to

more precisely identify actual victim rows and reduce DRAM refresh energy.

2) For mitigating intra-cell read disturbances in STT-RAM:

∗ It uses Markov chains to reason about the reliability of a system considering intra-

cell read disturbances, write faults and false reads together and shows how an ECC

can be used to cover the three different types of errors.

∗ It investigates three on-demand refresh policies to recover from the persistent effect

of intra-cell read disturbances, false reads and write faults.

3) For mitigating inter-cell write disturbances in PCM:

∗ It characterizes realistic workloads and explores them for multi-tiered compression

(MTC) that does not disturb in-place similarity to reduce write disturbance errors

in deep scaled PCM while using very simple compression/decompression logic.

∗ It proposes a new and low overhead fine-grained restricted coset encoding that can

be integrated with the proposed compression technique.

∗ It uses a multi-objective optimization technique to improve reliability, performance,

write energy and endurance in deep scaled PCM.

1.4 ORGANIZATION

This dissertation is organized into six chapters. Chapter 2 reviews the related work. Chap-

ter 3 implements adaptable trees of counters to alleviate wordline crosstalk in DRAM. Chap-

ter 4 leverages ECC to mitigate read disturbance, false reads and write faults in STT-RAM.

Chapter 5 investigates how to integrate coset coding with multi-tiered compression for PCM.

Chapter 6 presents the summary and conclusion of the dissertation.

8

2.0 BACKGROUND AND RELATED WORK

This chapter first provides some necessary background on each memory technology and then

briefly reviews related work.

2.1 INTER-CELL READ DISTURBANCE (WORDLINE CROSSTALK)

2.1.1 DRAM Organization

DRAM-based main memory is a multi-level hierarchy of structures. At the highest level,

each memory module is composed of a number of chips and is connected to the memory

controller through a channel. Figure 2(a) shows 8 commodity DRAM chips that constitutes

a typical rank. Internally, each chip consists of multiple banks and each bank is organized

as rows of DRAM cells, as shown in Figure 2(b). Also, Figure 2(b) shows a single memory

cell that is composed of a capacitor, in which the data is stored, and an access transistor.

While accessing a row, all cells in the row are selected in parallel using a wordline. Due

to capacitive coupling between cells on adjacent wordlines, if a wordline (aggressor row) is

accessed frequently, voltage levels on neighboring wordlines (victim rows) can be affected

leading to crosstalk. Mitigating wordline crosstalk is possible by refreshing the victim rows

before the aggressor rows reach the refresh threshold.

2.1.2 Related Work

A hardware approach to alleviate wordline crosstalk is for each DRAM access to refresh the

victim rows adjacent to the accessed row based on a probability function [Kim et al., 2015].

In this probabilistic approach, called PRA (Probabilistic Row Activation), the memory con-

9

M
em

or
y

C
on

tro
lle

r

Rank

Chip 7

Sense Amplifier

B
ank 0
B

ank 6
B

ank 7

Wordline
B

itlineTransistor

C
ap

ac
ito

r

Cell
Chip 0 Chip 1

(a) (b) (c)(a) DRAM memory block.

M
em

or
y

C
on

tro
lle

r
Rank

Chip 7

Sense Amplifier

B
ank 0
B

ank 6
B

ank 7

Wordline

B
itlineTransistor

C
ap

ac
ito

r

Cell
Chip 0 Chip 1

(a) (b) (c)
(b) DRAM bank.

Figure 2: DRAM organization.

troller uses a Pseudo-Random Number Generator with a given probability (α) to determine

when the memory controller should issue a refresh signal to refresh the two rows adjacent

to the accessed row. When either the number of memory accesses or the probability α is

high, this approach generates a significant number of refresh commands, thus exacerbating

memory contention and increasing the energy cost [Aweke et al., 2016].

As a hardware alternative to the probabilistic approach, a deterministic approach can be

used to prevent aggressor rows from being accessed more than the refresh threshold before

refreshing the victim rows. Maintaining a counter for each memory row is a significant

overhead [Bains and Halbert, 2016; Greenfield et al., 2015]. To address this problem, an

approach was proposed that stores the counters in a reserved area of DRAM and a set-

associative counter cache was established in the memory controller to improve accessibility to

frequently used counters [Kim et al., 2015]. Note that the primary idea in [Kim et al., 2015] is

similar to that used for Counter-based caches [Kharbutli and Solihin], where threshold-based

counters detect expired lines for proactive eviction. While, using counters allows for accurate

counts of row accesses, caching the counters introduces the complexity of maintaining a cache

(e.g., tag matching, eviction policies) within the memory controller. Moreover, misses to the

cache counter can be expensive.

Rewriting instructions, such as CLFLUSH [Seaborn and Dullien], have been proposed

as software countermeasures against wordline crosstalk and are now deployed in Google

Native Client. Similarly, access to the Linux pagemap interface is now prohibited from

10

userland [Shutemov, 2015]. These countermeasures have already been proven insufficient to

mitigate malicious kernel attacks [Bosman et al.; Gruss et al., 2016]. In [Aweke et al., 2016],

a generic software mechanism, ANVIL, is proposed to detect aggressor rows by monitoring

the last-level cache (LLC) miss rate and row accesses with high temporal locality. A similar

approach is proposed in [Herath and Fogh] to monitor the number of last level cache misses

during a given refresh interval. Both approaches rely on software access to CPU performance

counters.

Our approach takes advantage of a small number of counters per bank, but better tar-

gets the aggressor rows to provide further benefits to overall energy consumption while de-

terministically mitigating crosstalk. Our novelty is the adaptive construction and dynamic

reconfigurability of a “potentially unbalanced” tree of counters to match access patterns.

2.2 INTRA-CELL READ DISTURBANCE

2.2.1 STT-RAM

Figure 3(a) shows a cell structure of an STT-RAM composed of a Magnetic Tunneling

Junction (MTJ) connected in series with a transistor. This cell is connected between the bit

lines and the source lines whereas the word line is responsible for switching off the transistor.

A MTJ device consists of a reference (fixed) layer and a free layer, which are separated by an

oxide barrier layer [Hosomi et al.]. When the current flows from the free layer to the reference

layer, the magnetization direction of the free layer flips to be parallel to that of the reference

layer and the MTJ resistance becomes low representing a logical ‘0’; On the contrary, when

the current is applied from the reference layer to the free layer, the magnetization direction

of the free layer flips to be anti-parallel to that of the reference layer as shown in Figure 3(b).

In this case, the MTJ resistance is high representing a logical ‘1’.

To write the data to the MTJ, a large current is injected so as to change the magnetic

orientation of the free layer. The amount of the required current for writing into the MTJ

is significantly larger than that for reading it. The read current can be injected into two

11

Barrier Layer

Free Layer

Gate

Fixed Layer

Source Drain

Bit Line

Word Line
Source Line

NMOS

MTJ

Bit Line (BL)

Source Line (SL)

Word Line
(WL)

Anti-parallel (AP)

Bit Line (BL)

Source Line (SL)

Word Line
(WL)

Parallel (P)

(a) (b)
(a) STT-RAM cell.

Barrier Layer

Free Layer

Gate

Fixed Layer

Source Drain

Bit Line

Word Line
Source Line

NMOS

MTJ

Bit Line (BL)

Source Line (SL)

Word Line
(WL)

Anti-parallel (AP)

Bit Line (BL)

Source Line (SL)

Word Line
(WL)

Parallel (P)

(a) (b) (b) The equivalent circuit.

Figure 3: Spin-Transfer Torque Magnetic Random-Access Memory.

different directions, but the direction of writing ‘0’ is always picked to increase reliabil-

ity [Kawahara and et al]. The read current flowing in this direction potentially induces a

unidirectional ‘1 → 0’ flip.

2.2.2 Errors in read and write operations

In STT-RAM, write faults occur when the current is removed before the MTJ switching

process completes [Wen et al.; Yang and et al, 2012]. False reads in STT-RAM are mainly

caused by a decrease in the Tunnel Magneto-Resistance (TMR) ratio, and an increase in

process variations in deep sub-micron technologies. If the current of parallel (anti-parallel)

state in the MTJ crosses the threshold value of the anti-parallel (parallel) state, then the read

returns a value different than the value stored within an MTJ resulting in a false read. Read

disturbance is mainly caused by the limited thermal stability and accumulated read current

pulses. When a large current during read is applied, the read disturbance accidentally flips

the value stored within an MTJ cell resulting in an error that persists in subsequent reads

until the cell is rewritten. The probability of a read disturbance (RBER) of an MTJ at a

read current, Ir, is determined by the read current pulse width, τ , the thermal stability, ∆,

and the critical switching current, I0, as follows [Chen and et al, 2010; Koch and et al, 2004]:

12

pd = 1− exp
(
− τ
τ0
exp[−∆(1− Ir

I0
)]

)
(2.1)

where, τ0 denotes the thermally activated reversal time. Since the fabrication process deter-

mines the MTJ device parameters such as Ic0 and ∆, they remain unchanged after a device

is made. Therefore, the read disturbance probability is a function of Ir
I0

, under a given τ .

Note that false reads are related MTJ thickness and TMR while disturbance and write errors

derive from current densities [Yang and et al, 2012; Zhao and et al, 2012], so they are not

tightly correlated.

In this work, we will denote the RBER due to false reads, read disturbances and write

faults by pf , pd and pw, respectively. Amongst false reads, read disturbances and write

faults, only the effect of read disturbance is magnified with repeated read operations. Ac-

cordingly, the persistent nature of read disturbance requires special attention. Note that

read disturbance errors in STT-RAM are local (intra-cell read disturbance), so they differ

from crosstalk in flash memory and DRAM [Cai and et al; Cai et al.; Kim et al., 2014;

Kultursay and et al]. For 180nm CMOS technology, the amplitude of the read current is

much smaller than that of the write current and therefore read operations are reliable. Since

CMOS technology continues to scale down, the amplitude of the read current and the write

current are so close for 32nm technology node which dramatically increase the susceptibility

of cells to read disturbance.

2.2.3 Related work

To tackle the read disturbance problem, several techniques have been proposed. A circuit

based technique has been proposed for STT-RAM in which a pulsed read technique is used to

read the content of the bit-cell [Raychowdhury]. In this technique, the word line switches to

low and high states for a certain period of time to form a pulse that prevents the read current

from flowing continuously through the bit-cell. Although this reduces the read disturbance

rate, it increases read access time and the complexity of the sensing technique. At a device

level, a disruptive reading and restoring scheme has been proposed in [Takemura and et al]

to reduce the read disturbance rate by increasing the thermal stability factor. However, this

13

considerably increases the cycle time, the critical current and the write power.

A dual-mode architecture for fast-switching STT-RAM has been proposed in [Sun et al.]

which can switch between two operation modes for either high data accuracy or low power

consumption. In the high accuracy mode, the rewrite-after-read scheme is used to eliminate

the data disturbances induced by the read current. To further reduce both dynamic and

system energy consumption, a selective restore scheme has been proposed in [Rotenberg;

Wang and et al]. This circuit-based scheme performs a double read operation with inverted

read current to identify and restore all disturbed cells at the cost of a large read energy

overhead.

SECDED (Single Error Correct, Double Error Detect) codes are used to recover from

a single bit error in memory. If a data block already has an error, it is vulnerable to a

second bit error that cannot be corrected. To prevent the occurrence of this second error,

the memory is constantly examined in the background. When a single bit error is detected,

it is corrected and the block is written back. This is referred to as Scrubbing [Awasthi and

et al; Jacob and et al, 2010]. Memory systems with significantly high bit error rates require

the development of scrubbing as an active defense against uncorrectable multi-failure errors.

Moreover, scrubbing is predominantly valuable for systems where errors occur from external

events to the storage cell (e.g., cross talk, SEU, etc.). In contrast, the errors we are modeling

occur only from access to the modeled cell. Furthermore, with read disturbance, scrubbing

should refresh/write the data even if no error is detected since reads from scrubbing may

corrupt a cell, unnecessarily increasing write backs.

To mitigate various types of errors in STT-RAM, we investigate three policies which

refresh the memory block on demand using a single ECC. According to the range of bit error

rates, one of these three policies diminishes the destructive effects of disturbance errors. Also,

we resort to Markov Chains to reason about the combined effect of persistent and transient

errors on the UBER when on demand refresh is used to deal with read disturbance errors.

14

2.3 INTER-CELL WRITE DISTURBANCE

2.3.1 Single Level Cell PCM

A Single Level Cell (SLC) PCM is programed by switching the Chalcogenide material be-

tween a low resistance crystalline state (SET) and a high resistance amorphous state (RE-

SET) through the application of a programming current. The cell in the SET state requires

a high intense programming current to change its status to the RESET state. This current

is considerably more than the current required for switching the cell from RESET to SET.

Studies showed that the loss of cell endurance is directly correlated to the high programming

current [Kim and Ahn; Zhang and Li].

Figure 4(a) shows the architecture of PCM cells, which are each deployed at the inter-

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	 	
	

	
	
	
	
	
	
	 	
	

0 1 0 0

1 0 0 0

0 0 0 0

0 0 1 0

0 0 1 0

0 0 0 0 WLn+1

WLn+

1

WLn-1

BL0 BL1 BL2 BL3 BL4 BL5 BL6 BL7

0 0 0 0

1 0 0 0

0 0 0 0

0 1 0 0

0 0 1 0

0 0 0 0 WLn+1

WLn+

1

WLn-1

BL0 BL1 BL2 BL3 BL4 BL5 BL6 BL7

(a)

(b)

(New Data)

(Old Data)

(a) The active wordline WLn with old data values.

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	 	
	

	
	
	
	
	
	
	 	
	

0 1 0 0

1 0 0 0

0 0 0 0

0 0 1 0

0 0 1 0

0 0 0 0 WLn+1

WLn+

1

WLn-1

BL0 BL1 BL2 BL3 BL4 BL5 BL6 BL7

0 0 0 0

1 0 0 0

0 0 0 0

0 1 0 0

0 0 1 0

0 0 0 0 WLn+1

WLn+

1

WLn-1

BL0 BL1 BL2 BL3 BL4 BL5 BL6 BL7

(a)

(b)

(New Data)

(Old Data)

(b) The active wordline WLn with new data values.

Figure 4: Write disturbance crosstalk in the deep scaled PCM cells. The red and yellow
cells are aggressor and victim cells, respectively.

15

section of WordLines (WL) and BitLines (BL). Upon a memory write, some physical cells in

the active wordline need to have their state changed (SET and RESET), while others remain

untouched (i.e., idle). Since the reset process produces significant heat, it can disturb cells

that are idle. These idle cells that are inadvertently changed during the write process are

victim cells. In this case, the resistance of a victim cell reduces and its logic value changes

from ‘0→ 1’. The comparison of Figures 4(a) and 4(b) shows when a cell is reset ‘1→ 0’, it

can disturb cells within the active wordline WLn and also in neighboring wordlines WLn±1.

Potential victim cells vulnerable to crosstalk are represented in yellow color in Figure 4(b).

For example, consider the cell, cn,1, at the intersection of WLn and BL1. The value of cn,1’s

is updated from ‘1 → 0’ during a new write. Since all the neighboring cells of cn,1 are in

the amorphous state, the heat resulting from the reset process may inadvertently update its

neighboring cells with the probability 9.9% and 11% [Swami and Mohanram; Wang et al.,

2015] in WLn and WLn±1, respectively. Note that the heat of aggressor cell does not have

an effect on the cell that is in the SET state or is set during the write process. Thus, write

disturbance crosstalk in PCM is asymmetric and unidirectional (i.e., ‘0→ 1’). Note that if

all cells are updated in a write operation, there are no idle cells and consequently no write

disturbance. However, because the endurance of a PCM cell is determined by the number

of writes to that cell, Differential Write [Zhou et al., 2009] is used and only cells which are

actually changed are written.

2.3.2 Multi Level Cell PCM

To increase memory capacity in PCM, the large resistance contrast between the SET and

RESET states enables to store more than one bit per cell (Multi-level cell). The typical

MLC PCM [Nirschl et al.; Pantazi et al., 2009; Wang et al.] split the resistance range

between the RESET and the SET states that represent the logic values ‘00’, ‘01’, ‘10’,

and ‘11’. Similar to a SLC PCM, the high heat resulting from resetting an MLC PCM, may

disturb neighboring idle cells that are not being programmed. Specifically, the generated heat

reduces the resistance of the idle cells and may unintentionally put them in the intermediate

state or SET state with the probability that ranges from 12.3% to 27.6%. This reliability

16

bottleneck increases when memory cells are scaled below 22nm technology where cell-to-cell

distance decreases considerably [Ahn et al.; Jiang et al.; Kim et al., 2011].

2.3.3 Related Work

Several techniques have been proposed to confront high write energy [Seyedzadeh et al.,

2016a,b], endurance and write disturbance problems in SLC and MLC PCM. The key idea

behind all of them is to reduce the number of state changes (write operations) that are costly

in terms of energy, endurance and write disturbance. Data encoding is a common solution

that effectively reduces the number of costly cell programming operations. For example,

Flip-N-Write [Cho and Lee] was proposed for SLC PCM to reduce the number of written

cells in the memory. To improve the lifetime of SLCs, FlipMin [Jacobvitz et al.] was proposed

based on the concept of coset encoding [Forney]. The basic idea of FlipMin is to perform a

one-to-one mapping from the data block to a coset of code word candidates. Then, the code

word candidate that optimizes the lifetime is selected to be written in the memory. The

initial coset candidates are built by the dual code of a (72,64) Hamming generator matrix.

Since the initial coset candidates are essentially random binary vectors, FlipMin is most

effective for workloads operating on random data [Seyedzadeh et al., 2016b].

To reduce write energy in MLC PCM and achieve low encoding overhead, an encoding

that uses six coset candidates has been proposed in [Wang et al.] with the goal of map-

ping the two high energy states to the two low energy states. To mitigate word line write

disturbance errors in wordlines, a Data encoding based INsulation technique (DIN), was

proposed in [Jiang et al.] and was integrated with a 20-bit BCH code to correct any two

write disturbance errors in a verification step. To make room for the extended code words,

DIN uses memory line compression to compress a 512-bit line to 369-bits. However, because

of the required large compression ratio, DIN is only able to compress and encode 30% of the

memory lines.

To mitigate bitline write disturbance errors, SD-PCM uses idle error-correcting point-

ers (ECPs) [Wang et al., 2015] to temporarily recover from bitline disturbance errors in the

adjacent memory rows. Using ECPs can postpone the extra write processes required for

17

neighboring rows if they are cached until the cacheline is evicted. SD-PCM leverages DIN to

mitigate wordline disturbance errors. Because of increased cell activity of ECPs in SD-PCM,

the availability of idle ECPs designed to handle hard errors like stuck-at faults limits the

efficiency of SD-PCM. Furthermore, to avoid write disturbance errors in ECP cells (i.e., to

make the ECP bits safe from write disturbance), SD-PCM requires a lower-density ECP chip

compared to memory chips for storing data.

Recently, ADAM [Swami and Mohanram] used Frequent Pattern based Compression

(FPC) [Alameldeen and Wood, 2004; Pekhimenko et al., 2012] to reduce the number of

cells written within a memory block. This naturally reduces the number of aggressor and

victim cells in the active wordline. ADAM also reorganizes the compressed data such that

consecutive memory rows store the compressed data in alternate alignments. i.e., compressed

data stored in even-numbered rows is right-aligned and compressed data in odd-numbered

rows is left-aligned. Naturally, uncompressed data is stored as-is. Unfortunately, since FPC

combined with base-delta immediate (BDI) compression [Pekhimenko et al., 2012] can only

be applied in about 30% of cases [Seyedzadeh et al., 2018], ADAM is only effective for a

small fraction of data blocks, limiting its overall effectiveness.

A low-area overhead technique is proposed in this dissertation that alleviates both bitline

and wordline disturbance errors in SLC and MLC PCM. It opens room in the cacheline using

a low-area overhead compression to store the auxiliary information of coset encoding. Due

to not disturbing in-place similarity, the proposed technique reduces write energy, improves

system performance while not sacrificing memory capacity.

18

3.0 MITIGATING WORDLINE CROSSTALK

USING TREES OF COUNTERS

DRAM technology scaling has the undesirable side effect of degrading cell reliability. One

such concern of deeply scaled DRAMs is the increased coupling between adjacent cells, com-

monly referred to as crosstalk. High access frequency of certain rows in DRAM may cause

data loss in cells of physically adjacent rows due to crosstalk. The malicious exploit of this

crosstalk by repeatedly accessing a row to induce this effect is known as row hammering.

Additionally, inadvertent row hammering may also occur due to the natural weighted nature

of applications’ access patterns. This chapter analyzes the efficiency of existing approaches

for mitigating wordline crosstalk and demonstrates that they have been conservatively de-

signed. Given the unbalanced nature of DRAM accesses, a small group of dynamically allo-

cated counters in banks can deterministically detect “aggressor” rows and mitigate crosstalk.

Based on experimental findings, we propose a Counter-based Adaptive Tree (CAT) approach

to mitigate wordline crosstalk using adaptive trees of counters to guide appropriate refresh-

ing of vulnerable rows. The key idea is to tune the distribution of the counters to the rows

in a bank based on the memory reference patterns. In contrast to deterministic solutions,

CAT utilizes fewer counters, making it practically feasible to be implemented on-chip. Com-

pared to existing probabilistic approaches, CAT more precisely refreshes rows vulnerable to

crosstalk based on their access frequency.

3.1 MOTIVATION

This chapter analyses the previously proposed hardware approaches and makes key obser-

vations to motivate the dynamic counter assignment as a hardware solution that mitigates

wordline crosstalk and combats row hammering.

19

3.1.1 Probabilistic Refresh Analysis

Using a probabilistic approach, such as PRA [Kim et al., 2015], to mitigate wordline crosstalk

can protect against failure with a high probability, depending on the value of the refresh

threshold, T , and the probability, α, of triggering a refresh. The probability of experiencing

an error in Y years (defined as Y-years unsurvivability) for PRA is computed as:

unsurvivability = (1− p)T ×Q0Q1 (3.1)

where p = α is the probability of refreshing TWO victim rows on an access, Q0 is the number

of refresh threshold windows during a refresh interval, and Q1 is the number of 64ms periods

during Y years. The parameter T depends on the technology node. Specifically, scaling

down DRAM increases voltage fluctuations in cells because of the interaction between circuit

components. Therefore, the refresh threshold is projected to decrease for future memory

technology [Kim et al., 2015].

Figure 5 compares the 5-years unsurvivability for different refresh thresholds when p

ranges from 0.001 to 0.006. Assuming mild row accesses during refresh intervals, we set Q0

to 10, 15, 20, and 40. Figure 5 shows that for T=32K and p > 0.001, PRA’s unsurvivability

is lower than the Chipkill’s unsurvivability of 1E-4. The key observation from this figure is

that, for smaller values of T , larger values of p are needed to match the 5-years survivability

of chipkill1. In fact, PRA’s failure probability increases exponentially when the refresh

threshold scales down, as is expected in future technology nodes. This means that larger

values of p (more frequent random refreshes) are needed to guarantee acceptable survivability.

Note that the reliability reported in Figure 5 assumes the use of a true pseudo random

number generator, PRNG, such as the one proposed in [Srinivasan et al.]. This is important

since the computed reliability is contingent on the randomness of the numbers generated

by PRNG. Specifically, the unsurvivability in Eq. 3.1 will not apply if a simpler (less costly

in terms of area and power) PRNG is used since the randomness of the generated numbers

will not be independent enough. To study the effect of the randomness of the generated

numbers, we conducted a Monte-Carlo simulation to estimate the unsurvivability of PRA

1Similar analysis done in [Kim et al., 2015] shows that PRAp=0.001 probability of failure is higher than
1E-4.

20

1.E-28	

1.E-24	

1.E-20	

1.E-16	

1.E-12	

1.E-08	

1.E-04	

1.E+00	
32k	 24k	 16k	 8k	

PR
A	
U
ns
ur
vi
va
bi
lit
y	

	fo
r	5

	Y
ea
rs
	

Refresh	Threshold	(T)	

p=0.001	 p=0.002	 p=0.003	 p=0.004	 p=0.005	 p=0.006	 Chipkill	

Figure 5: PRA unsurvivability for refresh thresholds 32k, 24k, 16k and 8k.

when a LFSR-based PRNG [lfs, https://users.ece.cmu.edu/ koopman/lfsr/] is used. The

results show that, using an LFSR-based PRNG largely increases PRA’s unsurvivability. For

example, for T=16K and p=0.005, PRA’s unsurvivability reaches 1E-4 after only 25 refresh

intervals. To improve the reliability, a much larger value of p should be used with LFSR-based

PRNGs which increases the refresh power and decreases the performance. A similar conclu-

sion was reached in [Ghasempour et al., http://apt.cs.manchester.ac.uk/projects/ARMOR

/RowHammer/ index.html]. Hence, PRA requires true random number generators, which

are known to be complex and to consume relatively large power [Srinivasan et al.; Yang

et al.], to achieve the probabilities shown in Figure 5.

3.1.2 Static Counter Assignment (SCA) Analysis

Using a deterministic approach for counting the number of accesses per row with on chip

counters using SCA requires a large area and power overhead. One intuitive solution is to

use fewer counters by partitioning the rows in each memory bank into fixed-size groups and

assign one counter per group. To illustrate SCA, we assume that every bank in DRAM

includes N rows and uses M counters. The refresh threshold, T , determines the size of

every counter as log2T -bits. This approach, called SCAM , divides the rows into M groups,

each including N
M

rows. For every row activation, the row address maps to the appropriate

21

1.E+00	

1.E+01	

1.E+02	

1.E+03	

1.E+04	

1.E+05	

1.E+06	

1.E+07	

16	

32	

64	

128	

256	

512	

1024	

2048	

4096	

8192	

16384	

32768	

65536	
En

er
gy
	(n

J)
	

#	of	Counters	

Counters	(Sta:c+Dynamic)	 Refresh	 Total	(refresh+counter	energy)	
2KB	counter	cache	 8KB	counter	cache	

Figure 6: The energy overhead of SCA and counter caches [Kim et al., 2015] for different
number of counters.

counter. Then, the corresponding counter counts the number of accesses. When the counter

reaches the threshold, it is reset and a refresh signal is sent to the memory controller to

refresh N
M

+ 2 rows; the N
M

rows in the group plus the two rows adjacent to the group, which

guarantees the refresh of any row in or adjacent to the group subjected to the crosstalk.

The energy overhead in SCA originates from activating the counters when memory is

accessed and refreshing N
M

+ 2 rows when a counter exceeds T . Figure 6 breaks down the

energy overhead of SCAM during a 64ms auto-refresh period when N = 65536 and the

number of counters M ranges from 16 to 655362. For a small number of counters, the energy

resulting from refreshing victim rows (blue line) dominates the total energy of activating

counters in SCA. In contrast, the total energy of activating counters in SCA is the dominant

energy as the number of counters significantly increases (orange line).

Figure 6 shows that the total energy can be minimized at M=128. In this case, SCA128

not only reduces the energy overhead in comparison to SCA65536, but also decreases the area

overhead by two orders of magnitude (as will be explained in Section 3.5). In comparison,

2The refresh energy includes the average refresh energy of victim rows for 18 real workloads (Details in
Section 3.4). We modified CACTI [Muralimanohar et al., 2009] to model the cache in the counter cache
approach [Kim et al., 2015].

22

the counter cache approach [Kim et al., 2015], which stores counters in the reserved area of

DRAM memory, reports data for a much larger counter storage cache, requiring capacity

to store on the order of thousands of counters per bank. Ostensibly, this is to allow for

enough flexibility to store the relevant counters to hot rows without a high miss rate due to

capacity misses and/or thrashing. Thus, the energy overhead of counter storage cache will

significantly exceed SCA128 due to the increased static power.

For example, Figure 6 shows the optimistic energy (assuming no misses requiring accesses

to the DRAM) of 2K and 8K per bank counter caches as horizontal lines. These lines intersect

the SCA4096–SCA16384 points, respectively, as they have the same amount of total counter

storage3. Thus, the total energy consumption of SCA with M ≤ 4K counters is lower

than that of the counter caches with different sizes. In particular, SCA128 can improve the

total energy overhead and area overhead by 1.5 orders of magnitude in comparison to a 2K

counter cache and nearly two orders of magnitude compared to an 8K counter cache [Kim

et al., 2015].

Thus, the key observation of these deterministic approaches is that allocating one counter

to each row in a DRAM bank with a cache counter can be effective but are somewhat con-

servative and leave room for improvement. Specifically, the analysis of row access frequency

of DRAM banks on real workloads reveals that the row access frequency during the refresh

interval is not uniform and mostly a small group of rows are activated in DRAM banks.

For example, Figure 7 depicts the row access frequency of a given bank for two typical real

workloads, blackscholes and facesim, within a time period of one refresh interval (64ms).

Figure 7 clearly shows that a small group of rows dominate overall accesses. This motives

us to propose a dynamic counter assignment for wordline crosstalk mitigation.

3The counter caches have additional storage to store the tag array. However, this storage is typically less
than the data array making it inconsequential on a log plot.

23

Row Address ×104
0 2 4 6

Ac
ce

ss
 F

re
qu

en
cy

×104

0

5

10
blackscholes

Row Address ×104
0 2 4 6

Ac
ce

ss
 F

re
qu

en
cy

×104

0

5

10
facesim

Figure 7: Row address frequency in a DRAM bank with 64K rows.

3.2 COUNTER-BASED ADAPTIVE TREE

In order to better assign row partitions to access counters, the Counter-Based Adaptive

Tree (CAT) is a new and practical dynamic row partitioning technique that considers access

frequency of rows to more carefully assign counters to appropriately sized groups of rows in

order to improve energy and area efficiency. To divide an initial group of rows (e.g., a bank

or some other uniform coarse partition) into groups of suitable sizes, CAT defines different

split thresholds that identify access frequency stages prior to reaching the refresh threshold.

These split thresholds are used to build a non-uniform binary tree structure that maps hot

rows to smaller groups, while cold rows, i.e. rows with relatively low access frequencies, are

mapped to larger groups. This aligns access counters to small groups of rows that contain

an aggressor row to more precisely identify actual victim rows.

3.2.1 A simple CAT Example

Figure 8 depicts two trees built by CAT, where a terminal node represents an active counter

and an intermediate node represents an expired counter, which had been split into two

counters. The level of a node is defined as its distance from the root, with the root being

at level zero. The levels of the CAT are associated with unique split thresholds. Hence,

24

when a node reaches the next threshold, it further subdivides the group, or splits the node,

generating two children counters initialized to the current count value. This is accomplished

by activating a second counter as a clone of the existing counter. The binary tree of counters

continues to grow until all available counters are activated or a maximum allowed level, a

parameter of the CAT algorithm, is reached.

More precisely, assuming that we limit the number of levels in the tree to L, we define

L− 1 split thresholds T0, ..., TL−2 where T0 ≤ ... ≤ TL−1 and TL−1 = T , recalling that T is

the refresh threshold. Each of the M counters in a bank, C0, ..., CM−1, has log2T bits and,

initially, only C0 is in active mode. When a counter at level l reaches the split threshold,

Tl, it splits and two counters are activated at level l + 1. This process continues until all

the counters are activated or l = L − 1. For example, Figure 8 shows two CATs for L = 6

and M = 8. The CAT in Figure 8(a) results from a non-uniform row access pattern, which

causes more counters to be allocated to the hot row area (smaller blocks) and grows the

tree through level 5. In contrast, when the row access frequency is uniform, counters are

distributed uniformly throughout the bank addresses as shown in Figure 8(b). In this case,

the CAT approach grows the tree only through level 3 and mimics SCA.

In CAT, N rows in one bank are initially treated as a group to which C0 is allocated.

As soon as C0 reaches T0, CAT splits C0 into C0 and C1 with the same starting value of

T0. In this case, C0 counts the number of accesses when the row address is between 0 to

N
2
− 1 and C1 counts the number of accesses when the row address ranges from N

2
to N − 1.

When C1 reaches T1, CAT splits C1 into C1 and C2 with the new initial value T1 where

C1 and C2 track row addresses in the ranges from N
2

to 3N
2
− 1 and from 3N

2
to (N − 1),

respectively. CAT continues this process until it activates all counters and no group can

be split into smaller sub-groups. At this point, the split thresholds of counters are set to

T . The minimum number of rows in a given group depends on the number of defined split

thresholds. With L−1 split thresholds (a CAT with at most L levels), the minimum number

of rows per group is N
2L−1 .

25

Active Counter
Released Counter

(b)

8
N

16
N

32
N

16
N

16
N

8
N

(a)

8
N

8
N

8
N

8
N

8
N

8
N

8
N

8
N

2
N

(a) Biased row address frequency.

Active Counter
Released Counter

(b)

8
N

16
N

32
N

16
N

16
N

8
N

(a)

8
N

8
N

8
N

8
N

8
N

8
N

8
N

8
N

2
N

(b) Uniform row address frequency.

Figure 8: The adaptive tress of counters for different workloads. The number of row
addresses in the bank is N .

3.2.2 Constructing the CAT

Algorithm 1 shows the process for refreshing rows under the CAT structure per memory

bank. It has two main modules: the Counter Module (CM) that records the number of

row accesses and the Reconfiguration Counter Module (RCM) that activates and initializes

counters. Assuming M counters in a given bank, CAT requires an array of M counter

modules that are implemented on-chip, and one RCM that can be implemented either on-

chip or in software. Each counter module CMi maintains two registers, Li and Ui to store

the lower and upper row addresses assigned to this counter, and a register li to store the

index of the split threshold used for that counter. The RCM maintains a last activated

counter register.

26

Initially, at the start of each refresh interval, CAT is reset such that only the first counter

module, CM0, is activated with L0= 0, U0 = N−1, l0=0, and last activated = 0. Each time

a row is accessed, its address is located in the range Li - Ui of some active Ci, and this counter

is incremented (lines 5-7). When Ci reaches Tli , flagi is raised (lines 8-10), which triggers

RCM to activate a new counter as long as the number of active counters is less than M and

the counter level li < L−1 (lines 15-16). When a new counter is activated, it is initialized by

Ci (line 17) and the interval between Li and Ui is split into two equal-size ranges where the

lower bound of Ci remains unchanged and the upper bound of Ci is assigned to the upper

bound of the new counter. Then, Ui shrinks to Ui = Ui+Li

2
and the lower bound of the new

counter is set to Ui + 1 (lines 18-20). The split thresholds of both counters are set to li+1

Algorithm 1: CAT structure per memory bank

1 Parameters: N : # rows per bank; M: # counters per bank; L: # thresholds; In-
put: row address; Output: Ri: Refresh signal for refreshing all existing rows between Li-1
and Ui+1.

2 begin
3 Counter Module CMi /* i = 0, ...,M − 1 */
4 if Li ≤ row address ≤ Ui then
5 if Ci < Tli then
6 Ci ++;
7 else
8 if li < L− 1 then
9 flagi = 1; /* Signal to trigger RCM /*

10 else
11 Ri=1; /* Signal to refresh corresponding rows*/
12 Ci = 0;

13 Reconfiguration Counter Module (RCM) /* Activated when flagi = 1*/
14 if flagi == 1 for some i then
15 if last activated < M − 1 && li < L− 1 then
16 last activated++; /*Increase # of active counters*/
17 Clast activated = Ci;
18 Ulast activated=Ui;

19 Ui = Ui+Li

2 ;
20 Llast activated = Ui + 1;
21 li ++;
22 llast activated = li;

23 if last activated==M-1 then
24 for i=0:M-1 do
25 li = L− 1;

27

(lines 21-22). For example, after initialization, when CM0 reaches Tl0 , CM1 is introduced by

subdividing CM0 in half, such that C1 = C0, L0 = 0, U0 = N
2
− 1, L1 = N

2
, and U1 = N − 1

with both CM ’s split thresholds being set to Tl1 and last activated = 1.

This process continues until some CM, CMi, reaches the highest threshold Tli = T (i.e.,

if li = L − 1, lines 10-12). In this case, Ci is reset and the signal Ri is raised to cause the

memory controller to refresh all existing rows in the address range of Li-1 and Ui+1. When

all counters are activated, CAT will set the index of all split thresholds to li = L− 1 which

causes Tli = T (line 25).

3.2.3 Efficient CAT Management Using SRAM

To directly implement Algorithm 1, maintaining the range boundaries of row blocks requires

more storage than the actual counters, themselves. Given that SRAM uses less area and

static power than registers [Jacob and et al, 2010], we are motivated to design and optimize

the CAT for SRAM. In this case, instead of storing row range boundaries, we use pointers to

store the structure of the CAT as shown in Figure 9. During each access, the tree structure

is traversed sequentially by chasing the pointers to find the counter assigned to a specific

row address.

The CAT, shown visually in Figure 9(a), is composed of two types of nodes: leaf nodes

(shown in light blue) that represent active counters and intermediate nodes (shown in white)

that determine the tree’s structure. Rather than store all the nodes in our data structure,

shown in Figure 9(b), we store only the intermediate nodes. Thus, we use an array, I,

of size M − 1 (the maximum number of intermediate nodes in a tree with M leaves) to

store information about intermediate nodes. Separately, we use another array C, of size

M to store the counters, shown in Figure 9(c). For each intermediate node, two pointers,

L ptr and R ptr, point to information about its two successors. If the successor is another

intermediate node, L/R ptr contains the entry for that intermediate node. If the successor

is a leaf, L/R ptr contains the entry for the counter corresponding to that leaf. Two flags,

L leaf and R leaf , indicate if the corresponding successor is an intermediate or leaf node.

The length of each counter is log(T) bits and each pointer is log(M) bits. The root of the

tree, I0, is deterministically stored in the first entry of the array I.

28

(c)	(b)	(a)	

C7C6

C5

I3

C3

I2

I1

I6

I5

C1

C0

C4

I4

C2

I0

(d)	

	
	
	
	
	
	
	

	
	
	
	
	
	
	

	 	 	 	 	 	 	 	 	
I0	 I1	 C0	 1	 0	 	 C0	 	 0	
I1	 I2	 I3	 1	 1	 	 C1	 	 1	
I2	 C1	 I4	 0	 1	 	 C2	 	 1	
I3	 C3	 I6	 0	 1	 	 C3	 	 2	
I4	 I5	 C4	 1	 0	 	 C4	 	 1	
I5	 C2	 C5	 0	 0	 	 C5	 	 1	
I6	 C6	 C7	 0	 0	 	 C6	 	 2	
	 L-ptr	 R-ptr	 L-leaf	 R-leaf	 	 C7	 	 2	

W	
	

	
	

C	
	

I	
	

M-
1	 	

M	
	

(a) (b) (c) (d)

Figure 9: (a) A CAT using pointer chasing with M=8 counters and 6 levels. (b,c) The
data structure used to represent the CAT. (d) An array of weight registers used for recon-
figuring the CAT (see Section 3.3)

To determine whether to inspect the left or right entry, we examine the address A (0 ≤
A < N). Starting at the root, the high order bit of A determines the successor that covers

row A, thus accessing a leaf or an intermediate nodes as already described. More generally,

when traversing an intermediate node at level l of the CAT, the lth bit of A, counting from

the most significant bit, is used to select the successor, which may be a leaf node or an

intermediate node at level l + 1. Before the CAT is completely built, it is guaranteed that

fewer that M counters and M − 1 intermediate nodes are utilized.

To illustrate the process of splitting a counter during the building of the CAT, we consider

the example CAT articulated in Figure 9 by rolling back the last split operation. The last

counter, C7 was deployed by splitting C6 into C6 and C7 and introducing I6. Let us assume

that the current I6 still points to a leaf node C6. At this point of the CAT construction,

only 7 counters were deployed. This incomplete tree is represented by the same array I of

Figure 9 with the fourth entry of the array being [C3, C6, 0, 0] (differences noted in bold)

and the last entry being still undefined. To reach the state shown in Figure 9, C6 reached

split threshold; I3’s R ptr was replaced by a pointer to the next available entry in I, I6; the

last available counter, C7, is initialized to match C6; and I6 is set to [C6, C7, 0, 0] as is

shown in the figure.

Given the above implementation, the maximum number of sequential SRAM accesses

29

for traversing the CAT is equal to the maximum depth of the tree, L. That number of

accesses may be reduced if instead of starting to build the CAT tree from its root, we start

from a pre-set complete binary tree with λ levels for some λ ≤ logM . Consequently, to

traverse the CAT, we can use the most significant λ bits of the row address, A, to directly

access the appropriate intermediate node at level λ−1, which reduces the maximum number

of SRAM accesses to reach a leaf to L − λ + 1. For example, if we start from a uniform

binary tree with λ = logM levels, the initial CAT will be a complete tree containing M/2

counters and M/2 − 1 intermediate nodes. The other M/2 counters can then be used to

grow the CAT non-uniformly beyond λ levels and up to a maximum of L levels. Moreover,

by pre-splitting the counters uniformly up to level λ − 1 (that is starting from a balanced

CAT with λ levels), we can reduce the size of the intermediate node array because we can

avoid storing the intermediate nodes at levels smaller than λ.

3.2.4 Determining Split Threshold Values

The CAT adapts the distribution of the available counters to the rows in a bank depending

on memory reference patterns. Specifically, the CAT is dynamically shaped to minimize

the number of refreshed rows, and thus, the refresh power. Given a sequence of row refer-

ences, the split thresholds determine the shape of the tree. In experimenting with the CAT

technique, we found that its performance is sensitive to the values of the split thresholds.

Given the combinatorial number of options for selecting the split thresholds, we present in

this section a model to determine these thresholds in a way that minimizes the number of

refreshed rows. We explain that model assuming that we start from a uniform CAT with

λ = m = logM levels, and determine the split thresholds Tm−1, ..., TL−2 used to grow the

tree non-uniformly to a maximum of L levels.

We consider first a simple example in which 4 counters are used for the N rows in a

bank. Specifically, assume that after a number of references, the CAT is represented by the

tree structure shown in Figure 10(a). Depending on the reference pattern and the values of

the split thresholds T1 and T2, this structure can evolve to either the balanced tree structure

of Figure 10(b) or the non-balanced tree structure of Figure 10(c). That is, whether counter

30

Level 0

Level 1

Level 3

Level 2

4w

2w

w/2

w
C1

C2 C3 C1 C4 C2 C3

C1

C2

C3 C4(c)(b)(a)

Rows/group

(a) (b) (c)

Figure 10: Two possible evolutions of the CAT of (a) to a balanced tree structure (b) or
an unbalanced structure (c).

C1 splits first (Figure 10(b)) or counter C3 splits first (Figure 10(c)) depends on the relative

value of T1 and T2. After one of the counters splits, the CAT reaches its final shape and the

thresholds of all the counters are set to the row hammering threshold T . Hence, it is crucial

to choose the split thresholds so that the CAT assumes the form of the tree that minimizes

the number of refreshed rows.

Continuing with the 4-counter example, we note that a counter at level 0, 1, 2 and 3

will be assigned 4w, 2w, w and w/2 rows, respectively, where w = N/4. Now, assume

that the bank receives R row references (accesses) during the regular refresh interval. If

the references are uniformly distributed across rows, then each counter in Figure 10(b) will

receive R/4 references, and if the row hammering threshold is T , then each counter will reach

this threshold R/4T times. Each time a counter reaches T , the w rows assigned to it are

refreshed. Hence the total number of refreshes is

CostSCA = w ×R/T (3.2)

Note that we should use w+ 2 instead of w in Eq. 3.2 to account for refreshing the two rows

above and below each group of rows being refreshed. However, to simplify the discussion

and formulas, we assume that w >> 2 and use w. Note also that even if the R references

are not uniformly distributed among the rows, then CostSCA is still expressed by Eq. 3.2

since, in this case, although the number of times each counter reaches T will be different for

the four counters, the total number of times the four counters reach T will be R/T .

31

An unbalanced CAT is expected to reduce the number of refreshed rows if theR references

are sufficiently biased towards a small group of rows. To determine the “amount” of bias

that will favor the CAT of Figure 10(c) over the uniform tree of Figure 10(b), we define

this bias using a variable x such that the group of rows assigned to counter C4 receives x

more references than the other rows. That is the ratio of references caught by counters C1,

C2, C3 and C4 is 2w : w : w/2 : x + w/2. This means that each of the four counters will

receive r1 = 2wα, r2 = wα, r3 = 0.5wα and r4 = (x+0.5w)α references, respectively, where

α = R/(x + 4w). Consequently, the row hammering threshold T will be reached in counter

C1 r1/T times, and in each time the 2w rows assigned to it will be refreshed. Similarly, T in

C2 will be reached r2/T times, and in each time the w rows assigned to it will be refreshed.

Finally, T in C3 and C4 will be reached r3/T and r4/T times, respectively, and in each time

the corresponding w/2 rows will be refreshed. Hence, the total number of refreshed rows is

CostCAT = ((2w)2 + w2 + (
w

2
)2 + (x+

w

2
)
w

2
)
α

T
(3.3)

From Eq. 3.2 and Eq. 3.3, we conclude that CostCAT < CostSCA when

x > 3w. (3.4)

We call the value of x = 3w, the critical bias value. After determining the critical bias that

causes the CAT to outperform the uniform tree, we proceed to find the thresholds T1 and

T2 that will force, after a short sequence of accesses, say Rs, the tree of Figure 10(a) to

evolve to the tree of Figure 10(c) if x > 3w and to the uniform tree otherwise. For this, we

note that if the reference bias is x = 3w, then after Rs references, the counters C1, C2 and

C3 in Figure 10(a) will record 2wβ, wβ and 4wβ accesses, respectively, where β = Rs/7w.

Hence, if T2 is set to be 2T1, then C3 will reach T2 before C1 reaches T1 when x > 3w, thus

converging to the CAT of Figure 10(c). On the other hand, if x < 3w, then C1 will reach

T1 before C3 reaches T2, thus leading to the uniform tree of Figure 10(b). To completely

specify the split thresholds, we chose T2 = T/2, which guarantees that the CAT converges

before any counter reaches the threshold T . Consequently, T1 = T/4.

Following the same reasoning as the 4-counter example, we consider the general case of

M = 2m counters and the CAT shown in Figure 11 in which, due to reference bias, one

32

...

C(M)C(M-1) C(2K+3) C(2K+2)C(2K+1)

C(K) C(1)

...

...

C(K+2) C(K+1)

C(2K)

Level m-1

Level m

Level m+1

Level m+2

Level m+K

Level m+K-1

2w

w

w/2

w/4

2Kw/

Rows/group

Figure 11: A CAT with one of the counters at level m spliting K times before K of the
counters at level m− 1 split.

counter, C(2K), at level m has been repeatedly split K = L−m− 1 additional times before

any counter C(1), ..., C(K), at level m−1, splits. If w = N/M is the number of rows assigned

to a counter at level m, then w × 2−k is the number of rows assigned to each counter at

any subsequent level, m+ k. Note that K is bound by log(w) because at K = log(w), each

group contains only w = 1 row.

We define a traffic bias of xK to mean that one group of rows at level m + K, say the

group corresponding to counter C(K + 1) in Figure 11, has xK +w× 2−K references rather

than w×2−K references. To find the value of xK that causes the CAT to have fewer refreshes

than an m-level balanced tree, we note that for a total of R row references, each of the K

counters at level m− 1 receives 2wαK references, each of the M − 2K − 1 counters at level

m receives wαK references, counter C(K + 1) receives a biased traffic of (xK + w2−K)αK

references and each of the other counters at level m+j, j = 1, ..., K receives 2−jαK references,

where αK = R/(xK +wM). Dividing the value of each counter by T and multiplying by the

size of the group assigned to this counter gives the number of refreshed rows as

CostCAT = (K(2w)2 + (M − 2K − 1)w2 + (
xK
2K

+
w

22K
) +

K∑
j=1

(
w

2j
)2)

αK
T

(3.5)

33

By comparing Eq. 3.5 with Eq. 3.2, which specifies the number of refreshes in the balanced

tree (it is valid for any number of counters), we can calculate that the number of refreshes

in CAT is fewer than in the balanced tree when

xK > (
6K + 2−2K+1 − 2

3(1− 2−K)
) w (3.6)

Next, we consider a small number of references, Rs < T , and for a bias xK , count the number

of references, ym+K−1 seen by the counter at levels m+K − 1. Specifically,

ym+K−1 = (xK + 2−K+1w)βK (3.7)

where βK = Rs/(xK + wM). Given that the number of references at any of the counters

C(1), ..., C(K) that did not split (at level m− 1) is 2wβK , then if we set the split threshold

at level m− 1 to Tm−1 = 2wβK , then when the reference bias reaches the value specified by

Eq. 3.6, we can force the CAT to grow from level m+K−1 to level m+K before any of the

counters at level m − 1 splits by setting Tm+K−1 = ym+K−1. Note that the split thresholds

Tm+K−1, K = 1, ..., L − m − 1, are determined in terms of Rs, the number of references

while the CAT is being formed. Specific values of the split thresholds can be set by choosing

TL−2 to be a suitable fraction of the row hammering threshold, T . This determines Rs and

consequently the other split thresholds. For example, using Eq. 3.7, the split thresholds of

the tree with M = 64 counters and L = 10 levels can be computed to be T5 = 5155, T6 =

10309, T7 = 12886, T8 = 16384, and T9 = T = 32768.

Finally, we note that the above model assumes that references are biased towards only

one group of rows. A more complex model can be derived if references are biased towards

more than one group of rows. However, our experimental study showed that with the split

threshold determined by this simple model, the performance of CAT is much better than

many of the other naive choices of thresholds, such as equally spacing them (different by a

constant), setting them to values proportional to the tree levels or to values that double (or

multiply by some fraction) at consecutive levels.

34

3.3 RECONFIGURING THE CAT TO TRACK CHANGES IN ACCESS

PATTERNS

The CAT assigns the available counters to the rows of a bank according to the pattern

of row accesses. However, the row access pattern changes with time, which necessitates

a mechanism for the reconfiguration of the CAT to track these changes. In the next two

sections, we propose two such mechanisms. The first, PRCAT, periodically reconstructs the

CAT and the second, DRCAT, dynamically reconfigures the CAT by reassigning counters

from cold to hotter regions of the bank.

3.3.1 Periodically Reset CAT (PRCAT)

In this scheme, the CAT tree is rebuilt at epochs equal to the auto-refresh interval (64ms

for several DRAM generations [Chatterjee et al., 2012]). For LPDDRx devices that support

burst refresh [Bhati et al., 2016], this simple scheme tracks the number of row accesses

exactly. It can also be applied to modern DDRx devices that support distributed refresh at

the expense of some inaccuracy in tracking the number of accesses. Specifically, because row

refreshes are out of sync with the resetting of the CAT, recent information about row accesses

are lost when the CAT is reset. Moreover, PRCAT resets the CAT periodically, even when

the row access patterns do not change, potentially incurring the overhead of reconstructing

the CAT unnecessarily. In the next section, we describe a CAT reconfiguration scheme which

avoids these two shortcoming at a small cost for keeping additional information about the

usage of the counters in a CAT.

3.3.2 Dynamically Reconfigured CAT (DRCAT)

The DRCAT allocates weights to counters to track the number of times each counter reaches

the refresh threshold. After the CAT is completely built, the DRCAT identifies the counters

allocated to regions that become cold and reallocate them to regions that become hot. A

2-bit weight register is used to record the weight of each counter. As described in the last

section, when a counter reaches the refresh threshold, its corresponding rows are refreshed

35

and its value is reset to zero. However, to keep track of the hotness of row regions, the

weight corresponding to that counter is incremented (with an upper bound of 3) and the

weights corresponding to all other counters are decremented (with a lower bound of 0). If

the weight of the incremented counter reaches its maximum limit, two counters having zero

weights (cold regions) are merged and the released counter is used to split the hot counter.

To illustrate the scheme, consider the CAT example shown in Figure 9, where all counters

have been activated and the weights of the counters are kept in the register W depicted in

Figure 9(d). Assume that at a given time during operation, the values of the weight registers

are [0,1,1,2,1,1,2,2] and counter C6 reaches its limit (we used 2-bit counters). After the rows

corresponding to C6 are refreshed, the values of the weights are updated to [0,0,0,1,0,0,3,1]

and the following steps are taken to reconfigure the CAT:

(1) From the table shown in Figure 9(b) an intermediate node in the CAT which has two

counters as children (L leaf = R leaf = 0) with the weight of both being zero is selected.

If such a node is found, the two counters are merged, one counter is freed and we go

to step 2. In our example, C2 and C5 are leaves and both weight registers are zero.

Hence, C5 is promoted to its parent node and the fifth row of the table is updated to

I4=[C5,C4,0,0] as shown in Figure 12(b). Furthermore, C2 and the sixth row, I5, of the

table are released.

(2) We split the region tracked by the hot counter using the counter freed in step 1. In our

example, we show splitting C6 by replacing the L ptr in its parent node (entry I6) by

the index of the released row (I5) and set its corresponding flag to 1 to indicate that I5

will represent an intermediate node. Finally, we update I5=[C6,C2,0,0] to point to C6

and C2 and reset the corresponding flags.

(3) We update weight of the newly split counters to 1 to ensure they remain split for a

reasonable period of time while preventing them from being quickly split in succession.

The DRCAT adds a negligible area overhead to the PRCAT design. For example, PRCAT

uses 2 bytes per counter for T=16K and in this case, it occupies area overhead similar to

DRCAT. The reason is that DRCAT uses the first 16 bits for the counter and the two last

bits for the weight register. With respect to latency, the DRCAT traverses the tree to find

36

C7

I3

C3

I2

I1

I6

I5

C1

C0

C4

I4

C2

I0

C5

C6

(b)	 (c)	 (d)	(a)	

	
	
	
	

	 	 	 	 	 	 	 	 	
I0	 I1	 C0	 1	 0	 	 C0	 	 0	
I1	 I2	 I3	 1	 1	 	 C1	 	 0	
I2	 C1	 I4	 0	 1	 	 C2	 	 1	
I3	 C3	 I6	 0	 1	 	 C3	 	 1	
I4	 C5	 C4	 0	 0	 	 C4	 	 0	
I5	 C6	 C2	 0	 0	 	 C5	 	 0	
I6	 I5	 C7	 1	 0	 	 C6	 	 1	
	 L-ptr	 R-ptr	 L-leaf	 R-leaf	 	 C7	 	 1	

W	
	

C	
	

I	
	

M-
1	 	

M	
	

(a) (b) (c) (d)

Figure 12: The CAT of Figure 9 after reconfiguration.

the cold counters and their parent intermediate node. Since the reconfiguration of the tree

happens infrequently and traversing the tree is not on the critical path, system’s performance

is not affected by the reconfiguration.

Note that, in addition to tracking the change in the hot spot of memory accesses, the

reconfiguration of the CAT according to the weights of the counters has the flexibility of

adapting to multiple hot spots in the access patterns.

3.4 EXPERIMENTAL METHODOLOGY

To evaluate the proposed technique, we performed simulations using the memory system

simulator USIMM modeling 55nm DRAM [Chatterjee et al., 2012]. Unless stated otherwise

(in Section 3.6), the default simulation environment was set to model memory traffic from

a dual core CPU. The total memory capacity is 16 GB with a total of 16 banks divided

into two ranks, with 64K rows per bank. The last level cache size is 512KB per core in our

simulation. Detailed simulation parameters for USIMM are listed in Table 1. The DRAM

timing constraints follow a Micron DDR3 SDRAM data sheet [4Gb DDR3 SDRAM, 2011,

2011; Jacob and et al, 2010].

37

Table 1: System configuration

Processor

Two 3.2GHz cores, Memory bus speed: 800 MHz

128-entry ROB, Fetch width: 4, Retire width: 2

Pipeline depth: 10

Memory

controller

Bus freq.: 800 MHz,Write queue capacity: 64

Address mapping: rw:rk:bk:ch:col:offset

Management policy: closed-page with FRFCFS

DRAM
2 channels(each 8GB DIMM), 1 rank/channel

8 banks/rank, 64K rows/bank, 64B cache line

Verilog implementations of the control logic for the different wordline crosstalk mitigation

schemes were created to provide an area and energy overhead comparison. These Verilog

codes were synthesized using Synopsys Design Compiler and evaluated for power using Syn-

opsys PrimeTime, targeting a 45nm FreePDK standard cell library [FreePDK45]4. We have

changed the number of counters per bank in the designs between 32 and 512 and, for CAT,

allowed the trees to grow up to 14 levels to study the trade-off between performance, crosstalk

mitigation refresh power, and hardware overhead. For the evaluation of PRA, we accounted

for the energy to generate a random number every row access. To provide realistic workloads

for evaluating the wordline crosstalk mitigation schemes, we used workloads from the Mem-

ory Scheduling Championship [Memory Scheduling Championship]. These workloads cover

a variety of benchmarks including commercial applications and selected benchmarks from

the PARSEC, SPEC, and Biobench suites. Furthermore, we use 12 kernel attacks to mimic

malicious codes in Section 3.6.4.

One metric used to compare different crosstalk mitigation schemes is the crosstalk miti-

gation refresh power overhead (CMRPO). The CMRPO is the average power consumed for

deciding which rows to be refreshed in order to mitigate crosstalk. It is computed relative to

4It is commonplace for DRAM to trail CMOS by a technology generation. Systems with 45nm CPUs
were concurrent with 55nm DRAM.

38

the regular refresh power in the absence of any crosstalk mitigation (2.5mW to refresh 64K

rows during a 64 ms refresh interval [4Gb DDR3 SDRAM, 2011, 2011; Rahmati et al.]).

While rows are refreshed in a bank to mitigate crosstalk, that bank cannot be accessed,

possibly delaying subsequent memory requests to that bank. To estimate this delay, we

define the execution time overhead (ETO) as the delay in execution time due to memory

requests to banks being refreshed (to mitigate crosstalk) relative to the execution time when

no provisions are made to mitigate crosstalk.

3.5 EVALUATION

We compare crosstalk mitigation schemes: PRA (refreshes two victim rows but not the

aggressor row), DRCAT, PRCAT, SCA (implemented with SRAM). In this section, we

conduct experiments on a dual-core system using refresh thresholds of T=32K and T=16K

and a maximum of L=11 levels for DRCAT and PRCAT. In Section 3.6.1, we will study

the effect of the maximum number of CAT levels and the value of the refresh thresholds

on power and performance. Moreover, we will report results for quad-core systems. We

assume that either the memory controller knows which rows are physically adjacent to each

other [Van De Goor and Schanstra] or the DRAM chip is responsible for refreshing the row

and its neighbors [Bains et al., 2016].

3.5.1 Hardware Overhead

Tables 2 and 3 show the hardware cost for managing and maintaining the counters for

SCA, DRCAT and PRCAT with L=11 levels and T = 32K as the number of counters per

bank ranges from 32 to 512. We separately report the dominant sources of hardware energy

overhead. These sources include: (1) the dynamic energy per access of the designed circuits

plus the SRAM storage, and (2) the static energy during a 64 ms refresh interval of circuits

plus the SRAM storage. The SRAM energy is extracted from CACTI [Muralimanohar

et al., 2009] and the circuit energy (combinational and io-pad) is derived from Synopsys

39

Table 2: Hardware energy (per bank) of DRCAT, PRCAT and SCA for different number
of counters, M .

M

Energy:dynamic (nJ per row access) and static (nJ per refresh interval)

DRCAT PRCAT SCA

dynamic static dynamic static dynamic static

32 3.05E-04 5.77E+03 2.91E-04 5.55E+03 1.41E-04 3.16E+03

64 4.30E-04 1.39E+04 4.09E-04 1.32E+04 1.92E-04 8.81E+03

128 5.83E-04 2.77E+04 5.50E-04 2.63E+04 2.22E-04 1.44E+04

256 8.72E-04 5.44E+04 8.25E-04 5.13E+04 3.12E-04 2.39E+04

512 1.17E-03 1.06E+05 1.10E-03 1.02E+05 4.25E-04 4.52E+04

PrimeTime. Note that for DRCAT and PRCAT, the dynamic energy per memory access

accounts for multiple accesses to SRAM (from 2 to L− log(M/4)) while for SCA, SRAM is

accessed only twice to read and write the counters. A modified version of Tables 2 and 3 is

used for DRCAT and PRCAT when the maximum tree depth changes in the experimental

tests.

The results show that the dynamic energy per access of PRCAT is roughly twice that

of SCA for the same number of counters. With respect to area overhead and static energy,

Table 3 clearly shows that PRCAT and SCA occupy equal area and consume similar static

power when the number of counters of SCA is twice that of PRCAT. For example, PRCAT64

and SCA128 occupy iso-area. Moreover, this area is one order of magnitude smaller than

the area needed by the leading counter-based approach that stores in memory one counter

per row and uses a 32KB on-chip counter cache [Kim et al., 2015] (equivalent storage to

2,048 counters per bank). Thus, implementing 64 or even 256 counters per bank is feasible.

Our implementation shows that the average latency for PRCAT is 3.6ns (circuit latency

plus repeated access to SRAM) which is much lower than the row activation latency in the

DRAM memory [Shin et al., 2016].

In comparison to PRCAT for T=32K, DRCAT uses a 2-bit weight register per counter

40

Table 3: Area (per bank) of DRCAT, PRCAT and SCA for different number of coun-
ters, M and the specification of the PRNG used for PRA [Srinivasan et al.]. The reported
energy for PRNG (eng PRNG) is for generating 9-bits per row access.

M

Area(mm2)

PRNG
DRCAT PRCAT SCA

32 3.16E-02 3.04E-02 1.86E-02 Area(mm2) 4.004E-3

64 6.12E-02 5.86E-02 4.04E-02 Throughput(Gbps) 2.4

128 1.16E-01 1.11E-01 6.04E-02 Power(mW) 7

256 2.23E-01 2.11E-01 1.00E-01 Eff.(nj/b) 2.90E-3

512 3.93E-01 3.75E-01 1.72E-01 eng PRNG(nj) 2.625E-2

to reconfigure the structure of CAT. The results in Table 3 show that the circuit design

and SRAM storage of DRCAT, on average, augments 4.2% area overhead to the system

compared to PRCAT. Also, DRCAT increases the dynamic energy per row access by 5%

over PRCAT. Furthermore, it incurs 4ns latency. When DRCAT reconfigures counters, its

latency is about 7.5ns. The main reason for the extra latency is the traversal of the tree as

explained in Section 3.3.2. However, updating the DRCAT and accessing the memory can

be done in parallel.

Table 3 also shows the specification of a PRNG [Srinivasan et al.] for PRA in 45nm

technology 5. We select one PRNG for PRA that is applied for all banks during row accesses.

The energy per bit (the efficiency) for PRNG is computed as Power/Throughput. For p =

0.002 and p = 0.003, PRNG generates 9 bits (∼ log(1/0.003 or log(1/0.002)) so that PRA can

decide if victim rows should be refreshed when a row is accessed. The energy for generating

9 random bits is denoted by eng PRNG. A similar conclusion was reached in [Ghasempour

et al., http://apt.cs.manchester.ac.uk/projects/ARMOR /RowHammer/ index.html].

5 An PRNG design with low static power is reported in [Yang et al.]. However, this design is much slower
than the design in [Srinivasan et al.] which leads to a larger Energy/bit consumption.

41

3.5.2 CMPRO

We use the results shown in Tables 2 and 3 to compute CMRPO for a benchmark during

its execution by adding the following components needed to mitigate crosstalk: (1) The

dynamic power (product of dynamic energy per memory access and the total number of

memory accesses during execution divided by the execution time), (2) the static power

(static energy during a refresh interval divided by the refresh interval), and (3) the refresh

power (product of the average number of rows refreshed to prevent crosstalk with the energy

to refresh one row (1nJ per row [Ghosh and Lee]) divided by the execution time).

Figure 13 shows the CMRPO for different approaches when T = 32K. It reveals that

both DRCAT64 and PRCAT64 with L=11 achieve a CMRPO of 4%, which is an improvement

over the 11% in the cases of PRA and SCA. Note that the CMRPO for PRA includes

refreshing an average of two victim rows every 500 accesses and generating 9 PRNG bits

every access, with the PRNG generation being dominant. According to Table 3, on average,

for every 50 row accesses, PRA consumes energy equal to that of refreshing one row.

For T=16K, we use PRA0.003, rather than PRA0.002 since the probability of failure for

PRA0.002 is greater than 1E-4 (Chipkill reliability) according to Figure 5. Figure 13 shows

that CMRPO for DRCAT64 in dual-core systems is 4.5%, which is an improvement over

the 12% and 22% incurred in PRA0.003 and SCA64, respectively. Also, considering iso-area,

DRCAT64 achieves a CMRPO improvement over the 13% incurred in SCA128. Figure 13

indicates that reducing T from 32K to 16K will increase considerably CMRPO for SCA

while slightly increasing CMRPO for PRCAT and DRCAT.

3.5.3 Execution Time Overhead

To evaluate performance, we report the execution time overhead (ETO) resulting from re-

freshing victim rows. When rows vulnerable to crosstalk are refreshed, any read or write

request to the bank containing the refreshed rows is stalled, which leads to the execution

time overhead.

Figure 14 shows the ETO for different workloads. For T = 32K, PRA0.002, SCA64,

SCA128, PRCAT64 and DRCAT64 incur low ETO of 0.26%, 1.32%, 0.43%, 0.23%, and 0.16%

42

0%	

10%	

20%	

30%	

40%	

com
1	

com
2	

com
3			

com
4		

com
5		

sw
apt			

fluid			

str		

black	

ferret			

face			

freq	

M
TC	

M
TF	

libq			

leslie		

m
um

			

@gr			

M
ean	

COMM	 PARSEC	 SPEC	 BIO	

CM
PR

O
	

T=16K	PRA_0.003	 SCA_64	 SCA_128	
PRCAT_64	 DRCAT_64	

0%	

10%	

20%	

30%	

40%	

com
1	

com
2	

com
3			

com
4		

com
5		

sw
apt			

fluid			

str		

black	

ferret			

face			

freq	

M
TC	

M
TF	

libq			

leslie		

m
um

			

@gr			

M
ean	

COMM	 PARSEC	 SPEC	 BIO	

CM
RP

O
	

T=32K	PRA_0.002	 SCA_64	 SCA_128	

PRCAT_64	 DRCAT_64	

Figure 13: The CMRPO (as a percent of the regular refresh power). DRCAT and
PRCAT use 64 counters and up to 11 levels.

respectively. For T = 16K, the ETOs of PRA0.003, SCA64, SCA128, PRCAT64 and DRCAT64

are 0.39%, 3.42%, 1.38%, 0.49% and 0.35% respectively. Note that ETO for PRA0.003 when

T = 16K is roughly 1.5 times larger than ETO for PRA0.002 when T = 32K because

it probabilistically refreshes 50% more rows. On the other hand, ETO for SCA128 when

T = 16K is higher than ETO for SCA64 when T = 32K. This shows that when the refresh

threshold is reduced, doubling the number of counters statically does not reduce the number

of refreshed rows, which results in less accurate row tracking and thus larger refresh energy.

43

0%	

1%	

2%	

3%	

4%	

5%	

c
o
m
1
	

c
o
m
2
	

c
o
m
3
			

c
o
m
4
		

c
o
m
5
		

s
w
a
p
t			

fl
u
id
			

s
tr		

b
la
c
k
	

fe
rre

t			

fa
c
e
			

fre
q
	

M
T
C
	

M
T
F
	

lib
q
			

le
s
lie
		

m
u
m
			

@
g
r			

M
e
a
n
	

COMM	 PARSEC	 SPEC	 BIO	 			

E
T
O
	

T=16K	PRA_0.003	 SCA_64	 SCA_128	

PRCAT_64	 DRCAT_64	

0%	

1%	

2%	

3%	

4%	

5%	

c
o
m
1
	

c
o
m
2
	

c
o
m
3
			

c
o
m
4
		

c
o
m
5
		

s
w
a
p
t			

fl
u
id
			

s
tr		

b
la
c
k
	

fe
rre

t			

fa
c
e
			

fre
q
	

M
T
C
	

M
T
F
	

lib
q
			

le
s
lie
		

m
u
m
			

@
g
r			

M
e
a
n
	

COMM	 PARSEC	 SPEC	 BIO	 			

E
T
O
	

T=32K	PRA_0.002	 SCA_64	 SCA_128	

PRCAT_64	 DRCAT_64	

Figure 14: ETO resulting from refreshing vulnerable rows. DRCAT and PRCAT use 64
counters and up to 11 levels.

3.6 SENSITIVITY STUDY

3.6.1 Sensitivity to the Number of Counters and the Maximum CAT depth

Figure 15 shows CMRPO for DRCAT as the number of counters changes from 32 to 512

and the number of levels changes from 6 to 14, and compares results with those of SCA.

From the figure, we note that increasing the number of CAT levels does not significantly

impact CMRPO when the number of counters is relatively large. This is because, the static

power consumed by the counters dominates the CMRPO, and hence, any improvement in the

number of refreshed rows has minimal effect. Conversely, with a small number of counters,

the energy for refreshing vulnerable rows is a large component of the CMRPO. Thus, having

more levels in the tree saves refresh energy by targeting vulnerable row.

44

0%	
10%	
20%	
30%	
40%	

SC
A	

DR
CA

T_
L6
	

DR
CA

T_
L7
	

DR
CA

T_
L8
	

DR
CA

T_
L9
	

DR
CA

T_
L1
0	

DR
CA

T_
L1
1	

DR
CA

T_
L1
2	

DR
CA

T_
L1
3	

DR
CA

T_
L1
4	

SC
A	

DR
CA

T_
L7
	

DR
CA

T_
L8
	

DR
CA

T_
L9
	

DR
CA

T_
L1
0	

DR
CA

T_
L1
1	

DR
CA

T_
L1
2	

DR
CA

T_
L1
3	

DR
CA

T_
L1
4	

SC
A	

DR
CA

T_
L8
	

DR
CA

T_
L9
	

DR
CA

T_
L1
0	

DR
CA

T_
L1
1	

DR
CA

T_
L1
2	

DR
CA

T_
L1
3	

DR
CA

T_
L1
4	

SC
A	

DR
CA

T_
L9
	

DR
CA

T_
L1
0	

DR
CA

T_
L1
1	

DR
CA

T_
L1
2	

DR
CA

T_
L1
3	

DR
CA

T_
L1
4	

SC
A	

DR
CA

T_
L1
0	

DR
CA

T_
L1
1	

DR
CA

T_
L1
2	

DR
CA

T_
L1
3	

DR
CA

T_
L1
4	

32	 64	 128	 256	 512	

CM
RP

O
	

T=32K	

0%	
10%	
20%	
30%	
40%	

SC
A	

DR
CA

T_
L6
	

DR
CA

T_
L7
	

DR
CA

T_
L8
	

DR
CA

T_
L9
	

DR
CA

T_
L1
0	

DR
CA

T_
L1
1	

DR
CA

T_
L1
2	

DR
CA

T_
L1
3	

DR
CA

T_
L1
4	

SC
A	

DR
CA

T_
L7
	

DR
CA

T_
L8
	

DR
CA

T_
L9
	

DR
CA

T_
L1
0	

DR
CA

T_
L1
1	

DR
CA

T_
L1
2	

DR
CA

T_
L1
3	

DR
CA

T_
L1
4	

SC
A	

DR
CA

T_
L8
	

DR
CA

T_
L9
	

DR
CA

T_
L1
0	

DR
CA

T_
L1
1	

DR
CA

T_
L1
2	

DR
CA

T_
L1
3	

DR
CA

T_
L1
4	

SC
A	

DR
CA

T_
L9
	

DR
CA

T_
L1
0	

DR
CA

T_
L1
1	

DR
CA

T_
L1
2	

DR
CA

T_
L1
3	

DR
CA

T_
L1
4	

SC
A	

DR
CA

T_
L1
0	

DR
CA

T_
L1
1	

DR
CA

T_
L1
2	

DR
CA

T_
L1
3	

DR
CA

T_
L1
4	

32	 64	 128	 256	 512	

CM
RP

O
	

T=16K	

Figure 15: Crosstalk mitigation power overhead per bank for DRCAT using from 32 to
512 counters and different maximum CAT levels (6 to 14).

Due to the trade-off between static power and the power consumed to refresh vulnerable

rows, the minimum CMRPO happens when DRCAT employs 64 counters and when SCA

employs 128 counters for T=32K. Note that the refresh power of DRCAT64 with L7 is close

to SCA64 since it only increases row resolution one more level beyond SCA64. However,

DRCAT64 incurs more static and dynamic power than SCA64; hence, its CMRPO is larger.

The same argument applies to explain why for fewer counters, CMRPO of SCA32 is smaller

than that of DRCAT32. When the threshold decreases from 32K to 16K, SCA will refresh

victim rows more frequently and its CPRMO grows by 12% while the minimum CMRPO of

DRCAT64 changes very little.

We studied the sensitivity of ETO to the number of counters and the tree depth (the

results are not shown in this chapter). The key observation is that, for both refresh thresh-

olds, when using at least 64 counters and L ≥ 9, DRCAT incurs an ETO < 1%. Results also

show that ETO is inversely correlated to the refresh threshold. Another observation is that

for a given fixed number of counters, increasing the tree depth does not necessarily reduce

the number of refreshed victim rows; with a deeper tree, the number of rows associated with

a certain counter will be reduced, but the number of rows associated with other counters

45

will increase. In other words, trying to be precise in one area of the memory may lead to a

gross imprecision in another area of the memory, which creates a trade-off that leads to an

optimum value for the maximum tree depth.

We conclude that for DRCAT, the optimal number of counters and the maximum CAT

depth affect both the CMRPO and the ETO. For T = 32K and T = 16K and using between

32 and 128 counters, a maximum of L = 11 levels minimizes CMRPO and results in a

low ETO. For CAT with more counters, the maximum CAT depth is inconsequential for

CMRPO. In fact, using DRCAT leads to larger CMRPO than using SCA. We did the same

analysis for PRCAT and our results show that CMRPO for PRCAT is about 4% and 7%

for T=32K and T=16K with 10 and 11 CAT levels, respectively. Also it incurs very low

performance overhead (<0.5%) for both thresholds.

3.6.2 Sensitivity to Mapping Policy and Number of Cores

To analyze the effect of address interleaving, we experiment with dual-core systems using two

standard mapping policies of USIMM [Chatterjee et al., 2012]: (1) the 2-channel mapping

policy (used in the experiments so far) and (2) a 4-channel mapping policy that maximizes

memory access parallelism. Note that when keeping the size of each memory bank fixed,

the 4-channel policy in USIMM quadruples the number of banks in the system. We also

experiment with a quad-core system using the 2-channel and 4-channel mapping policies.

The CMRPO of DRCAT, PRCAT and SCA are reported in Figure 16 for iso-area storage.

Figure 16 shows that, when using the 2-channel mapping policy, the CMRPO for quad-

core systems is larger than the dual-core systems. This is because having more cores reduces

the spatial locality in the L2 cache, thus generating more memory traffic and forcing more

refreshes. SCA is affected more than the other schemes by the increased traffic because of

the inability to accurately track the row accesses due to the uniform distribution of counters

to rows. This effect is amplified when T = 16K resulting in the CMRPO for SCA exceeding

that of PRA for the quad-core system. In this case, DRCAT reduces the CMRPO in quad-

core systems to 7%, which is an improvement over the 21% and 18% incurred in SCA and

PRA, respectively. Figure 16 shows that for quad-core systems, the 4-channel policy reduces

46

0%	
5%	

10%	
15%	
20%	
25%	

PR
A_

0.
00
2	

SC
A_

12
8	

PR
CA

T_
64
	

DR
CA

T_
64
	

PR
A_

0.
00
2	

SC
A_

25
6	

PR
CA

T_
12
8	

DR
CA

T_
12
8	

PR
A_

0.
00
2	

SC
A_

25
6	

PR
CA

T_
12
8	

DR
CA

T_
12
8	

dual-core/2channels	 quad-core/2channels	 quad-core/4channels	

CM
RP

O
	

T=32K	

0%	
5%	

10%	
15%	
20%	
25%	

PR
A_

0.
00
3	

SC
A_

12
8	

PR
CA

T_
64
	

DR
CA

T_
64
	

PR
A_

0.
00
3	

SC
A_

25
6	

PR
CA

T_
12
8	

DR
CA

T_
12
8	

PR
A_

0.
00
3	

SC
A_

25
6	

PR
CA

T_
12
8	

DR
CA

T_
12
8	

dual-core/2channels	 quad-core/2channels	 quad-core/4channels	

CM
RP

O
	

T=16K	

Figure 16: Effect of different mapping polices and number of cores on CMRPO (per
bank). The banks in dual core and quad core systems include 64K and 128K rows, respec-
tively.

CMRPO versus the 2-channel policy for schemes. This is expected since in the 4-channel

policy, the number of banks increases from 16 to 64, thus decreasing refreshed rows.

Although we do not show the results for ETO in this section, we should note that ETO

remains low for all schemes irrespective of the mapping policy or the number of cores. The

largest ETO is incurred when the 2-channel policy is used with quad-cores and T = 16K.

Specifically, in this case ETOs for PRA0.003, SCA, PRCAT and DRCAT are 0.47%, 1.45%,

0.6%, 0.38% respectively. The relatively high ETO for SCA is due to the fact that the

number of refreshed rows is relatively high.

47

3.6.3 Sensitivity to Refresh Thresholds

Scaling down DRAM technology exacerbates the crosstalk problem leading to a decrease in

the refresh threshold [Kim et al., 2015]. This motivates the sensitivity analysis on different

refresh thresholds presented in Figure 17, which shows the CMRPO for four refresh thresholds

on a dual-core system with the 2-channel mapping policy. We used PRA0.001, PRA0.002,

PRA0.003 and PRA0.005 for T = 64K, 32K, 16K and 8K, respectively to guarantee that the

unsurvivability is better than 1.0E-4. The figure shows that, for thresholds 64K to 16K

and dual core systems, DRCAT incurs CMRPO less than 5% which is an improvement over

PRA’s 12%. Also, it improves the CMRPO over PRCAT because the CAT is dynamically

reconfigured rather than being periodically reset. Note that for T=8K, DRCAT and PRCAT

need to double the number of counters to mitigate crosstalk, but still incur less than 10%

CMRPO. With respect to ETO, all approaches incur very low overhead. Specifically, for

T = 8K, the ETOs for PRA, SCA, PRCAT, DRCAT are 0.58%, 1.44%, 0.8%, and 0.48%,

respectively. We conclude that CAT improves CMRPO relative to the other schemes for

both current and future technologies.

0%	

5%	

10%	

15%	

PR
A_

0.
00
1	

SC
A_

12
8	

PR
CA

T_
32
	

DR
CA

T_
32
	

PR
A_

0.
00
2	

SC
A_

12
8	

PR
CA

T_
64
	

DR
CA

T_
64
	

PR
A_

0.
00
3	

SC
A_

12
8	

PR
CA

T_
64
	

DR
CA

T_
64
	

PR
A_

0.
00
5	

SC
A_

25
6	

PR
CA

T_
12
8	

DR
CA

T_
12
8	

T=64K	 T=32K	 T=16K	 T=8K	

CM
RP

O
	

Figure 17: CMRPO for refresh thresholds T = 64K/32K/16K/8K.

48

3.6.4 Performance Under Malicious attacks

To evaluate the performance of the counter-based approaches under malicious attacks, we

use 12 kernel attacks [Ghasempour et al., http://apt.cs.manchester.ac.uk/projects/ARMOR

/RowHammer/ index.html] that randomly select few target rows (4 rows per bank and a

total of 64 target rows for 16 banks with dual-core/2-channels configuration) and access the

target rows more frequently than other rows in DRAM. We integrate the kernel attacks with

regular access rows of memory-intensive workloads (which we call benign workloads). We

select three attack modes Heavy (75% target rows + 25% benign access rows), Medium (50%

target rows + 50% benign access rows) and Light (25% target rows + 75% benign access

rows). Note that the distribution of target rows in the kernel attacks follows the Gaussian

distribution. Figure 18 shows the average execution time overhead for the benign workloads

for three refresh thresholds. As expected, more intensive attacks leads to higher ETO since

it causes more refreshes. While the ETO for PRCAT and DRCAT is less than 0.9% and

0.6% for different attacks and refresh thresholds, the ETO of SCA grows to 4.5% for T=16K

under heavy attacks. ETO for T = 8K is lower than for T = 16K because the number

of counters is doubled. We conclude that when malicious attacks target specific rows in

DRAM, CAT-based approaches are more efficient than SCA approaches at mitigating the

attacks since they confine attacked rows to smaller groups of rows to be refreshed.

0%	

1%	

2%	

3%	

4%	

5%	

SC
A_

12
8	

PR
CB

T_
64
	

DR
CB

T_
64
	

SC
A_

12
8	

PR
CB

T_
64
	

DR
CB

T_
64
	

SC
A_

12
8	

PR
CB

T_
64
	

DR
CB

T_
64
	

SC
A_

12
8	

PR
CB

T_
64
	

DR
CB

T_
64
	

SC
A_

12
8	

PR
CB

T_
64
	

DR
CB

T_
64
	

SC
A_

12
8	

PR
CB

T_
64
	

DR
CB

T_
64
	

SC
A_

25
6	

PR
CB

T_
12
8	

DR
CB

T_
12
8	

SC
A_

25
6	

PR
CB

T_
12
8	

DR
CB

T_
12
8	

SC
A_

25
6	

PR
CB

T_
12
8	

DR
CB

T_
12
8	

Heavy	 Medium	 Light	 Heavy	 Medium	 Light	 Heavy	 Medium	 Light	

T=32K	 T=16K	 T=8K	

ET
O
	

Figure 18: ETO for three kernel attack modes: Heavy (75% target rows + 25% benign
access rows), Medium (50% target rows + 50% benign access rows) and Light (25% target
rows + 75% benign access rows).

49

3.7 CONCLUSION

This chapter introduces the notion of a tree-based non-uniform row partitioning for detecting

rows vulnerable to wordline crosstalk in memory banks. It proposes a low-cost implemen-

tation to maintain and access Counter-based Adaptive Trees that assign counters to rows

non-uniformly and detects more precisely rows vulnerable to crosstalk. The results show that

DRCAT outperforms the leading approaches for wordline crosstalk mitigation. Specifically,

for dual-core systems and refresh threshold of T = 16K, DRCAT reduces the CMRPO to

4.5%, which is an improvement over the 12% and 22% incurred in deterministic and proba-

bilistic approaches, respectively. Moreover, DRCAT incurs very low performance overhead

(< 0.5%). Hence, I conclude that dynamic row partitioning is an effective solution to de-

tect rows vulnerable to crosstalk in DRAM. Clearly, this hardware solution avoids wordline

crosstalk during normal execution and protects against malicious attacks.

50

4.0 LEVERAGING ECC TO MITIGATE READ DISTURBANCES,

FALSE READS AND WRITE FAULTS IN STT-RAM

Designing reliable systems using scaled Spin-Transfer Torque Random Access Memory (STT-

RAM) has become a significant challenge as the memory technology feature size is scaled

down. The introduction of a more prominent read disturbance is a key contributor in this

reliability challenge. However, techniques to address read disturbance are often considered

in a vacuum that assumes that other concerns like transient read errors (false reads) and

write faults do not occur.

This chapter studies several techniques that leverage ECC to mitigate persistent er-

rors resulting from read disturbance and write faults of STT-RAM while still considering

the impact of transient errors of false reads. In particular, It studies three policies to en-

able better-than-conservative read disturbance mitigation. The first policy, write after error

(WAE), uses ECC to detect errors and write back data to clear persistent errors. The second

policy, write after persistent error (WAP), filters out false reads by reading a second time

when an error is detected leading to trade-off between write and read energy. The third

policy, write after error threshold (WAT), leaves cells with incorrect data behind (up to a

threshold) when the number of errors is less than the ECC capability.

4.1 MOTIVATION FOR INTRA-CELL DISTURBANCE MITIGATION

Figure 19 shows the probability of an error resulting from read disturbance in a 512-bit

STT-RAM block as the number of read operation increases. The plot reveals that as the

number of reads to a block increases, the probability of errors resulting from read disturbance

51

increases. Hence, mitigating destructive errors is a priority to improve the reliability of the

system. The problem of read disturbance can be dealt with through writing back data after

every read operation (WAR) [Sun et al.]. A write back mitigates disturbances, as the read

data is correct due to the latent nature of errors. This approach makes the pessimistic

assumption that reads are always destructive and mitigates read disturbances after every

read operation. Clearly, this incurs an unnecessarily large overhead, as it is unlikely for

every read operation to induce a disturbance. The goal of this chapter is to devise ECC-

based solutions that detect and correct destructive read disturbances for different ranges of

Raw Bit Error Rates (RBERs) whenever they occurs in the system instead of mitigating

them after every read request.

Read Count
100 101 102 103 104 105 106

R
ea

d
di

st
ur

ba
nc

e
pr

ob
ab

ilit
y

10-15

10-10

10-5

100
∆ = 70, τ = 10ns, τ0 = 1ns, I0 = 200µA

Ir=120µA
Ir=130µA
Ir=140µA
Ir=150µA

Figure 19: Probability of at least one error resulting from read disturbance in an STT-
RAM cell relative to the number of reads [Sun et al.]. Parameters ∆, τ , τ0, I0 and Ir are
explained in Section 2.2.2.

52

4.2 USING MARKOV CHAINS TO MODEL READ DISTURBANCE,

FALSE READS AND WRITE FAULTS

To scrutinize the combined effect of persistent and transient errors on the UBER, we model

read disturbances, write faults, and false reads using a Markov Model [Schiano et al.; Smyth,

1994]. A Markov chain can be described as a system that, at any time, is in one of a set of N

states denoted by S1, · · · , SN . Time is divided into steps and at any step, t, the system can

switch to another state with a given probability. The probability to go from state Si to state

Sj does not depend on the specific step t and is denoted cij. To obey standard stochastic

constraints, cij ≥ 0 and
N∑
j=1

cij = 1. A Markov chain may have one or more absorbing states.

By definition, the state Si is absorbing when cii = 1 (and hence cij = 0 for all j 6= i). Any

absorbing chain can be specified by a canonical form [Grinstead and Snell, 2012; Turin and

Sondhi, 1993] from which the expected number of steps (state transitions) to absorption can

be estimated [Kitchin].

Markov analysis is a suitable option for modeling systems with read disturbance and

calculating the probability of failure for such systems. To make the idea more concrete, we

describe a Markov model of the process of repeatedly reading an m-bit data block protected

by a single error correcting code (ECC1) in the presence of both read disturbances (with

probability pd) and false reads (with probability pf). Specifically, repeatedly reading the

data with no intervening user write operations can be described by the four-state Markov

model shown in Figure 20(a), where each transition represents a read operation. In this

model, the probability of disturbance is fixed for each read and the cumulative effect of read

disturbance is captured by the different Markov states. Specifically, states S1, S2, or S3

represent the states where zero, one, or at least two cells in the data block contain wrong

data, respectively. Initially, the system is in S1 and eventually, the system will be absorbed in

the “failure to correctly read” state, S4. Assuming that n is the size of the block including the

ECC bite (n > m), the probability that x cells are disturbed during the read operation can be

computed as P (Rd
x) =

(
n
x

)
pxd(1−pd)n−x [Grinstead and Snell, 2012]. Similarly, the probability

of y false reads occurring during the read operation is P (Rf
y) =

(
n
y

)
pyf (1 − pf)

n−y. In the

figure, P (Rd
≥x) denotes the probability that at least x cells are disturbed during the read

53

operation and P (Rf
x&Rd

y) denotes the probability of x false reads and y read disturbances.

After a read operation, the data block remains in state S1 as long as no cell is disturbed

and at most one read error occurs, which can be corrected by ECC1. If one cell is disturbed

during the read, the state of the block transitions from S1 to S2. In the next read operation,

the error is detected and corrected by the ECC but the stored value is not corrected (assuming

no provision is made to deal with read disturbance). Provided that no new cells are disturbed

in consecutive read operations, the Markov process remains in S2. If more than one cell is

disturbed in the next read operations, the state of the block changes from S2 to S3. In

this case, the process definitely (with probability 1) moves to S4 by the next read because

the number of disturbed cells is more than the ECC capability and the errors cannot be

corrected. Note that state S3 is needed because a read operation that disturbs a cell retrieves

the value stored in that cell correctly but every subsequent read suffers from an error due

to the disturbed cell. Note also that a false read does not have a cumulative effect and only

influences the present status of the Markov process. That is, if the number of false reads lies

in the range of the ECC capability, errors are corrected and do not appear in consequent

read operations.

Using standard Markov analysis, we can calculate the expected number of transitions

before absorption. Accordingly, the inverse of the calculated value over m gives the UBER.

As an example, consider the case of a 64-bit block with the probabilities of read disturbance

and false reads being pd = pf = 10−6 and the codeword length being n = 71. Starting at

S1, the expected number of transitions before absorption into S4 is 21127, which leads to

UBER = 1
21127×64 = 7.39× 10−07.

So far, we have assumed that every transition is due to a read operation. Normally,

however, a data block is subject to both read and write operations and we can use a Markov

process to model a system in which a% of the operations are reads and b = (100 − a)%

are writes. A write operation will remove the effect of any previous read disturbance, but

may introduce a “write fault”. The model of Figure 20(a) can be extended to Figure 20(b)

to include the effect of user write operations and the probability of write faults. In that

extension, the meanings of the states S1, ... ,S4 are unchanged with the understanding

that a cell may contain a wrong value due to a write fault as well as a read disturbance.

54

S1

start

S2 S3

S4

P (Rd
0)

P
(R

d 1
)

P
(R

d�
2)

P (Rd
�1)

P (Rd
0)

1

1

S1

start

S2 S3

S4

c11 = P (Rd
0&Rf

1)

c 12
=

P
(R

d
1
&
R
f 1

)
c
13 =

P
(R d�

2 &
R f

1)

c
1
4
=

P
(R

f�
2)

c22 = P (Rd
0&Rf

0)

c23 = P (Rd
�1&Rf

0)

c
24 =

P
(R f�

1)

c 34
=

1

c44 = 1

S1

start

S2 S3

S4

ac11 + bP (W0)

ac
12

+
bP

(W
1
)

ac
13

+
bP

(W
�
2)

ac
14

bP
(W

0
)

ac22 + bP (W1)

ac23 + bP (W�2)

ac
24

bP
(W

0)

bP (W1)

bP (W�2)

a

1

(b)	

S1

start

S2 S3

S4

P (Rd
0)

P
(R

d 1
)

P
(R

d�
2)

P (Rd
�1)

P (Rd
0)

1

1

S1

start

S2 S3

S4

c11 = P (Rd
0&Rf

1)

c 12
=

P
(R

d
1
&
R
f 1

)
c
13 =

P
(R d�

2 &
R f

1)
c
1
4
=

P
(R

f�
2)

c22 = P (Rd
0&Rf

0)

c23 = P (Rd
�1&Rf

0)

c
24 =

P
(R f�

1)

c 34
=

1

c44 = 1

S1

start

S2 S3

S4

ac11 + bP (W0)

ac
12

+
bP

(W
1
)

ac
13

+
bP

(W
�
2)

ac
14

bP
(W

0
)

ac22 + bP (W1)

ac23 + bP (W�2)

ac
24

bP
(W

0)

bP (W1)

bP (W�2)

a

1(a)	

(a) Read disturbances and false reads.

S1

start

S2 S3

S4

P (Rd
0)

P
(R

d 1
)

P
(R

d�
2)

P (Rd
�1)

P (Rd
0)

1

1

S1

start

S2 S3

S4

c11 = P (Rd
0&Rf

1)

c 12
=

P
(R

d
1
&
R
f 1

)
c
13 =

P
(R d�

2 &
R f

1)

c
1
4
=

P
(R

f�
2)

c22 = P (Rd
0&Rf

0)

c23 = P (Rd
�1&Rf

0)

c
24 =

P
(R f�

1)

c 34
=

1

c44 = 1

S1

start

S2 S3

S4

ac11 + bP (W0)

ac
12

+
bP

(W
1
)

ac
13

+
bP

(W
�
2)

ac
14

bP
(W

0
)

ac22 + bP (W1)

ac23 + bP (W�2)

ac
24

bP
(W

0)

bP (W1)

bP (W�2)

a

1

(b)	

S1

start

S2 S3

S4

P (Rd
0)

P
(R

d 1
)

P
(R

d�
2)

P (Rd
�1)

P (Rd
0)

1

1

S1

start

S2 S3

S4

c11 = P (Rd
0&Rf

1)

c 12
=

P
(R

d
1
&
R
f 1

)
c
13 =

P
(R d�

2 &
R f

1)
c
1
4
=

P
(R

f�
2)

c22 = P (Rd
0&Rf

0)

c23 = P (Rd
�1&Rf

0)

c
24 =

P
(R f�

1)

c 34
=

1

c44 = 1

S1

start

S2 S3

S4

ac11 + bP (W0)

ac
12

+
bP

(W
1
)

ac
13

+
bP

(W
�
2)

ac
14

bP
(W

0
)

ac22 + bP (W1)

ac23 + bP (W�2)

ac
24

bP
(W

0)

bP (W1)

bP (W�2)

a

1(a)	

(b) Read disturbances, false reads and write faults.

Figure 20: Modeling the state of a data block protected by ECC1.

New transitions (edges) are added to the model to represent user write operations, with

the understanding that writing new data into the block clears any previously faulty cells

(returns the state to S1), unless a write fault occurs (with some probability, pw), in which

case the process transitions to either S2 or S3, depending on the number of write faults.

Although modeling write operations complicates the Markov process, the reliability of the

process can be evaluated using the same technique. Assuming that a = 99.9%, b = 0.1%, and

pw = pf = pd = 10−6 in the previous example of using ECC1, we can compute the number of

transitions before failure to be 120421, which leads to UBER = 1
120421×64 = 1.29×10−07. This

shows that although errors may happen during writes, the system is more reliable because

write operations store correct data into cells that were affected by read disturbances.

55

4.3 REVISITING WRITE BACK AFTER USER READ

One possible solution for mitigating read disturbance in STT-RAM is for the system to

induce a write back of the data block after every user read (WAR) [Sun et al.]. In Figure 21,

we show the Markov model for WAR when used in conjunction with ECC1. For simplicity

of the presentation, we assume no user write operations (a = 100% and b = 0%) noting that

it can be easily added as was described in the previous section. In the figure, black edges

represent user read operations and blue dashed edges represent system write back operations.

We define S1 as the initial state of the data block. A user read transitions the state of

the block to S5 (the failure to “read” state) if more than one false reads occur because this

exceeds the correction capabilities of ECC1. If, however, at most one false read occurs, the

block transitions to S2 and a system write back occurs. Depending on the errors during the

write back, three scenarios may occur. (1) If no write faults occur, the state of the block

returns to S1. (2) If one fault occurs during the write back, the block transitions to S3 which

indicates that one cell contains the wrong data. Being in S3, the next read operation will

either fail (if one or more false reads occur) or the wrong cell will be detected/corrected

and the block will be written back transitioning the block to state S1 (through S2). Finally,

(3) If more than one fault occurs during the write back, the block will have two cells with

S1start S2

S3

S4S5

P(Rf
1)

P
(R

f �
2
)

P(W0)

P(
W

1
)

P
(W

�
2)

P(
R

f
0
)

P(
R
f
�1
)

1

1

Figure 21: Modeling write back after read (WAR).

56

Table 4: Comparison of WAR and ECC64
1 in terms of UBER for different ranges of pw,

pf and pd.

Parameter Scheme
RBER(pw)

10−4 10−5 10−6 10−7

pw = 10pf

= 10pd

WAR 2.23 10−05 2.34 10−07 2.35 10−09 2.35 10−11

ECC64
1 1.54 10−05 1.63 10−07 1.64 10−09 1.64 10−11

pw = pf = pd
WAR 7.74 10−07 7.81 10−09 7.82 10−11 7.82 10−13

ECC64
1 1.52 10−06 1.56 10−08 1.56 10−10 1.56 10−12

pw = 10−5pf

= 10−5pd

WAR 1.93 10−07 1.94 10−09 1.94 10−11 1.94 10−13

ECC64
1 8.58 10−07 8.79 10−09 8.81 10−11 8.81 10−13

incorrect data (state S4) and the next read operation will not be able to correct the errors,

causing a read failure.

Using the Markov models, we compare in Table 4 the UBER when repeatedly reading a

64-bit data block protected by ECC1 with and without WAR. From the results, we observe

that when the write bit error rate increases relative to the read bit error rate (including false

reads and read disturbances), the UBER exponentially grows and WAR becomes less reliable

than ECC1. This means that although WAR mitigates the read disturbance for high pw, it

generates more errors during the write back process. Accordingly, WAR decreases reliability

when cells encounter a high write error rate compared to the read error rate.

Another drawback of WAR is its energy overhead, since it requires an expensive write

operation after every read (in STT-RAM, writing a cell consumes at least four times the

energy of reading it [Meza et al., 2012; Mishra et al., 2011]). Moreover, the write backs

consume a large portion of the memory bandwidth (again, in STT-RAM a write is much

slower than a read). Hence, although the system write back is not on the critical path of a

user read operation, it may delay subsequent read operations because of memory bandwidth

saturation. These observations motivate the solutions described in the next section.

57

4.4 ON-DEMAND WRITE BACK POLICIES

Depending on the dominant error type in STT-RAM, we describe three policies to mitigate

the effects of read disturbance, write faults and false reads: (1) Write back After any Error

detection (WAE), (2) Write back After Persistent error detection (WAP), and (3) Write back

After errors reach a Threshold (WAT). The main advantage of these policies is that they

avoid the unnecessary write backs based on the observation that it is unlikely that every

user read operation will induce a disturbance, thereby they significantly reduce both the

energy overhead and memory bandwidth overhead caused by the unnecessary system writes

in WAR.

The key idea of WAE is to write back data only when ECC detects errors. It leverages

ECCk during the user read operation to detect and correct up to k errors of the data block.

When errors are corrected, the corrected data is written back. The flowchart in Figure 22(a)

pictorially depicts the process of reading a data block using WAE. It is composed of five

steps:

• The controller first reads the data block from memory ¬.

• It then applies ECCk to the block.

• If no errors are detected, the reading succeeds ®.

• Else, if the number of detected errors lies within the range of the ECC capability, the data

block is written back ¯.

• Else, the reading fails because the data cannot be correctly retrieved °.

WAE writes back the data block after an error is detected, even if this error is due to a

false read rather than a read disturbance. The key idea of WAP is to filter out false reads

when ECC detects errors by reading the data block again (a second read). Specifically, when

errors are detected during the user read operation, WAP corrects the read data by ECC

provided that the number of errors is within the ECC capability. Then, the policy performs

a second read (termed a system read since it is not requested by the user) and compares the

read value with the corrected data block. A write back of the corrected block is performed

if the comparison reveals a discrepancy.

58

Figure 22(b) pictorially depicts the process of reading a data block using WAP. Specifi-

cally,

• The first three steps of WAP are the same as WAE, except that a copy of the corrected

data is kept if errors are detected and are within the ECC capability.

• The fourth step reads data again ¯ if ECC detects correctable errors during the previous

read. Then, the data blocks of the previous (corrected) and current reads are compared.

• If the two blocks are identical, the reading succeeds °.

(a)	 (b)	 (c)	
(a) Write after any error detection.

(a)	 (b)	 (c)	
(b) Second read after error detec-
tion.

(a)	 (b)	 (c)	
(c) Leave z errors behind, z < k.

Figure 22: The flowcharts of on-demand write-back policies.

59

• Else, the correct data is written back ±. Note that cells that may be newly disturbed in

the second read will be corrected due to the write back operation.

The choice between WAE and WAP depends on the read and write energy cost and the

proportion of the user read to the user write. When read disturbance is dominant, WAP

utilizes additional reads increasing its energy overhead relative to WAE. On the other hand,

when read disturbance is not dominant, WAP reduces the number of system write backs thus

reducing the energy overhead and the memory bandwidth relative to WAE. This advantage

increases when the cost of write operations increases relative to the cost of read operations.

Clearly, WAP reduces the number of write backs over WAE by introducing more reads.

It is possible, however, to reduce the number of write backs without the additional reads if

some detected faults are explicitly left behind. This, of course, can only be done if an ECCk

is used with k > 1. For example, if an ECC2 is used, then it is possible to avoid the write

back operation when one error is detected. This will avoid unnecessary write backs when

false reads occur but do not correct read disturbances unless a second error is detected. We

call this policy of leaving cells with incorrect data behind up to a threshold which is less

than the ECC capability “WAT”.

The main rationale behind the design of WAT is that when the false read error rate is

high and the dominant errors are not destructive, most errors are transient and hence cells do

not have to be refreshed after detecting errors. Accordingly, WAT leaves read disturbances

and write faults behind and ignores false reads up to a threshold, z, that is within the ECC

capability (i.e. z < k). Therefore, the only difference between WAT and WAR is that it

postpones the system write back until the number of errors in the data block reaches z. This

reduces the energy overhead compared to the other approaches. Figure 22(c) depicts WAT

which includes the following steps:

• The first two steps are the same as the previous policies.

• In the third step ®, three different cases can occur: 1) if the number of errors is less than

or equal to z, the policy leaves cells with incorrect data behind and the reading succeeds,

2) if the number of errors is greater than z and less or equal to k, the policy writes back

the data, 3) if the number of errors is more than k, the reading fails.

60

Table 5: The interpretation of states for WAE and WAP.

State WAE WAP

S1 No error/disturbance No error/disturbance

S2 One error One error

S3 One undetected disturbance At least one error in the second read

S4 At least two undetected disturbances One undetected disturbance

S5 At least two errors At least one undetected disturbance

S6 - At least two undetected disturbances

S7 - At least two errors

For different policies, the ECC capability plays a significant role in determining the

conditions for a failed read operation. The more powerful ECC schemes allow the policies to

increase the expected number of reads before failure, which leads to smaller UBER, and fewer

write back and read operations. Considering the ECC with k error correction capability, we

constructed Markov models of WAE, WAP and WAT. They are composed of k + 4, k + 6

and k + 4 states, respectively. In the next section, we describe, in some details, the Markov

models for the three policies, WAE, WAP and WAT, when k is 1, 1 and 2, respectively.

4.5 RELIABILITY ANALYSIS OF THE DIFFERENT SCHEMES VIA

MARKOV MODELS

We use Markov models to determine the reliability of the policies described in Section 4.4

and quantify, on average, the number of write backs and second reads for each policy. For

simplicity, we assume in this section only user read operations (no user write) and no write

error during the write back process for the different policies. Similar to what was explained

for Figure 20(b), the user write operations and the effect of pw can be added to each model

and will be considered in the experimental results.

61

Table 6: The interpretation of states for WAT.

State WAT

S1 At most one error

S2 Two errors

S3 One disturbance (either detected or undetected)

S4 At most one error and two undetected disturbances

S5 At most one error and at least three undetected disturbances

S6 At least three errors

S7 -

4.5.1 Write back After Error detection (WAE)

First, we discuss the Markov model of WAE that leverages ECC1. Figure 23(a) illustrates

that model where each edge is labeled by the probability of transition between states, which

is based on the type and number of errors occurring during the user read operations or

system write back operations. Note that a cell affected by a read disturbance during a

read will only cause an error during the next read. The interpretation of states of different

policies is illustrated in Tables 5 and 6. As shown in Figure 23(a), initially, before any read

operation, the block is in the error-free state, S1. After a read operation, the block stays in

the same state, S1, in case of no read error or read disturbance, but transitions to another

state according to the number and nature of the error. Specifically,

• If a false read occurs in one cell, it is detected by ECC1 and the system writes back the

block. This is shown by the transition to S2 (a temporary state) with probability P (Rf
1)

followed by a transition back to S1 with probability 1. Note that we made the assumption

that there is no write errors during write backs (pw = 0).

• If false reads occur in more than one cell, ECC1 cannot correct the errors and the process

transitions to S5, the Failure state.

• If no false reads occur but a read disturbance occurs in one cell, the process transitions to

S3 (denoting one cell affected by a read disturbance). Then, in the following read operation

either (1) no read errors occur and the ECC1 will detect the disturbance error and force

62

a write back after correcting the error (the process transition to S2 and then to S1 with

probability 1), or (2) some false reads occur, thus exceeding the correction capability of

ECC1 and transitioning the process to the failure state.

• If no false reads occur but read disturbances occur in more than one cell, the process

transitions to S4 (denoting more than one cell affected by read disturbance). In this case,

ECC1 will not be able to correct the disturbance errors in the next read operation, taking

the process to the Failing state.

The standard Markov analysis can be used to compute the number of times every edge

in the model is traversed before absorption. This allows us to compute the number of system

write operations (S2 → S1 transitions) relative to the number of user read operations (the

other transitions). Specifically, the number of time an edge (Si → Sj) is traversed can be

computed as the product of the number of times state Si is visited before absorption and the

probability of the transition Si → Sj. From a probabilistic point of view, there are two points

to note in Figure 23(a): (1) the number of write backs depends on two very low probability

events (S1 → S2) and (S1 → S3 → S2), and (2) the probability of no false read and no read

disturbance, P(Rf0&Rd0), is higher than other events. Therefore, the Markov process mostly

remains in S1 and avoids unnecessary writes.

4.5.2 Write back After Persistent error detection (WAP)

Similar to what was explained for WAE, we model WAP for ECC1 using the Markov model

shown in Figure 23(b). Specifically, starting from the initial state S1, a user read operation

can cause the following state transitions:

• If no error or disturbance occur, the process stays in S1.

• If the number of false reads exceeds the ECC capability (larger than 1), the process

transition to S7 (the failure state).

• If the number of read disturbances exceeds the ECC capability (larger than 1) as long as

no false read occurs, the process moves to S6 (at least two disturbed cells). The next user

read (S6 → S7) will cause a transition to the failure state, S7.

63

S1 startS2

S3

S5S4

S6

S7

P (Rf
0&Rd

0)

P
(R

f1 &
R

d�
1)P

(R
f

0
&
R

d
1
)

P
(R

f0 &
R

d�
2)P

(R
f�

2)
P (Rf

1&Rd
0)

1

P (Rf
0)

P (R f
�1) 1

P (Rf
0&Rd

0)

P
(R

f 0
&

R
d 1
)

P (R f
�1)

P
(R f

0 &
R d�

2)

1

1

S1start

S2

S5

S3

S4

P(Rf
0&Rd

0)

P
(R

f1)P
(R

f
0
&
R

d
1
)

P
(R

f0 &
R

d�
2D)

P
(R

f�
2f)

P(R
f
0
)

P(R f
�1)

1

1

1(a)	

S1start

S2

S3

S4

S5

S6

P (Rf
1&Rd

0)

P
(R

f 1
&
R

d
1
)

P
(R

f
1 &

R
d2)

P
(R

f
1 &

R
d�

3)

P
(R

f 2
)

P
(R

f�
3)

P (R
f
1
)

P (Rf
0&Rd

0)

P (R f
0 &Rd

1)
P (R f

0 &R d
�2)

1

P
(R f�

2)

P
(R

f0)

P
(R

f �1
)

1

1(c)	(b)	
(a) WAE used with ECC1.

S1 startS2

S3

S5S4

S6

S7

P (Rf
0&Rd

0)

P
(R

f1 &
R

d�
1)P

(R
f

0
&
R

d
1
)

P
(R

f0 &
R

d�
2)P

(R
f�

2)
P (Rf

1&Rd
0)

1

P (Rf
0)

P (R f
�1) 1

P (Rf
0&Rd

0)

P
(R

f 0
&

R
d 1
)

P (R f
�1)

P
(R f

0 &
R d�

2)

1

1

S1start

S2

S5

S3

S4

P(Rf
0&Rd

0)

P
(R

f1)P
(R

f
0
&
R

d
1
)

P
(R

f0 &
R

d�
2D)

P
(R

f�
2f)

P(R
f
0
)

P(R f
�1)

1

1

1(a)	

S1start

S2

S3

S4

S5

S6

P (Rf
1&Rd

0)

P
(R

f 1
&
R

d
1
)

P
(R

f
1 &

R
d2)

P
(R

f
1 &

R
d�

3)

P
(R

f 2
)

P
(R

f�
3)

P (R
f
1
)

P (Rf
0&Rd

0)

P (R f
0 &Rd

1)
P (R f

0 &R d
�2)

1

P
(R f�

2)

P
(R

f0)

P
(R

f �1
)

1

1(c)	(b)	

(b) WAP used with ECC1.

S1 startS2

S3

S5S4

S6

S7

P (Rf
0&Rd

0)

P
(R

f1 &
R

d�
1)P

(R
f

0
&
R

d
1
)

P
(R

f0 &
R

d�
2)P

(R
f�

2)

P (Rf
1&Rd

0)

1

P (Rf
0)

P (R f
�1) 1

P (Rf
0&Rd

0)

P
(R

f 0
&

R
d 1
)

P (R f
�1)

P
(R f

0 &
R d�

2)

1

1

S1start

S2

S5

S3

S4

P(Rf
0&Rd

0)

P
(R

f1)P
(R

f
0
&
R

d
1
)

P
(R

f0 &
R

d�
2D)

P
(R

f�
2f)

P(R
f
0
)

P(R f
�1)

1

1

1(a)	

S1start

S2

S3

S4

S5

S6

P (Rf
1&Rd

0)

P
(R

f 1
&
R

d
1
)

P
(R

f
1 &

R
d2)

P
(R

f
1 &

R
d�

3)

P
(R

f 2
)

P
(R

f�
3)

P (R
f
1
)

P (Rf
0&Rd

0)

P (R f
0 &Rd

1)
P (R f

0 &R d
�2)

1

P
(R f�

2)

P
(R

f0)

P
(R

f �1
)

1

1(c)	(b)	

(c) WAT used with ECC2.

Figure 23: The Markov models for on-demand write-back policies. The red and blue
dashed links indicate the second read (system read) and write back (system write) opera-
tions, respectively.

64

• If only one cell is disturbed but no false read occurs, the disturbance is not detected and

the process moves to S4. The next read operation will then detect the error and transition

the process to the failure state if a false read occurs (S4 → S7) since the capability of ECC

will be exceeded. If, however, no false read occurs in the next read operation (S4 → S5),

the latent read disturbance will be detected and the read data block is corrected and kept.

Then, the system initiates a second read (system read) and compares two data blocks. This

second read will confirm that the detected error is due to the disturbed cell (S5 → S3) and

will write back (S3 → S1) the corrected data.

• If at least one cell is disturbed and exactly one false read occurs, the process moves to S5

where ECC detects the error and corrects the data and the system triggers a second read

and a comparison between previous and current read data (S5 → S3). The comparison

reveals the occurrence of at least one persistent error; therefore the process writes back

the corrected data block.

• If exactly one false read occurs, ECC detects the error and corrects the data and the

process moves to S2. In this case, a second (system) read is initiated which may lead to

four different transitions depending on what happens during this second read:

(1) No cell is disturbed and no false read occurs. In this case, the process moves to the

initial state (S2 → S1).

(2) No cell is disturbed but at least one false read occurs (the comparison between previous

and current read data reveals the occurrence of the error(s)). In this case, the system read

takes the process to S3 (S2 → S3) and the corrected data will be written back (S3 → S1).

(3) One cell is disturbed during the system read and no false read occurs. In this case, the

process moves to S4 (S2 → S4).

(4) If the number of read disturbances exceeds the ECC capability (larger than 1) as long

as no false read occurs, the process moves to S6 (at least two disturbed cells). The next

user read (S6 → S7) will cause a transition to the failure state.

65

4.5.3 Write back After error Threshold (WAT)

Since leaving at least one cell with incorrect data or one false read needs an ECC that detects

two errors, ECC2 is the smallest ECC code which can be considered for WAT. Figure 23(c)

shows the Markov model for WAT based on ECC2. It can be described as follows:

• As long as the number of errors detected during a read operation is less than two, the

Markov process ignores false reads and leaves cells with incorrect data behind. Considering

only the number of read disturbances occurring during the read operation, the process

transitions to a state that keeps track of the number of disturbances. Specifically, S1, S3,

S4 and S5 reflect zero, one, two and more than two disturbed cells, respectively.

• If two false reads are detected but no read disturbance occurs, the process is transitioned

to S2 and a write back of the corrected data returns the system to S1.

• From a state that reflects x disturbed cells, a read operation with more than 2 − x false

reads causes a transition to the failure state, S6.

• From S3 (one cell is already disturbed), a read operation with one false read will detect

two errors, correct the errors and write back the block (S3 → S2 → S1), clearing the

disturbance.

• From S4 (two cells are already disturbed), a read operation with no false read will detect

two errors, correct the errors and write back the block (S4 → S2 → S1). However, any

false read in the read operation cannot be corrected (ECC2 cannot correct more than 2

errors) and will take the system to failure (S6).

As mentioned earlier, user write operations as well as the effect of write errors can be

incorporated in the above three Markov models, and the UBER as well as the overhead (in

terms of system write back and second read operations) of the policies can be computed.

In the evaluation section, we report the results of our analysis of the models that incorpo-

rates user write operations and user read operations for write faults, false reads, and read

disturbances.

66

4.5.4 Accounting for miscorrections and undetected errors

Usually, ECC code that can correct k errors can detect k + 1 errors but can produce the

wrong data if more than k + 1 error occurs. For example, if errors change one codeword

to another codeword, the errors are not detected. Moreover, if the errors change a code

word, x, to a non-code word, y, and the Hamming distance between x and y is larger

than the Hamming distance between y and another code word, z, then the errors will be

miscorrected to z. Our failing states combines detected failures and miscorrections/non-

detections. To more precisely differentiate the two cases, we can decompose the failing

state, Sf , into two absorbing states, miscorrection/non-detection, Smc and detected-failure,

Sdf . This only nominally increases the complexity of the model (one additional state) and

will allow differentiation between Smc and Sdf . The expected number of transitions before

absorption is the same in both cases. Moreover, our observation based on experimental

results shows that the probability of absorption to Smc is much smaller than to Sdf (e.g., Sms

is 106 times smaller than absorption to Sdf for the model shown in Figure 21).

4.5.5 Markov models for other memory technologies

According to the type of errors in other technologies, Markov chains can be designed to

model the combined effect of persistent and transient errors including read disturbance and

estimate the reliability of the systems. In STT-RAM, since the disturbance does not affect

neighboring cells, the Markov models are simpler than other technologies, such as PCM,

where disturbance errors (write disturbance) can affect, not only the accessed cell, but also

neighboring cells.

4.6 EVALUATION

4.6.1 Baseline

We evaluate the reliability and energy consumption of the error mitigation policies assuming

64-bit data blocks for a range of read disturbance, write error and false read error rates.

Since ranges of these three types of error rates in STT-RAM depend on various circuit and

67

system parameters such as circuit configuration, read and write currents, pulse-widths, etc.,

we evaluate both single MTJ [Kang et al., 2013; Zhang et al., 2012] and dual-MTJ [Zhang

et al.] STT-RAM configurations with a range of corresponding read and write currents and

pulse widths. Note that we do a sweep of parameters but can not report the large volume

of results. Instead, we report results that are representative of the sweep and reflect cases

that arise from specific practical technologies. We include cases that span all the possible

relative orders of the values of pf , pd, and pw.

For a single MTJ STT-RAM configuration, when the reading current varies from 24.5µA

to 41.5µA, pf varies from 10−4 to 4 × 10−5 while pd varies from 10−10 to 10−4. Also, the

write current was set to Iw = 56.1µA [Kang et al., 2013] and with a write pulse of 10ns

and thermal stability ∆ = 45 the write error is approximately pw = 10−10. We also varied

the write pulse time from 10ns to 4ns with a corresponding pulse width τ
τ0

of 100% to 40%,

leading to pw that varies from 10−10 to 10−4. For the dual-MTJ STT-RAM configuration,

when the reading current varies from 50µA to 70µA, the false read bit error rate improves

by more than two orders of magnitude while degrading the read disturbance error rate by

an order of magnitude. Also, with a write current Iw = 98.5µA, the write bit error rate is

reported as pw = 1.2 × 10−7 [Zhang et al.]. We conducted experimental results data points

in these ranges shown in Tables 7, 8, and 9.

Table 7: Bit error rates of different types of errors in terms of corresponding currents for
single MTJ STT-RAM.

IR (µA) 24.5 27.5 30.8 33.2 36.6 41.5

pd 1 · 10−10 1 · 10−9 1 · 10−8 1 · 10−7 1 · 10−6 1 · 10−5

pf 1 · 10−4 9 · 10−5 8 · 10−5 7 · 10−5 6 · 10−5 5 · 10−5

log(pf/pd) 6 4.954 3.903 2.845 1.778 0.698

Table 8: Bit error rates of different types of errors in terms of corresponding currents for
dual-MTJ STT-RAM.

IR (µA) 50.0 53.6 57.2 60.8 64.4 70.0

pd 1 · 10−9 1 · 10−8 5 · 10−8 1 · 10−7 5 · 10−7 5 · 10−6

pf 1 · 10−6 7 · 10−7 2 · 10−7 7 · 10−8 3 · 10−8 1 · 10−8

log(pf/pd) 3 1.845 0.602 −0.154 −1.221 −2.698

68

Table 9: Write bit error rate by changing the write pulse width.

τ (ns) 10 9 8 7 6 5 4
τ
τ0

100% 90% 80% 70% 60% 50% 40%

pw 1 · 10−10 1 · 10−9 1 · 10−8 1 · 10−7 1 · 10−6 1 · 10−5 1 · 10−4

4.6.2 Uncorrectable Bit Error Rate

Figure 24 shows UBER for the proposed error mitigation policies against different values

for the ratio of false read to read disturbance for standard, single MTJ STT-RAM when

using single bit error correction and a pw ≈ 10−10. The x-axis data points correspond to

the different values for IR reported in Table 7 for different read currents. When the access

pattern is equal (50%) user reads and writes all approaches achieve similar UBER level as the

user write requests compensate for the effect of cumulative read errors from read disturbance.

For a 1000 to 1 read to write ratio, the reliability of approaches does not change significantly,

as IR increases to improve pf , the resulting higher pd increases the probability of read disturb

errors. Thus, ECC1 alone cannot correct the read disturbances effectively and it becomes

less reliable than other approaches that include some policy for writing back.

When using two-bits error correction, we can also now consider WAT. Figure 25 shows

similar UBER for different policies based on ECC2 with all policies performing similarly for

equal (50%) user reads and writes and with a similar trend where ECC2 scales poorly when

user reads dominate and read disturbance becomes high. Similarly, since WAT leaves cells

with incorrect data, it follows a similar trend to ECC2 but extends the useful range through

an additional data point making it useful for moderate rates of read disturbance where ECC

alone is not as successful.

We conclude that when the user read to write ratio increases, if the read disturbance

error rate is significant and comparable to other bit error rates from other factors, the system

reliability due to error mitigation policy varies significantly. Thus, in the remainder of the

evaluation we conduct experimental results on a “worst-case” ratio of 1000 user reads to

each user write (a=99.9% vs. b=0.1%).

Table 10 shows the UBER versus different RBERs for the ratios of pf and pd specified

69

1.E-08	

1.E-07	

1.E-06	

1.E-05	

6.000	4.954	3.903	2.845	1.778	0.699	

U
BE

R	

log(pf/pd)	

a=50%			b=50%	
ECC1	 WAR	
WAE	 WAP	

1.E-08	

1.E-07	

1.E-06	

1.E-05	

6.000	 4.954	 3.903	 2.845	 1.778	 0.699	

U
BE

R	
	

log(pf/pd)	

a=99.9%			b=0.1%	
ECC1	 WAR	
WAE	 WAP	

Figure 24: Uncorrectable bit error rate vs. row bit error rates under two ratios of read to
write operations for single MTJ STT-RAM. All approaches leverage ECC1.

1.E-12	

1.E-10	

1.E-08	

1.E-06	

1.E-04	

6.000	4.954	3.903	2.845	1.778	0.699	

U
BE

R	
	

log(pf/pd)	

a=50%			b=50%	
ECC2	 WAR	 WAE	

WAP	 WAT	

1.E-10	

1.E-08	

1.E-06	

1.E-04	

6.000	 4.954	 3.903	 2.845	 1.778	 0.699	

U
BE

R	
	

log(pf/pd)	

a=99.9%			b=0.1%	
ECC2	 WAR	 WAE	

WAP	 WAT	

Figure 25: Uncorrectable bit error rate vs. different row bit error rates under ratios of
read to write operations for single MTJ STT-RAM. All approaches leverage ECC2.

in Table 8 for a dual-MTJ STT-RAM. Since dual-MTJ for STT-RAM reduce pf by more

than two orders of magnitude and increase pd and pw by more than one and three orders of

magnitude, respectively, the relationships are different than in the single MTJ case. When

pf is the dominant error rate in the system, WAR, WAE and WAP are more reliable than

ECCk, where k is the number of bits that can be corrected, and WAT. When the rate of pd

grows in comparison to pf and pw, WAR is more reliable than other approaches due to its

consistent write back to eliminate read disturbance. However, WAR incurs a high energy

overhead and consumes significant additional memory bandwidth for this reliability benefit.

Moreover, writes are expensive operations and significant effort has been applied to reduce

the impact of writing into an MTJ. One method is to reduce the write pulse width τ and

tolerate a higher pw. If pw ≤ {pf , pd} then WAR also becomes both expensive for energy

70

Table 10: The comparison of different policies across different RBERs for STT-RAM. All
Parameters are from dual-MTJ STT-RAM.

log(pf/pd) 3 1.845 0.602 -0.154 -1.221 -2.698

k=1

ECCk 4.45 10−11 2.80 10−11 1.15 10−11 1.22 10−11 1.65 10−10 1.51 10−08

WAR 4.44 10−11 2.39 10−11 3.72 10−12 1.34 10−12 8.43 10−13 6.38 10−13

WAE 3.59 10−11 1.82 10−11 2.35 10−12 1.05 10−12 8.93 10−12 7.89 10−10

WAP 3.59 10−11 1.82 10−11 2.35 10−12 1.05 10−12 8.93 10−12 7.89 10−10

k=2

ECCk 1.31 10−14 5.22 10−13 4.52 10−12 1.22 10−11 8.72 10−10 3.53 10−07

WAR 1.70 10−15 6.72 10−16 3.83 10−17 6.18 10−18 2.07 10−18 5.57 10−19

WAE 1.19 10−15 4.25 10−16 2.03 10−17 6.18 10−18 1.77 10−16 1.49 10−13

WAP 1.19 10−15 4.25 10−16 2.03 10−17 4.44 10−18 1.77 10−16 1.49 10−13

WAT 1.22 10−14 4.88 10−13 3.57 10−12 5.05 10−12 5.16 10−11 1.19 10−09

and potentially less reliable than other methods. In the following section, we explore the

trade-off between the system reliability and the energy overhead for different approaches.

4.6.3 Energy Overhead Evaluation

We define the read energy overhead as the energy consumed for all the system operations

(write backs and second reads) relative to the energy for all the user operations. That

is, the average increase in the energy needed for a user operation. Assuming that every

write operation consumes 4 times the energy for a read operation [Meza et al., 2012; Mishra

et al., 2011], the energy overhead for WAR is 400% because each user read is followed by

a system write back. Figure 26 breaks down the average energy overhead of different error

mitigation policies for a single MTJ STT-RAM. Compared to WAR (400%), the average

energy overhead of WAE and WAP is less than 2% and 0.5%, respectively. As long as the

dominant error in the system is false read (as is the case for the single MTJ configuration),

WAP reduces energy overhead over WAE. When available (e.g., with ECC2) WAT achieves

71

1.E-03	 1.E-02	 1.E-01	 1.E+00	 1.E+01	

6.000	

4.954	

3.903	

2.845	

1.778	

0.699	

Energy	Overhead	

Lo
g	
(p
f/
pd

)	

WAR	 WAE	 WAP	

1.E-05	 1.E-03	 1.E-01	 1.E+01	

6.000	

4.954	

3.903	

2.845	

1.778	

0.699	

Energy	Overhead	

Lo
g	
(p
f/
pd

)	

WAR	 WAE	 WAP	 WAT	

(a) All approaches utilize ECC1.

1.E-03	 1.E-02	 1.E-01	 1.E+00	 1.E+01	

6.000	

4.954	

3.903	

2.845	

1.778	

0.699	

Energy	Overhead	

Lo
g	
(p
f/
pd

)	

WAR	 WAE	 WAP	

1.E-05	 1.E-03	 1.E-01	 1.E+01	

6.000	

4.954	

3.903	

2.845	

1.778	

0.699	

Energy	Overhead	

Lo
g	
(p
f/
pd

)	

WAR	 WAE	 WAP	 WAT	

(b) All approaches utilize ECC2.

Figure 26: Comparing the average energy overhead of different approaches. Parameters
are for single MTJ STT-RAM.

1.E-05	 1.E-03	 1.E-01	 1.E+01	

3.000	

1.845	

0.602	

-0.155	

-1.222	

-2.699	

Energy	Overhead	

Lo
g	
(p
f/
pd

)	

WAR	 WAE	 WAP	

1.E-07	 1.E-05	 1.E-03	 1.E-01	 1.E+01	

3.000	

1.845	

0.602	

-0.155	

-1.222	

-2.699	

Energy	Overhead	

Lo
g	
(p
f/
pd

)	

WAR	 WAE	 WAP	 WAT	

(a) All approaches utilize ECC1.

1.E-05	 1.E-03	 1.E-01	 1.E+01	

3.000	

1.845	

0.602	

-0.155	

-1.222	

-2.699	

Energy	Overhead	

Lo
g	
(p
f/
pd

)	

WAR	 WAE	 WAP	

1.E-07	 1.E-05	 1.E-03	 1.E-01	 1.E+01	

3.000	

1.845	

0.602	

-0.155	

-1.222	

-2.699	

Energy	Overhead	

Lo
g	
(p
f/
pd

)	

WAR	 WAE	 WAP	 WAT	

(b) All approaches utilize ECC2.

Figure 27: Comparing the average energy overhead of different approaches. Parameters
are for dual-MTJ STT-RAM.

a significant energy savings particularly in cases where pf dominates [Figure 26(a)].

For a dual-MTJ STT-RAM, results in Figure 27 shows that average energy overhead of

WAE, WAP, and WAT is very low, reaching 0.0397%, 0.0392%, and 0.00002%, respectively.

Compared to single MTJ STT-RAM, dual-MTJ STT-RAM reduces average energy overhead

for these policies as pf is reduced by more than two orders of magnitude. In fact, pf no longer

dominates as pd and pw increase by more than one and three orders of magnitude, respectively

72

and become higher than pf . Note that when pd and/or pw is greater than pf (negative points

of the vertical axis in Figure 27), the dominant errors are persistent. Thus, WAP uses an

additional read to detect persistent errors which becomes less valuable, so its energy overhead

becomes greater than WAE, which immediately writes back on any error. Accordingly, the

double read by WAP and or the write back by WAE after error detection can prevent the

unnecessary system operations while retaining an acceptable UBER level. WAT, however,

can dramatically reduce the average energy overhead compared to other approaches as it can

tolerate some cells with incorrect data before writing back while still achieving a satisfactory

UBER for certain values of IR.

We conclude that writing back a data block after every read operation incurs a large

overhead and other approaches dramatically reduce this energy overhead while achieving a

similar or acceptable UBER level.

4.6.4 Energy Reliability Product

Product metrics, such as Energy-delay product [Horowitz et al.; Sato and Funaki] are com-

mon to evaluate trade-offs between two metrics. To evaluate the trade-off between energy

overhead and reliability, we use the ERP metric, which we define as the product of the en-

ergy overhead times UBER. Thus, we utilize the ERP metric to evaluate the efficiency of

different approaches in a similar fashion. While WAR can have significant ramifications on

delay because every access incurs a write operation, as WAE, WAP, and WAT do not write

back data blocks frequently, and additional reads from WAP are also infrequent, their delay

is negligible compared to WAR and small compared to ECC alone. Figure 28 shows that

WAE and WAP for single MTJ STT-RAM improve the energy reliability product by more

than two orders of magnitude compared to WAR for different ratios of RBERs. Further-

more, when pf is greater than pd and pw, WAT dramatically improves the energy reliability

product by more than two orders of magnitude versus WAE and WAP and more than five

orders of magnitude compared to WAR. When Pd dominates, the advantage of WAT further

increases.

In dual-MTJ STT-RAM, the decrease in false read error rate versus single MTJ STT-

73

1.E-10	

1.E-08	

1.E-06	

1.E-04	

1.E-02	

6.000	 4.954	 3.903	 2.845	 1.778	 0.699	

ER
P	

Log	(pf/pd)	

WAR	 WAE	 WAP	

1.E-14	

1.E-12	

1.E-10	

1.E-08	

1.E-06	

6.000	 4.954	 3.903	 2.845	 1.778	 0.699	

ER
P	

Log	(pf/pd)	

WAR	 WAE	 WAP	 WAT	

(a) All approaches utilize ECC1.

1.E-10	

1.E-08	

1.E-06	

1.E-04	

1.E-02	

6.000	 4.954	 3.903	 2.845	 1.778	 0.699	

ER
P	

Log	(pf/pd)	

WAR	 WAE	 WAP	

1.E-14	

1.E-12	

1.E-10	

1.E-08	

1.E-06	

6.000	 4.954	 3.903	 2.845	 1.778	 0.699	

ER
P	

Log	(pf/pd)	

WAR	 WAE	 WAP	 WAT	

(b) All approaches utilize ECC2.

Figure 28: Energy reliability product of different approaches. All parameters are for the
single MTJ STT-RAM.

1.E-22	

1.E-20	

1.E-18	

1.E-16	

1.E-14	

1.E-12	

1.E-10	

3.000	1.845	0.602	-0.155	-1.222	-2.699	

ER
P	

Log	(pf/pd)	

WAR	 WAE	 WAP	 WAT	

1.E-18	

1.E-16	

1.E-14	

1.E-12	

1.E-10	

1.E-08	

3.000	 1.845	 0.602	-0.155	-1.222	-2.699	

ER
P	

Log	(pf/pd)	

WAR	 WAE	 WAP	

(a) All approaches utilize ECC1.

1.E-22	

1.E-20	

1.E-18	

1.E-16	

1.E-14	

1.E-12	

1.E-10	

3.000	1.845	0.602	-0.155	-1.222	-2.699	

ER
P	

Log	(pf/pd)	

WAR	 WAE	 WAP	 WAT	

1.E-18	

1.E-16	

1.E-14	

1.E-12	

1.E-10	

1.E-08	

3.000	 1.845	 0.602	-0.155	-1.222	-2.699	

ER
P	

Log	(pf/pd)	

WAR	 WAE	 WAP	

(b) All approaches utilize ECC2.

Figure 29: Energy reliability product of different approaches. All parameters are for
dual-MTJ STT-RAM.

RAM results in WAE and WAP improving the energy reliability product over WAR by

roughly the same degree, as shown in Figure 29. When pd overtakes pf (negative points

of the horizontal axis), WAE and WAP obtain the same energy reliability product due to

similar UBERs and energy overheads. However, when pd is high, WAE still has an advantage

over WAP which requires the second read to filter out false reads. Unsurprisingly, as pd

increases, WAT does not eliminate read disturbances effectively and the cumulative effect of

read disturbance causes the energy reliability product to quickly drop below WAE and WAP

as shown in Figure 29(b).

74

We conclude that although these approaches tend to deliver a better system failure rate

than other approaches, they can incur a high energy overhead. Our evaluation based on en-

ergy reliability product shows that WAT and WAR achieve the best and worst performance,

respectively for a single MTJ STT-RAM in which the false read error rate is the dominant in

the system. In dual-MTJ STT-RAM where pd and potentially pw are more important, WAE

and WAP obtain best performance since they enable better read disturbance mitigation.

4.7 SENSITIVITY ANALYSIS

In Section 4.6.2, we showed that a high incidence of user writes can eliminate the destructive

effects of read disturbances. However, heavily read data (e.g., 1000 reads or more to one

write) does yield cumulative error effects due to read disturbance. Furthermore, results in

Section 4.6.4 show that the energy reliability product for different mitigation approaches

depends on ratios of raw bit error rates pf , pd, and pw due to circuit parameters in STT-

RAM and that the type of dominant error rate plays a significant role in the overall system

performance for different error mitigation policies. We now explore the energy reliability

product of these different approaches in a systematic way so that pd, pf , and pw can change

in three different modes: high, medium and low. Figure 30 plots the energy reliability

product of different approaches against three different modes of pd, pf , and pw. For example,

Figure 30(a) shows ERP of different approaches when pw has the highest bit error rate

which varies between 10−6 and 10−4 and pd and pf have medium error (varying between

10−8 and 10−6) and low error (varying between 10−10 and 10−8). Similarly, Figure 30(b) and

30(c) show the cases where pf and pd dominate the error rate, respectively. As before, we

characterize the energy reliability product versus raw bit error rates for the user read write

ratio (a = 99% and b = 0.1%) and make the following observations:

• When pw is the highest bit error rate in the system as shown in Figure 30(a) [This scenario

is relevant to an STT-RAM system with a reduced write pulse τ to save write energy]:

◦ WAT achieves the best performance against other approaches because it tends to write

back less and avoids the high pw. However, if the system does experience enough cells

with incorrect data from pw and pd it will write back to eliminate the accumulated errors.

75

◦ While WAR typically performs poorly in terms of energy, but well in terms of reliability,

this is an example where WAR can hurt reliability and energy making it the worst

performing approach. Furthermore, its negative impact on latency due to the high

1.E-27	
1.E-23	
1.E-19	
1.E-15	
1.E-11	
1.E-07	

1.0E-10	 1.0E-09	 1.0E-08	

1.0E-08	 1.0E-07	 1.0E-06	

1.0E-06	 1.0E-05	 1.0E-04	

ER
P	

pd	<	pf	<	pw	

WAR	 WAE	
WAP	 WAT	

1.E-27	

1.E-23	

1.E-19	

1.E-15	

1.E-11	

1.E-07	

1.0E-08	 1.0E-07	 1.0E-06	

1.0E-10	 1.0E-09	 1.0E-08	

1.0E-06	 1.0E-05	 1.0E-04	

ER
P	

pf	<	pd	<	pw	

WAR	 WAE	

WAP	 WAT	
1.E-27	

1.E-23	

1.E-19	

1.E-15	

1.E-11	

1.E-07	

1.0E-08	 1.0E-07	 1.0E-06	

1.0E-06	 1.0E-05	 1.0E-04	

1.0E-10	 1.0E-09	 1.0E-08	

ER
P	

pw	<	pd	<	pf	

WAR	 WAE	

WAP	 WAT	

1.E-27	

1.E-23	

1.E-19	

1.E-15	

1.E-11	

1.E-07	

1.0E-10	 1.0E-09	 1.0E-08	

1.0E-06	 1.0E-05	 1.0E-04	

1.0E-08	 1.0E-07	 1.0E-06	

ER
P	

pd	<	pw	<pf	

WAR	 WAE	
WAP	 WAT	

1.E-27	
1.E-23	
1.E-19	
1.E-15	
1.E-11	
1.E-07	

1.0E-06	 1.0E-05	 1.0E-04	

1.0E-10	 1.0E-09	 1.0E-08	

1.0E-08	 1.0E-07	 1.0E-06	

ER
P	

pf	<	pw	<	pd	

WAR	 WAE	
WAP	 WAT	

1.E-27	

1.E-23	

1.E-19	

1.E-15	

1.E-11	

1.E-07	

1.0E-06	 1.0E-05	 1.0E-04	

1.0E-08	 1.0E-07	 1.0E-06	

1.0E-10	 1.0E-09	 1.0E-08	

ER
P	

pw	<	pf	<	pd	

WAR	 WAE	

WAP	 WAT	

pd	
pf	
pd	

pd	
pf	
pd	

pd	
pf	
pd	

pd	
pf	
pd	

pd	
pf	
pd	

pd	
pf	
pd	

(a) pw is the highest bit error rate.

1.E-27	
1.E-23	
1.E-19	
1.E-15	
1.E-11	
1.E-07	

1.0E-10	 1.0E-09	 1.0E-08	

1.0E-08	 1.0E-07	 1.0E-06	

1.0E-06	 1.0E-05	 1.0E-04	

ER
P	

pd	<	pf	<	pw	

WAR	 WAE	
WAP	 WAT	

1.E-27	

1.E-23	

1.E-19	

1.E-15	

1.E-11	

1.E-07	

1.0E-08	 1.0E-07	 1.0E-06	

1.0E-10	 1.0E-09	 1.0E-08	

1.0E-06	 1.0E-05	 1.0E-04	

ER
P	

pf	<	pd	<	pw	

WAR	 WAE	

WAP	 WAT	
1.E-27	

1.E-23	

1.E-19	

1.E-15	

1.E-11	

1.E-07	

1.0E-08	 1.0E-07	 1.0E-06	

1.0E-06	 1.0E-05	 1.0E-04	

1.0E-10	 1.0E-09	 1.0E-08	

ER
P	

pw	<	pd	<	pf	

WAR	 WAE	

WAP	 WAT	

1.E-27	

1.E-23	

1.E-19	

1.E-15	

1.E-11	

1.E-07	

1.0E-10	 1.0E-09	 1.0E-08	

1.0E-06	 1.0E-05	 1.0E-04	

1.0E-08	 1.0E-07	 1.0E-06	

ER
P	

pd	<	pw	<pf	

WAR	 WAE	
WAP	 WAT	

1.E-27	
1.E-23	
1.E-19	
1.E-15	
1.E-11	
1.E-07	

1.0E-06	 1.0E-05	 1.0E-04	

1.0E-10	 1.0E-09	 1.0E-08	

1.0E-08	 1.0E-07	 1.0E-06	

ER
P	

pf	<	pw	<	pd	

WAR	 WAE	
WAP	 WAT	

1.E-27	

1.E-23	

1.E-19	

1.E-15	

1.E-11	

1.E-07	

1.0E-06	 1.0E-05	 1.0E-04	

1.0E-08	 1.0E-07	 1.0E-06	

1.0E-10	 1.0E-09	 1.0E-08	

ER
P	

pw	<	pf	<	pd	

WAR	 WAE	

WAP	 WAT	

pd	
pf	
pd	

pd	
pf	
pd	

pd	
pf	
pd	

pd	
pf	
pd	

pd	
pf	
pd	

pd	
pf	
pd	

(b) pf is the highest bit error rate.

1.E-27	
1.E-23	
1.E-19	
1.E-15	
1.E-11	
1.E-07	

1.0E-10	 1.0E-09	 1.0E-08	

1.0E-08	 1.0E-07	 1.0E-06	

1.0E-06	 1.0E-05	 1.0E-04	

ER
P	

pd	<	pf	<	pw	

WAR	 WAE	
WAP	 WAT	

1.E-27	

1.E-23	

1.E-19	

1.E-15	

1.E-11	

1.E-07	

1.0E-08	 1.0E-07	 1.0E-06	

1.0E-10	 1.0E-09	 1.0E-08	

1.0E-06	 1.0E-05	 1.0E-04	

ER
P	

pf	<	pd	<	pw	

WAR	 WAE	

WAP	 WAT	
1.E-27	

1.E-23	

1.E-19	

1.E-15	

1.E-11	

1.E-07	

1.0E-08	 1.0E-07	 1.0E-06	

1.0E-06	 1.0E-05	 1.0E-04	

1.0E-10	 1.0E-09	 1.0E-08	

ER
P	

pw	<	pd	<	pf	

WAR	 WAE	

WAP	 WAT	

1.E-27	

1.E-23	

1.E-19	

1.E-15	

1.E-11	

1.E-07	

1.0E-10	 1.0E-09	 1.0E-08	

1.0E-06	 1.0E-05	 1.0E-04	

1.0E-08	 1.0E-07	 1.0E-06	

ER
P	

pd	<	pw	<pf	

WAR	 WAE	
WAP	 WAT	

1.E-27	
1.E-23	
1.E-19	
1.E-15	
1.E-11	
1.E-07	

1.0E-06	 1.0E-05	 1.0E-04	

1.0E-10	 1.0E-09	 1.0E-08	

1.0E-08	 1.0E-07	 1.0E-06	

ER
P	

pf	<	pw	<	pd	

WAR	 WAE	
WAP	 WAT	

1.E-27	

1.E-23	

1.E-19	

1.E-15	

1.E-11	

1.E-07	

1.0E-06	 1.0E-05	 1.0E-04	

1.0E-08	 1.0E-07	 1.0E-06	

1.0E-10	 1.0E-09	 1.0E-08	

ER
P	

pw	<	pf	<	pd	

WAR	 WAE	

WAP	 WAT	

pd	
pf	
pd	

pd	
pf	
pd	

pd	
pf	
pd	

pd	
pf	
pd	

pd	
pf	
pd	

pd	
pf	
pd	

(c) pd is the highest bit error rate.

Figure 30: Energy reliability product of the different policies for six different scenarios.

76

memory write bandwidth makes this a poor choice for a system with a high pw.

• When pf is the highest bit error rate in the system as shown in Figure 30(b) [This scenario

is relevant to a “standard” single MTJ STT-RAM system with a standard write pulse]:

◦ When pd is the lowest bit error rate amongst the three, WAT achieves the best ERP,

which is reduced on average by more than three orders of magnitude compared with

WAE and WAP and also eight orders of magnitude smaller than WAR.

◦ When pd ≈ pf , WAE, WAP, and WAT have the same ERP all of which are better than

WAR. The destructive effects of pd degrade the energy reliability advantage of WAT

relative to the case pf >> pd.

• When pd is the highest bit error rate in the system as shown in Figure 30(c) [This scenario

is relevant to the dual-MTJ STT-RAM approach which increases pd and reduces pf and/or

when IR is increased to reduce pf but increases pd]:

◦ WAR has the best ERP among all approaches primarily because writing back the data

block consistently has a significant reliability advantage that outweighs the energy sav-

ings in this scenario.

◦ As long as pw is the lowest bit error rate in the system, WAT obtains the worst ERP

because the combination of pf and pd have a higher incidence of multiple errors occurring

after a single error was left behind.

◦ If pf is the lowest bit error rate in the system (pd > pw > pf), the performance of WAE

and WAP exponentially degrade.

4.8 CONCLUSION

Spin-Transfer Torque Random Access Memory (STT-RAM) is one of the leading candidates

in emerging memory technologies. Unfortunately, the relatively unreliable reads of the STT-

RAM due to read disturbances degrades system reliability and precludes the integration of

STT-RAM into the memory stack. In this chapter, we studied three approaches to mitigate

read disturbances for STT-RAM compared to the conservative approach of writing back

77

after every read. Further, these approaches are designed to improve overall memory system

reliability by addressing read disturbance, write faults and false read errors together.

These techniques leverage a single ECC to cover all three different types of faults/errors.

In particular, we considered schemes to write back blocks after any error is detected (WAE),

after a persistent error (due to read disturbance or write fault) is detected (WAP), or after

multiple errors are detected (WAT). Further, we provided a description of a Markov modeling

approach that evaluates all three types of errors and generates a single reliability of the

system in terms of uncorrectable bit error rate. Moreover, we described energy reliability

product metric to be able to quantitative evaluate the trade-off between system energy and

reliability. Our study concludes the following:

1. WAT, the design that potentially leaves behind some cells with incorrect data due to

faults as long as the number of errors is less than or equal to an error threshold, achieves

the best energy reliability trade off when the false read error rate or the write bit error

rate is dominant in the system.

2. WAE, the design that writes back data after detecting any error achieves acceptable

reliability and energy levels, as long as the read disturbance is not dominant.

3. WAP, the design that reads data again after detecting an error to distinguish between

transient and persistent errors has an energy and reliability that is similar to that of WAE,

as long as the read disturbance is not dominant.

4. WAR does not have a significant reliability advantage over the other policies when the

read disturbance is not dominant in the system. Moreover, WAR has the highest energy

and memory bandwidth overheads among all the policies.

In summary, we showed qualitatively that WAE, WAP and WAT provide dramatic im-

provement in energy consumption and memory bandwidth overhead (due to additional write-

backs) while eliminating the effects of read disturbance and retaining near WAR reliability.

78

5.0 INTEGRATING MULTI-TIERED COMPRESSION WITH COSET

CODING FOR PCM TO MITIGATE WRITE DISTURBANCES

Phase change memory (PCM) has recently emerged as a promising technology to meet the

fast growing demand for large capacity memory in computer systems, replacing or augment-

ing DRAM that is impeded by physical limitations. To achieve high memory capacity, the

wordline and bitline distances contract in super dense PCM which easily increases sneak

heat among cells along the wordline and bitline intensifying write disturbances. While the

sneak heat for resetting cells slowly decays vertically along the bitline, it diminishes fast

horizontally along the wordline. Thus, the likelihood of incidence of write disturbance along

the bitline is more than that along the wordline. When the write disturbance occurs in

the neighboring wordlines of the active wordline, they have to be read&written to eliminate

write disturbances which sacrifices system performance. It is possible to thwart the bitline

write disturbances by not reducing inter-cell spacing along the bitlines. This solution how-

ever may only be suitable in Multi-Level Cell (MLC) PCM since it compensates cutting

memory capacity at the expense of higher write energy and wordline disturbance error rates.

The naive solution to reduce write energy in MLC PCM or likelihood of incidence of write

disturbance in SLC PCM is to use coset coding whose cost function optimizes objectives

such as write energy, disturbance errors and etc. Coset coding is a mapping function that

maps each dataword to multiple coset candidates and the coset candidate with the minimum

cost is selected to be written in the memory. The coset candidates are indexed by auxiliary

bits in the encoder that sacrifice capacity. One solution for salvaging memory capacity is to

store auxiliary bits in the compressed cacheline assuming they do not exceed the number of

reclaimed bits by the compression.

The goal of this chapter is to propose a generic approach that integrates a new multi-

79

tiered compression (Section 5.1) with coset coding to optimize the cost function. To this end,

we characterize the realistic workloads and explore them for the multi-tiered compression that

does not disturb in-place similarity 1 for application to optimize write energy in MLC PCM

and likelihood of incidence of write disturbance errors in SLC PCM. The new compression

technique compresses more than 94% of the memory lines and provides enough room within

the cacheline to store the auxiliary data using defined coset encoding applied at data block

granularities lower than the typical cache line size. Finally, we show how to make trade-off

among reliability, performance, energy and endurance. This work provides the ground work

needed to tackle the third research question listed in Section 1.2. Section 5.1 introduces the

new multi-tiered compression. Sections 5.2 and 5.3 tackle write disturbances in MLC and

SLC PCM, respectively.

5.1 MULTI-TIERED COMPRESSION (MTC)

The so called “in memory compression” algorithms are based on the similarity, measured by

the Hamming distance, among neighboring data elements [Kim et al., a; Pekhimenko et al.,

2012; Seol et al.; Yang et al., 2000; Zhang et al., 2000]. Some compression algorithms such

as BDI [Pekhimenko et al., 2012] measure the Hamming distance in order to exploit the

dynamic range of values, which is common in integer and pointer array types. BDI then

encodes a block of data as a single base value, followed by a set of differences relative to

that base. In contrast, some compression algorithms such as Bit Plane compression [Kim

et al., a] start with a smart data transformation on a set of bits corresponding to the same

bit position within each word in a data array (bit plane) to improve the compressibility of

data while keeping the encoding complexity comparable to existing compressors. These bit

plane transformations are then combined with the existing lightweight compressors (such

as BDI) to turn the improved compressibility into real bit savings. Unfortunately, these

existing compressors change the bits sufficiently to harm in-place similarity sufficiently to

defeat much of the savings from differential write [Seyedzadeh et al., 2018].

1In-place similarity is the similarity of the old data to the corresponding new data in the memory line.

80

We apply different existing schemes for compressing 512-bit memory lines to SPEC2006

and PARSEC workloads. The results show that FPC+BDI compression [Alameldeen and

Wood, 2004; Pekhimenko et al., 2012] only compresses 30% of the memory lines. In con-

trast, the recently proposed Coverage-Oriented Compression (COC) [Kim et al., b] highly

compresses cache lines by utilizing 28 different variable length compressors. Unfortunately,

the variable length encoding used in COC disturbs the biased bit patterns in a memory

line. However, by inspecting each 64-bit memory word, we found that there is a significant

similarity across and within most significant bytes of most words. We take advantage of

this feature to propose a new Multi-Tiered Compression technique that does not disturb

in-place similarity. To this end, we divide each cacheline into eight 64-bit words and then

explore similarity in the most significant bits b(i, j) of each word wi where 0 ≤ i ≤ 7 and

56 ≤ j ≤ 63. Our exploration reveals similarity of bits within and across words as follows:

• The last ‘k’ significant bits of each word have the same values: b(i, 64−k) = b(i, j) where

0 ≤ i ≤ 7, 64− k ≤ j ≤ 63 and 2 ≤ k ≤ 8. In this case, ‘(k − 1)× 8’ bits are reclaimed

and eight most significant bits from the same bit locations across different words are

selected as the compression encoding bits. Note that this specific compression is called

Word Level Compression (WLCk). Given k=8 and k=6, WLCk=8 and WLCk=6 reclaim

56 and 40 bits as shown in Figures 31(a) and 31(b).

• All bits corresponding to the same bit position across words have the same values as

shown in Figure 31(c): b(0, j) = b(i, j) where 1 ≤ i ≤ 7 and 56 ≤ j ≤ 63. Similar to

previous case, bits b(0, j), where 56 ≤ j ≤ 63, are considered as the compression encoding

bits and 56 bits are reclaimed. Note that this specific compression is called Cross Word

Level Compression (CWC) .

Figure 32 compares the percentage of compressible cachelines. While WLC7 and WLC8

equally compress on average 54% of the cachelines, WLC4, WLC5 and WLC6 equally com-

press 90% of the cachelines. To constitute the Multi-Tiered Compression (MTC) that com-

presses many cachelines and reclaims many bits, WLC6, WLC8 and CWC are selected. The

main reason for selecting two versions of WLC is that WLC8 reclaims 56 bits and WLC6

by reclaiming 40 bits compresses a high percentage of cachelines. Figure 32 shows that

81

MTC compresses more than 94% of the cachelines while not disturbing in-place similarity.

Note that the number of reclaimed bits by MTC ranges from 40 to 56. In Sections 5.2 and

5.3, we will use reclaimed bits by WLC6 and MTC to store auxiliary bits of coset coding,

respectively.

		
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	 b63	 b62	 b61	 b60	 b59	 b58	 b57	 b56	 …	 b0	
W0	 0	 0	 0	 0	 0	 0	 0	 0	 …	 x	
W1	 0	 0	 0	 0	 0	 0	 0	 0	 …	 x	
W2	 1	 1	 1	 1	 1	 1	 1	 1	 …	 x	
W3	 0	 0	 0	 0	 0	 0	 0	 0	 …	 x	
W4	 1	 1	 1	 1	 1	 1	 1	 1	 …	 x	
W5	 0	 0	 0	 0	 0	 0	 0	 0	 …	 x	
W6	 0	 0	 0	 0	 0	 0	 0	 0	 …	 x	
W7	 1	 1	 1	 1	 1	 1	 1	 1	 …	 x	

	 b63	 b62	 b61	 b60	 b59	 b58	 b57	 b56	 …	 b0	
W0	 0	 0	 0	 0	 0	 0	 x	 x	 …	 x	
W1	 0	 0	 0	 0	 0	 0	 x	 x	 …	 x	
W2	 1	 1	 1	 1	 1	 1	 x	 x	 …	 x	
W3	 0	 0	 0	 0	 0	 0	 x	 x	 …	 x	
W4	 1	 1	 1	 1	 1	 1	 x	 x	 …	 x	
W5	 0	 0	 0	 0	 0	 0	 x	 x	 …	 x	
W6	 0	 0	 0	 0	 0	 0	 x	 x	 …	 x	
W7	 1	 1	 1	 1	 1	 1	 x	 x	 …	 x	

(a) Similarity of each bit position within MSBs∗.

		
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	 b63	 b62	 b61	 b60	 b59	 b58	 b57	 b56	 …	 b0	
W0	 0	 0	 0	 0	 0	 0	 0	 0	 …	 x	
W1	 0	 0	 0	 0	 0	 0	 0	 0	 …	 x	
W2	 1	 1	 1	 1	 1	 1	 1	 1	 …	 x	
W3	 0	 0	 0	 0	 0	 0	 0	 0	 …	 x	
W4	 1	 1	 1	 1	 1	 1	 1	 1	 …	 x	
W5	 0	 0	 0	 0	 0	 0	 0	 0	 …	 x	
W6	 0	 0	 0	 0	 0	 0	 0	 0	 …	 x	
W7	 1	 1	 1	 1	 1	 1	 1	 1	 …	 x	

	 b63	 b62	 b61	 b60	 b59	 b58	 b57	 b56	 …	 b0	
W0	 0	 0	 0	 0	 0	 0	 x	 x	 …	 x	
W1	 0	 0	 0	 0	 0	 0	 x	 x	 …	 x	
W2	 1	 1	 1	 1	 1	 1	 x	 x	 …	 x	
W3	 0	 0	 0	 0	 0	 0	 x	 x	 …	 x	
W4	 1	 1	 1	 1	 1	 1	 x	 x	 …	 x	
W5	 0	 0	 0	 0	 0	 0	 x	 x	 …	 x	
W6	 0	 0	 0	 0	 0	 0	 x	 x	 …	 x	
W7	 1	 1	 1	 1	 1	 1	 x	 x	 …	 x	

(b) Similarity of leading six bits of each MSB∗.
	

	 b63	 b62	 b61	 b60	 b59	 b58	 b57	 b56	 …	 b0	
W0	 1	 1	 0	 0	 0	 0	 0	 0	 …	 x	
W1	 1	 1	 0	 0	 0	 0	 0	 0	 …	 x	
W2	 1	 1	 0	 0	 0	 0	 0	 0	 …	 x	
W3	 1	 1	 0	 0	 0	 0	 0	 0	 …	 x	
W4	 1	 1	 0	 0	 0	 0	 0	 0	 …	 x	
W5	 1	 1	 0	 0	 0	 0	 0	 0	 …	 x	
W6	 1	 1	 0	 0	 0	 0	 0	 0	 …	 x	
W7	 1	 1	 0	 0	 0	 0	 0	 0	 …	 x	

(c) Similarity across MSBs∗.

Figure 31: Multi-Tiered Compression (MTC). The red, blue and black values represent
compression bits, reclaimed bits and data bits, respectively. ∗Most significant byte.

5.2 REDUCING WRITE DISTURBANCE IN MLC PCM

When the inter-cell spacing along the bitline remains untouched in super dense PCM, the

likelihood of incidence of bitline write disturbances is negligible but it sacrifices memory

capacity. MLC PCM delivers higher memory capacity at the expense of higher programming

energy and higher wordline write disturbance error rates. In this section, first we integrate

the word level compression, WLC6, with coset coding in order to minimize write energy in

82

0%	
10%	
20%	
30%	
40%	
50%	
60%	
70%	
80%	
90%	
100%	

lesl	 wrf		 zeus	 lbm		 asta	 mcf		 cann	 libq	 milc		 gcc		 omne	 sopl	 ave.	%
	C
om

pr
es
se
d	
M
em

or
y	
Li
ne

s	
(M

or
e	
is
	B
eI

er
)	

WLC4	 WLC5	 WLC6	 WLC7	 WLC8	 MTC	 CoC	 FPC+BDI	

Figure 32: Comparison of the percentage of compressed memory lines by WLC, MTC,
COC [Kim et al., b] and FPC+BDI [Pekhimenko et al., 2012].

MLC PCM. Then, we show how to tune the used cost function in coset coding for making

trade-off between write energy, endurance, and wordline write disturbance errors. Finally,

we assess efficiency of the proposed approach versus existing approaches.

5.2.1 Motivation

Using simulation (see Section 5.2.5), we measure the write energy when the coset encoding

proposed in [Wang et al.] is used along with differential write. Figure 33(a) shows the results

for 200 million 512-bit random data lines when the encoding granularity ranges between 8 and

512 bits. At a given granularity of x-bits, each x-bits data block is separately encoded using

one of six coset (codeword) candidates at the cost of adding 3-bits (two auxiliary symbols

in MLC PCM) to identify the candidate used. The figure breaks down the write energy into

the energy to write the data and the auxiliary symbols. It shows that when the encoding

granularity decreases, the write energy and its dominant component, the data symbol energy,

decreases. On the other hand, the auxiliary symbol energy gradually increases and reaches

its maximum at the granularity of 8-bits.

We also perform a similar study on real workloads to investigate the relationship between

the components of the write energy. Figure 33(b) shows that the energy for the biased

workloads is smaller than the random workload case, which is due to data locality. However

83

0.E+00	

1.E+04	

2.E+04	

3.E+04	

4.E+04	

5.E+04	

8	 16	 32	 64	 128	 256	 512	

W
rit
e	
En

er
gy
	(p

J)	
Ra

nd
om

	W
or
kl
oa
ds
	

Data	Block	Granularity	

Our	goal	

blk	 aux	 blk+aux	

0.0E+00	

2.0E+03	

4.0E+03	

6.0E+03	

8.0E+03	

1.0E+04	

1.2E+04	

8	 16	 32	 64	 128	 256	 512	

W
rit
e	
En

er
gy
	(p

J)	
Bi
as
ed

	W
or
kl
oa
ds
	

Data	Block	Granularity	

Our	goal	

blk	 aux	 blk+aux	

0%	

5%	

10%	

15%	

20%	

25%	

30%	

8	 16	 32	 64	 128	 256	 512	

Co
di
ng
	A
dv
an

ta
ge
	R
a2

o	

Data	Block	Granularity	

Current	

Our	goal	

(a) Random workloads.

0.E+00	

1.E+04	

2.E+04	

3.E+04	

4.E+04	

5.E+04	

8	 16	 32	 64	 128	 256	 512	

W
rit
e	
En

er
gy
	(p

J)	
Ra

nd
om

	W
or
kl
oa
ds
	

Data	Block	Granularity	

Our	goal	

blk	 aux	 blk+aux	

0.0E+00	

2.0E+03	

4.0E+03	

6.0E+03	

8.0E+03	

1.0E+04	

1.2E+04	

8	 16	 32	 64	 128	 256	 512	

W
rit
e	
En

er
gy
	(p

J)	
Bi
as
ed

	W
or
kl
oa
ds
	

Data	Block	Granularity	

Our	goal	

blk	 aux	 blk+aux	

0%	

5%	

10%	

15%	

20%	

25%	

30%	

8	 16	 32	 64	 128	 256	 512	

Co
di
ng
	A
dv
an

ta
ge
	R
a2

o	

Data	Block	Granularity	

Current	

Our	goal	

(b) Biased workloads (SPEC2006 and PARSEC benchmarks).

Figure 33: Write energy analysis.

the trend with varying granularity is the same for both workloads. The main reason for

energy reduction at small data block granularity is the flexibility of encoding smaller data

blocks independently. Unfortunately, this benefit comes at the expense of a high space

overhead needed for storing the auxiliary symbols. This overhead reaches 25% at 8-bit

granularity (two auxiliary symbols per four data symbols).

The goal of this section is to take advantage of fine-grain encoding granularity while

reducing the overhead of auxiliary symbols, using a light weight compression that provides

enough space in the memory line to store auxiliary symbols, and making trade-off among

the write energy, endurance, write disturbance and area overhead.

84

5.2.2 Revisiting Coset Candidates

A 4-level cell can be programmed to any one of four resistance states. We denote these

states by S1, S2, S3 and S4 and we assume that the states are numbered in the order implied

by the energy needed to bring a cell to that particular state, with S1 requiring the least

energy and S4 requiring the most energy (see Table 11). Specifically, programming into S1 is

done using a RESET pulse, while programming it into S2 is done using a SET pulse, which

consumes more energy. Programming into S3 and S4 is done through iterative partial SET

pulses [Joshi et al.]. Note that to reach S2, S3, S4, the cell must be first reset before applying

the SET pulses. Every two consecutive bits in a memory line are stored in one cell. Hence,

an encoding is a particular mapping of the four symbols, ‘00’, ‘01’, ‘10’ and ‘11’ into the four

cell states. We assume that the default mapping of the four symbols ‘00’, ‘10’, ‘11’, and ‘01’

is to the states S1, S2, S3 and S4, respectively [Jiang et al.].

The coset candidates used in [Wang et al.] to encode a memory line are based on

mapping the two most frequent symbols in a memory line into the two low energy states

while maintaining the original data block as much as possible. Assuming that any two of

the four symbols can appear more frequently in any particular memory line, the encoding

provides C2
4 = 6 different mappings of symbols to states, which is equivalent to using six

possible coset candidates in the encoding. Of course, 3-bits (two symbols) are needed for

each memory line to record the particular candidate used in the encoding.

Note that the above logic used to select the six coset candidates is suitable for random

data since it assumes that in any memory line, any two of the four symbols can appear

more frequently in that line. However, it is well documented [Alameldeen and Wood, 2004;

Balakrishnan and Sohi; Ekman and Stenstrom, 2005] that in real workloads, the two symbols

‘00’ and ‘11’ appear much more frequently than the other two symbols because many data

words contain long runs of 0’s or 1’s. For example, zero is most commonly used to initialize

data, to represent NULL pointers or false Boolean values, and to represent sparse matrices.

On the other hand, long sequences of 1’s appear in the representation of negative signed

numbers. We will take advantage of this knowledge to propose four carefully selected coset

candidates and compare the performance of this encoding, called ‘4cosets,’ with that of the

85

encoding proposed in [Wang et al.], called ‘6cosets.’ Note that by reducing the number of

coset candidates from six to four, we reduce the auxiliary information needed to keep track

of the coset candidate used from four bits (two symbols) to two bits (one symbol).

Table 11 shows the symbol-to-state mapping for the four proposed coset candidates. The

first candidate, C1, represents the default symbol-to-state mapping. Candidates C2 and C4

map ‘11’ and ‘00’ to the two states with the lowest write energy to take advantage of the

fact that sequences of consecutive 0’s and consecutive 1’s are common in memory traces of

real applications. Candidate C3 is chosen so that, when combined with C1, any of the four

symbols will be mapped to the two states with the low write energy, either in C1 or in C3.

This will be useful for random patterns that do not exhibit any bias.

To compare the effectiveness of the proposed 4cosets encoding with the 6cosets encoding

proposed in [Wang et al.], we plot in Figure 34 the write energy for both encodings for 200

million random data blocks with granularity varying from 128-bits down to 8-bits. Because

it uses more candidates and has more options for reducing the write energy, 6cosets achieves

write energy reduction in the data symbols more than 4cosets. The energy consumption

for the auxiliary symbols is also lower for 6cosets than 4cosets despite the fact that 4cosets

uses only one auxiliary symbol per data block while 6cosets uses two. The reason is that for

6cosets, we use the six state combinations of the two auxiliary symbols that require the least

write energy among the 16 possible state combinations of the two symbols. For 4cosets, all

four states of the auxiliary symbol, including the two high write energy states, have to be

used to identify the candidate used in the encoding.

The advantage of 6cosets vanishes when we compare the two schemes for real benchmarks

Table 11: Four coset candidates for mapping two bit patterns to the four energy states of
a MLC PCM.

State Write energy [Bedeschi et al., 2009]
Coset candidate mapings of symbols to states

Coset C1 Coset C2 Coset C3 Coset C4

S1 36+0 pJ 00 11 11 11

S2 36+20 pJ 10 00 01 00

S3 36+307 pJ 11 10 00 01

S4 36+547 pJ 01 01 10 10

86

0.0E+00	
1.0E+04	
2.0E+04	
3.0E+04	
4.0E+04	
5.0E+04	

8	 16	 32	 64	 128	

Bl
oc
k	
W
rit
e	
En

er
gy
	(p

J)	

Data	Block	Granularity	

6_cosets	 4_cosets	

0.0E+00	
2.0E+03	
4.0E+03	
6.0E+03	
8.0E+03	
1.0E+04	
1.2E+04	

8	 16	 32	 64	 128	

Au
x	
W
rit
e	
En

er
gy
	(p

J)	

Data	Block	Granularity	

6_cosets	 4_cosets	

0.0E+00	
1.0E+04	
2.0E+04	
3.0E+04	
4.0E+04	
5.0E+04	

8	 16	 32	 64	 128	

	T
ot
al
	W

rit
e	
En

er
gy
	(p

J)	

Data	Block	Granularity	

6_cosets	 4_cosets	

(a) Auxiliary symbols.

0.0E+00	
1.0E+04	
2.0E+04	
3.0E+04	
4.0E+04	
5.0E+04	

8	 16	 32	 64	 128	

Bl
oc
k	
W
rit
e	
En

er
gy
	(p

J)	

Data	Block	Granularity	

6_cosets	 4_cosets	

0.0E+00	
2.0E+03	
4.0E+03	
6.0E+03	
8.0E+03	
1.0E+04	
1.2E+04	

8	 16	 32	 64	 128	

Au
x	
W
rit
e	
En

er
gy
	(p

J)	

Data	Block	Granularity	

6_cosets	 4_cosets	

0.0E+00	
1.0E+04	
2.0E+04	
3.0E+04	
4.0E+04	
5.0E+04	

8	 16	 32	 64	 128	

	T
ot
al
	W

rit
e	
En

er
gy
	(p

J)	

Data	Block	Granularity	

6_cosets	 4_cosets	

(b) Data block symbols.

0.0E+00	
1.0E+04	
2.0E+04	
3.0E+04	
4.0E+04	
5.0E+04	

8	 16	 32	 64	 128	

Bl
oc
k	
W
rit
e	
En
er
gy
	(p

J)	

Data	Block	Granularity	

6_cosets	 4_cosets	

0.0E+00	
2.0E+03	
4.0E+03	
6.0E+03	
8.0E+03	
1.0E+04	
1.2E+04	

8	 16	 32	 64	 128	

Au
x	
W
rit
e	
En
er
gy
	(p

J)	

Data	Block	Granularity	

6_cosets	 4_cosets	

0.0E+00	
1.0E+04	
2.0E+04	
3.0E+04	
4.0E+04	
5.0E+04	

8	 16	 32	 64	 128	

	T
ot
al
	W

rit
e	
En
er
gy
	(p

J)	

Data	Block	Granularity	

6_cosets	 4_cosets	

(c) Auxiliary + data block symbols.

Figure 34: Write energy analysis. The reported write energy is the average for 200 mil-
lion random data blocks. The PCM memory line is 512-bits.

as shown in Figure 35. The figure shows that 6cosets still has an advantage with respect

to the write energy of data symbols. However, the energy to write the auxiliary symbols is

lower in 4cosets than in 6cosets because it uses only one auxiliary symbol rather than two,

and it uses the two low energy states of the auxiliary symbol to represent the most commonly

used coset candidates, C1 and C2. As a result, the total write energy in Figure 35 shows

that the two sources of the write energy make a suitable trade-off such that the write energy

of 4cosets is almost equal to that of 6cosets for a wide range of data block granularities.

We conclude that both 4cosets and 6cosets consume roughly the same write energy for

real workloads. More importantly, 4cosets reduces the number of auxiliary symbols by 50%,

which is a large advantage when the memory line is to be compressed to make room for the

auxiliary symbols.

87

2.0E+03	
4.0E+03	
6.0E+03	
8.0E+03	
1.0E+04	
1.2E+04	

8	 16	 32	 64	 128	Bl
oc
k	
W
rit
e	
En

er
gy
	(p

J)	

Data	Block	Granularity	

6cosets	 4cosets	

0.0E+00	

1.0E+03	

2.0E+03	

3.0E+03	

4.0E+03	

8	 16	 32	 64	 128	

Au
x.
	W

rit
e	
En

er
gy
	(p

J)	

Data	Block	Granularity	

6cosets	 4cosets	

2.0E+03	
4.0E+03	
6.0E+03	
8.0E+03	
1.0E+04	
1.2E+04	

8	 16	 32	 64	 128	

	T
ot
al
	W

rit
e	
En

er
gy
	(p

J)	

Data	Block	Granularity	

6cosets	 4cosets	

(a) Auxiliary symbols.

2.0E+03	
4.0E+03	
6.0E+03	
8.0E+03	
1.0E+04	
1.2E+04	

8	 16	 32	 64	 128	Bl
oc
k	
W
rit
e	
En

er
gy
	(p

J)	

Data	Block	Granularity	

6cosets	 4cosets	

0.0E+00	

1.0E+03	

2.0E+03	

3.0E+03	

4.0E+03	

8	 16	 32	 64	 128	

Au
x.
	W

rit
e	
En

er
gy
	(p

J)	

Data	Block	Granularity	

6cosets	 4cosets	

2.0E+03	
4.0E+03	
6.0E+03	
8.0E+03	
1.0E+04	
1.2E+04	

8	 16	 32	 64	 128	

	T
ot
al
	W

rit
e	
En

er
gy
	(p

J)	

Data	Block	Granularity	

6cosets	 4cosets	

(b) Data block symbols.

2.0E+03	
4.0E+03	
6.0E+03	
8.0E+03	
1.0E+04	
1.2E+04	

8	 16	 32	 64	 128	Bl
oc
k	
W
rit
e	
En
er
gy
	(p

J)	

Data	Block	Granularity	

6cosets	 4cosets	

0.0E+00	

1.0E+03	

2.0E+03	

3.0E+03	

4.0E+03	

8	 16	 32	 64	 128	

Au
x.
	W

rit
e	
En
er
gy
	(p

J)	

Data	Block	Granularity	

6cosets	 4cosets	

2.0E+03	
4.0E+03	
6.0E+03	
8.0E+03	
1.0E+04	
1.2E+04	

8	 16	 32	 64	 128	

	T
ot
al
	W

rit
e	
En
er
gy
	(p

J)	

Data	Block	Granularity	

6cosets	 4cosets	

(c) Auxiliary + data block symbols.

Figure 35: Write energy analysis. The reported write energy is the average for
SPEC2006 and PARSEC benchmarks. The PCM memory line is 512-bits.

5.2.3 Restricted Coset Coding

In traditional coset encoding, a coset candidate is selected independently for each data block

to minimize the write energy for that block. In this section, we introduce a restricted coset

encoding which mandates a correlation between the use of coset candidates in a number

of consecutive data blocks. This restriction reduces the auxiliary information and does not

largely affect the energy minimization capability because the bit patterns of consecutive

words are usually similar.

We illustrate the concept of restricted coset encoding by a simple example. Assume

that we only use the first three coset candidates, C1, C2 and C3, discussed in Section 5.2.2.

Instead of allowing the flexibility of using C1, C2 or C3 independently in each data block,

88

we can group the cosets into two groups, ‘C1,C2’ and ‘C1,C3’, and force any data block in

a memory line to either use one of C1 and C2 in the encoding or to use one of C1 and C3.

For example for a 16-bit encoding granularity, there are 32 data blocks in a 512-bit memory

line. Restricted coset encoding proceeds as follows: 1) use the two candidates C1 and C2 to

encode each of the 32 data blocks, 2) use the two candidates C1 and C3 to encode each of

the 32 data blocks and 3) select the better of the encodings produced in steps 1 and 2.

Of course, this restricted method needs one global auxiliary bit per memory line to

determine the coset group used in that line, in addition to one auxiliary bit per data block, for

a total of 33 auxiliary bits (17 symbols) per memory line. This is fewer than the unrestricted

encoding which needs 64 auxiliary bits (32 symbols) per memory line, two bits per data

block.

To explain the ramification of restricting the use of cosets, we recall from the previous

section the justifications for choosing the three candidates C1, C2 and C3. C2 is useful for

biased data with many sequences of consecutive 0’s or 1’s, while C3 is useful for non-biased

data. Because of data locality, we can expect consecutive words in the memory line to either

be all biased or not. In the former case, not using C3 will not hurt much, and in the latter

case, not using C2 will not hurt much.

To evaluate the effect of restricting the use of cosets on the write energy, we plot in

Figure 36 the write energy of 4cosets, 3cosets (that unrestrictedly uses candidates C1, C2

and C3) and the restricted coset coding (called 3-r-cosets). We draw two observations from

this figure. First, 3cosets only slightly increases the write energy over 4cosets. Second,

reducing the number of auxiliary information by the proposed restricted method increases

very little the write energy relative to 4cosets. The main advantage of restricting the coset

candidates will be clear in the next section where we use WLC6 to make room in the memory

line for embedding the auxiliary information.

5.2.4 WLCRC: Integrating WLC with Restricted Coset Encoding

In this section, we will use WLC6, abbreviated to WLC, to make enough room in the memory

line to store the auxiliary symbols of the restricted coset encoding. Because of the reduction

89

4.0E+03	
5.0E+03	
6.0E+03	
7.0E+03	
8.0E+03	
9.0E+03	
1.0E+04	
1.1E+04	

8	 16	 32	 64	 128	Bl
oc
k	
W
rit
e	
En
er
gy
	(p

J)	

Data	Block	Granularity	

4_cosets	 3_cosets	 3_r_cosets	

0.0E+00	
5.0E+02	
1.0E+03	
1.5E+03	
2.0E+03	
2.5E+03	
3.0E+03	
3.5E+03	
4.0E+03	

8	 16	 32	 64	 128	

Au
x	
W
rit
e	
En
er
gy
	(p

J)	

Data	Block	Granularity	

4_cosets	 3_cosets	 3_r_cosets	

7.0E+03	

8.0E+03	

9.0E+03	

1.0E+04	

1.1E+04	

8	 16	 32	 64	 128		T
ot
al
	W

rit
e	
En
er
gy
	(p

J)	

Data	Block	Granularity	

4_cosets	 3_cosets	 3_r_cosets	

(a) Auxiliary symbols.

4.0E+03	
5.0E+03	
6.0E+03	
7.0E+03	
8.0E+03	
9.0E+03	
1.0E+04	
1.1E+04	

8	 16	 32	 64	 128	Bl
oc
k	
W
rit
e	
En

er
gy
	(p

J)	

Data	Block	Granularity	

4_cosets	 3_cosets	 3_r_cosets	

0.0E+00	
5.0E+02	
1.0E+03	
1.5E+03	
2.0E+03	
2.5E+03	
3.0E+03	
3.5E+03	
4.0E+03	

8	 16	 32	 64	 128	

Au
x	
W
rit
e	
En

er
gy
	(p

J)	

Data	Block	Granularity	

4_cosets	 3_cosets	 3_r_cosets	

7.0E+03	

8.0E+03	

9.0E+03	

1.0E+04	

1.1E+04	

8	 16	 32	 64	 128		T
ot
al
	W

rit
e	
En

er
gy
	(p

J)	

Data	Block	Granularity	

4_cosets	 3_cosets	 3_r_cosets	

(b) Data symbols.

4.0E+03	
5.0E+03	
6.0E+03	
7.0E+03	
8.0E+03	
9.0E+03	
1.0E+04	
1.1E+04	

8	 16	 32	 64	 128	Bl
oc
k	
W
rit
e	
En
er
gy
	(p

J)	

Data	Block	Granularity	

4_cosets	 3_cosets	 3_r_cosets	

0.0E+00	
5.0E+02	
1.0E+03	
1.5E+03	
2.0E+03	
2.5E+03	
3.0E+03	
3.5E+03	
4.0E+03	

8	 16	 32	 64	 128	

Au
x	
W
rit
e	
En

er
gy
	(p

J)	

Data	Block	Granularity	

4_cosets	 3_cosets	 3_r_cosets	

7.0E+03	

8.0E+03	

9.0E+03	

1.0E+04	

1.1E+04	

8	 16	 32	 64	 128		T
ot
al
	W

rit
e	
En

er
gy
	(p

J)	

Data	Block	Granularity	

4_cosets	 3_cosets	 3_r_cosets	

(c) Auxiliary + data symbols.

Figure 36: Write energy analysis. The average write energy are reported for the
SPEC2006 and PARSEC benchmarks.

in the auxiliary information needed for 3-r-cosets, WLC will be able to provide the necessary

room in 90% of memory lines to embed the auxiliary symbols. A global bit (symbol) per

memory line will be used to flag the lines that cannot be compressed. Those lines will be

written in memory without encoding.

Figure 37(a) shows the WLC that compresses the 6 most significant bits of each 64-bit

word of a 512-bit memory line. In this figure, each row represents the 64-bits, ‘bi63, ..., b
i
0’,

of each of the eight words, wi, i = 0, ..., 7. WLC compresses the memory line as long as

all six MSBs, ‘b63, ..., b58’, of each word are ‘000000’ or ‘111111’. Thus, it splits each word

into two parts: the five reclaimed bits, ‘b63, ..., b59’, and the data bits ‘b58, ..., b0’, which are

not changed by the compression. When decompressing the word, bit b58 is extended to the

reclaimed bits, similar to sign extension. The five reclaimed bits will be used to store the

auxiliary bits of the 3-r-coset encoding at 16-bit granularity.

90

b0b15 ...b16b31 ...b32b47 ...b48b57 ...b59

C2C1

C3C1

Restricted Coset Coding (b)

b58b60b61b62b63

W0

W1

W2

W3

W4

W5

W6

W7

b0b1b2b5
8

b5
9

b6
0

b6
1

b6
2

b6
3

Reclaimed

......... b3b4

Data

b5
7

b5
6

b5
5

b5
4

b5
3

...

(a)Word Level Compression (WLC)(a) Word Level Compression (WLC).

b0b15 ...b16b31 ...b32b47 ...b48b57 ...b59

C2C1

C3C1

Restricted Coset Coding (b)

b58b60b61b62b63

W0

W1

W2

W3

W4

W5

W6

W7

b0b1b2b5
8

b5
9

b6
0

b6
1

b6
2

b6
3

Reclaimed

......... b3b4

Data

b5
7

b5
6

b5
5

b5
4

b5
3

...

(a)Word Level Compression (WLC)

(b) Restricted coset coding at 16-bit granularity.

Figure 37: Integrating WLC with restricted coset coding.

Figure 37(b) shows the format of the restricted coset encoding at a 16-bit granular-

ity. Specifically, each 64-bit word is divided into 4 data blocks, ‘b58, .., .b48’, ‘b47, ..., b32’,

‘b31, ..., b16’, and ‘b15, ..., b0’. To record the coset restriction used for encoding each 16-bit

data block in a word, we use bit b63 to determine which group of cosetC1,C2, or cosetC1,C3,

is used to encode the four 16-bits data blocks in the 64-bit word. Then, the four bits,

‘b62, ..., b59’, are used to identify which coset candidate (restricted by the specified group) is

used in each data block.

Algorithm 2 is a pseudo-code for WLCRC-16 where the eight 64-bit words, wi, i = 0, ..., 7,

are independently encoded in parallel when the memory line is compressible (Line 1-2). To

encode a word, wi, it is divided into 4 sub-words wij, j = 0, ..., 3 (Line 3), and the sub-

words are encoded in parallel using the three cosets C1, C2 and C3. Then, the energy cost,

costk(w
i
j), of encoding wij using Ck is computed for j = 0, ..., 3 and k = 1, 2, 3. This allows

the estimation of cost1,2(w
i) and cost1,3(w

i), which are the costs of encoding wi using C1 or

91

Algorithm 2: Pseudo-code for WLCRC-16 applied to a compressible memory line.

1 begin

2 for wi, i = 0, ..., 7, in Parallel, do

3 Divide wi into four sub-words wij, j = 0, ..., 3

4 Encode wij using C1,C2 and C3 in parallel cost1,2(w
i) =∑3

j=0min{cost1(wij), cost2(wij)} cost1,3(wi) =
∑3

j=0min{cost1(wij), cost3(wij)}
5 If (cost1,2(w

i) < cost1,3(w
i)) encode wi using C1/C2 else encode wi using

C1/C3.

C2 and using C1 or C3, respectively (line 4). Finally, the encoding with minimum cost is

selected to be written in memory.

Note that, driven by the compressed format, we applied the coset restriction to the

data blocks in a 64-bit word, rather than to the entire memory line, as described in the

previous section. Hence, our proposed encoding, called WLCRC, applies only to data blocks

at granularities of 8, 16, 32 and 64 bits. However, to apply WLCRC at 8-bit granularity,

eight bits must be reclaimed by WLC from each word. To apply it at 32-bit granularity, only

three bits must be reclaimed. At 64-bit granularity, WLCRC is identical to the unrestricted

3cosets encoding in which also two bits need to be reclaimed.

Finally, we note that WLC can be integrated with unrestricted 3cosets or 4cosets encod-

ings, as long as WLC can reclaim enough bits to embed the auxiliary bits for the encoding.

For example, to use WLC with 4cosets at data block granularities of 8, 16, 32 or 64 bits,

WLC has to reclaim 16, 8, 4 and 2 bits per word, respectively. Note, however, that accord-

ing to Figure 32, as long as the number of reclaimed bits per word is less than or equal to

6 , WLC compresses 90% of the memory lines. Otherwise it compresses fewer than 55%

of the lines. In summary, the selection of data block granularity and restricted/unrestricted

encoding is a trade-off between the encoding overhead and the write energy reduction.

92

5.2.4.1 WLCRC Architecture Figure 38 shows the on-chip architecture of WLCRC

compression+encoding and decoding+decompression for a data block granularity of 16. The

512-bit line from the memory controller is sent to the WLC module to check whether it is

compressible or not. If the line is compressible, WLC enables the encoder to activate eight

restricted coset encoding modules. When differential write is used, each compressed 64-bit

word out of WLC is differentiated with the corresponding 64-bits from the currently stored

memory line and the difference is used in a restricted coset module to compute the encoded

word to be written into memory. If WLC cannot compress the data line, the uncompressed,

unencoded line is compared with the memory current data and the difference is written to

memory. One auxiliary bit is used to differentiate encoded from non-encoded lines, which

means that an additional symbol must be stored with the 256 symbols of the memory line.

Consequently, the total encoding space overhead is < 0.4%. Note that the leading 6cosets

scheme stores two auxiliary symbols with each memory line, which is double the space

overhead of WLCRC.

The eight 64-bit encoders operate in parallel. Each encoder splits the word into 16-bit

blocks and for each block, the writing cost is estimated when each of the candidates, C1, C2

or C3 is used for mapping the symbols to the cell’s states. Note that to encode the four data

blocks in parallel, the most significant block, ‘b58, ..., b48’, contains 11 bits rather than 16 bits

since bits ‘b63, ..., b59’ are not known before the encoding. It is possible, however, to consider

all 16 bits, ‘b63, ..., b48’, in the encoding process if we encode the most significant block after

the encoding of the other three blocks is completed, which will increase the encoding (and

similarly the decoding) delay. We chose the fully parallel solution.

The decoding follows the reverse structure of the encoding. Specifically, it first checks

whether the memory line has been compressed/encoded or not. If yes, the decoder decodes

the eight words and then a WLD module decompresses the decoded words. The decoding

process is simple as the most significant bit of each 64-bit word, b63, determines the coset

group that had optimized that word in the encoding process. Then, the four bits, ‘b62, ..., b
′
59

determine the coset candidate that should be used to decode the corresponding 16-bit block.

93

WLC

DIFF

Old Data Block
M

em
or

y
C

on
tro

lle
r

O
ff-

ch
ip

 P
C

M
 M

ai
n

M
em

or
y

Restricted [W0]

Compressed

New Data Block

Encoder

1

Encoded

Decoded

Restricted [W1]
Restricted [W2]
Restricted [W3]
Restricted [W4]
Restricted [W5]
Restricted [W6]
Restricted [W7]

E

Restricted [W’0]

Decoder

Restricted [W’1]
Restricted [W’2]
Restricted [W’3]
Restricted [W’4]
Restricted [W’5]
Restricted [W’6]
Restricted [W’7]

E

WLD

0

1

1

514512

512

512

0

1

On-Chip

Figure 38: On-chip WLCRC architecture for 16-bit granularity.

5.2.4.2 Hardware Overhead In this section, we evaluate the delay, power, area, and

energy of WLCRC-16. Verilog implementations were synthesized using Synopsys Design

Compiler targeting a 45nm FreePDK standard cell library [FreePDK45]. The WLCRC im-

plementation assumes 512-bit memory lines requiring eight encoding modules to simultane-

ously encode the compressed words by WLC. We assume that the additional encoding bits

added to the 512-bit memory line are handled through a wider main memory interface. Our

results show that the WLCRC modules incur an area overhead of 0.0498mm2, which is neg-

ligible compared to the PCM main memory area. The delay of WLCRC modules is 2.63ns

and 0.89ns during a write and read, respectively. The energy consumption of the WLCRC

modules is 0.94pJ and 0.27pJ , per write and read memory line access, which is negligible

94

compared to the write energy consumed by cell programming. Note that the WLC compres-

sion/decompression portion of the design is very small compared to the encoding/decoding

unit, requiring only 0.0002mm2 area, 0.13ns delay, and 0.0017pJ of energy.

5.2.5 Experimental Settings

To conduct experiments, we developed a trace driven simulator. The input traces to our

simulator were collected with Virtutech Simics [Magnusson et al., 2002]. As it is widely

assumed that PCM employs differential write, or writing bits only when the value differs

from the previously stored value, for each memory write transaction the traces store both

the value to be stored as well as the value to be overwritten.

For trace generation, our simulations assume an 8-core 4GHz chip multiprocessor. Each

core has a 2MB private L2 cache. We model a 32GB PCM main memory with two channels;

each channel has two DIMMs and each DIMM has eight chips and 16 banks. In general, the

read queue is given a higher priority than the write queue. However, to avoid starvation,

when the write queue exceeds 80% of capacity, writes are serviced ahead of reads. For write

energy evaluation, we scaled the write energy reported from an MLC PCM prototype at the

90nm process node [Bedeschi et al., 2009; Wang et al.]. All studied schemes are implemented

on top of differential write [Zhou et al., 2009]. We used a ‘single’ RESET and multiple SET

iteration-based programming strategy [Braga et al., 2010] to increase programming accuracy

in our evaluation2. If the cell value does change and requires a write, it consumes the

RESET energy of about 36pJ . Then depending on the cell value, SET operations may ensue

to change its resistance requiring between 20pJ and 547pJ .

The write disturbance error rates (DER) of MLC PCM states when the adjacent cell is

being written (modeled by the RESET operation) are also extracted from the literature [Jiang

et al.]. Thus, an idle cell in the minimum resistance state is assumed to be error free as the

high heat of the RESET process will not increase its resistance. Note that the lowest energy

states, S1 and S2, are the highest and lowest resistance states, respectively. RESET places

2An alternative programming scheme is to use one SET pulse and multiple RESET pulses [Joshi et al.].
Because of reliability concerns such as resistance drift and difficulty in controlling the melting process, we
selected the ‘one SET - multiple RESETs’ scheme.

95

Table 12: System configuration

CPU 8-core, 4GHz, single-issue

L2 Cache
private 2MB, 8-way

64B line, write-back

32GB PCM

Main Memory

2 channels

2 DIMMs per channel

16 banks per DIMM, 32-entry,

64B line write pausing scheduling

MLC PCM

36pJ RESET

Energy

Set Energy [Wang et al.] Disturbance Rate [Jiang et al.]

S1: 0pJ DER: 12.3%

S2: 20pJ DER: 0.0%

S3: 307pJ DER: 27.6%

S4: 547pJ DER: 15.2%

the cell in the highest resistance state (S1) and a short high write current can place the cell in

the lowest resistance state (S2) (immune to write disturbance), similar to SLC PCM. States

S3 and S4 require many more precise SET operations to achieve a resistance between the

high and low energy state, making them require high write energy as well as making them

susceptible to write disturbance when idle. All schemes are compatible with the standard

‘Verify-n-Restore’ approach [Dong and Xie] to correct disturbance errors that may have

occurred. Detailed simulation parameters are recorded in Table 12.

To evaluate endurance, we counts the average number of updated cells per write request

since fewer RESET operations leads to higher cell endurance. To evaluate write disturbance,

we count the number of idle cells disturbed by neighboring cells that need to be updated in the

write request. The write disturbance happens during the RESET process that generates high

heat and can potentially disturb adjacent cells in states S1, S3 and S4 with the probabilities

shown in Table 12 based on a 22nm technology node [Jiang et al.].

96

5.2.6 Workloads

In order to study the impact of our scheme on write energy of MLC PCM, we selected

memory intensive workloads. In particular, we include twelve write-intensive benchmarks

from SPEC CPU2006 and supplement them with canneal from PARSEC. We selected only

the canneal workload from PARSEC because most PARSEC benchmarks are computation

intensive and in most cases also have a very small memory footprint. To be consistent with

the SPEC CPU workloads, canneal was executed in our experiments in single-threaded mode

and with the largest ‘native’ data input that resulted in a 940MB memory footprint. For

SPEC CPU2006, we use the large ‘reference’ inputs that are designed to stress the system.

5.2.7 Evaluation

To evaluate the effectiveness of WLC and the restricted coset coding, we compared the

following schemes:

Baseline: This scheme just uses standard differential write for energy reduction when

writing a 512-bit memory line into MLC PCM.

FlipMin [Jacobvitz et al.]: This scheme uses two symbols per memory line for 16 coset

candidates, generated using the technique in [Seyedzadeh et al., 2016b], operating on a

512-bit memory line. Note that this scheme, as well as the next scheme, FNW, were

proposed for SLC PCM and were adapted in our implementation for MLC PCM.

FNW [Cho and Lee]: This scheme selects the original data block or its complement, de-

pending on which one uses less write energy. A single auxiliary bit is enough to indicate

that a data block is complemented. Thus, to match the space overhead of FlipMin which

uses two symbols (four auxiliary bits) per 512-bits memory line, we partition the memory

line into 128-bit blocks that can be inverted independently with FNW.

DIN [Jiang et al.]: This scheme uses a 3-to-4-bit code word mapping to remove high energy

states. Write disturbance errors are mitigated by a 20-bit BCH code to correct two write

errors in the write verification process. To avoid the space overhead of this encoding, it

97

is applied only to 512-bit memory lines that can be compressed with FPC+BDI to at

most 369 bits. DIN was originally proposed to reduce write disturbance.

6cosets [Wang et al.]: This scheme uses six coset candidates to map any two of the four

symbols to the low energy states S1 and S2. Thus, it also incurs a space overhead of two

auxiliary symbols (four bits) per 512-bit memory line.

COC [Kim et al., b] +4cosets: This scheme uses COC along with directly applying the

four coset candidates shown in Table 11. The encoding is applied at 16-bit or 32-bit

granularity for lines that are compressed to at most 448 bits or 480 bits, respectively.

WLC+4cosets: aThis scheme uses WLC along with directly applying the four coset can-

didates shown in Table 11. It requires a space overhead of one symbol per memory

line to indicate if the memory line is compressible or not. Unless stated otherwise (in

Section 5.2.8), the default WLC+4cosets encoding granularity is 32-bit blocks.

WLCRC: This scheme, WLC with the restricted coset encoding, uses the first three coset

candidates shown in Table 11. The default WLCRC granularity is for 16-bit blocks,

denoted as WLCRC-16.

Note that for COC+4cosets, WLC+4cosets and WLCRC-16 encoding techniques, when

COC and WLC cannot sufficiently compress the block, the original, uncompressed 512-bit

memory line is written. Because the auxiliary symbol must only record the compression

state, even though it can store four states, we select only the two lowest energy states for

this purpose. Moreover, since COC and WLC compress more than 90% of memory lines, we

flagged the ‘compressed’ state with the lowest energy state.

In the following sections, we compare these enumerated schemes for their write energy,

their average number of updated cells per write request, and their average number of write

disturbance errors per write request for as close to an ISO-overhead comparison as possi-

ble. In general, these schemes are categorized into two groups. The first group, including

FlipMin, FNW, and 6cosets, augments the encoding space for an entire memory line to

reduce the energy, while the second group, including DIN, COC+4cosets, WLC+4cosets,

and WLCRC-16, use compression techniques in order to allow encoding at a finer block

granularity to reduce write energy.

98

5.2.7.1 Write Energy Figure 39 compares the write energy for different schemes. While

FNW is superior to FlipMin, in part due to its ability to operate on a smaller block size,

6cosets performs the best among the schemes designed to operate on the full memory line.

Interestingly, on average DIN, which operates on the smallest block size, performs close

to 6cosets, but its effectiveness is much more benchmark dependent. This is likely due to

the varied effectiveness of the FPC+BDI compression that enables DIN encoding within

each particular workload. In contrast, word level compression is extremely effective and

consistent in reducing energy. In particular, WLC+4cosets provides a 46% improvement over

the baseline and 32% improvement over the leading 6cosets approach. Further decreasing

the block granularity at the expense of the coset flexibility provides a significant additional

improvement. WLCRC-16 reduces the write energy by 10% over WLC+4cosets and increases

the improvement over the baseline to 52% while providing an overall improvement of 39%,

39%, and 48% versus 6cosets, DIN, and FlipMin, respectively. For all workloads, including

non-intensive memory applications, WLCRC-16 reduces the write energy on average versus

other schemes. Moreover, Figure 39 shows that, as expected, write energy grows considerably

for intensive workloads, such as milc, lesl, and sopl, while the effectiveness of WLC and, in

particular, WLCRC-16 scales very well. For the high energy benchmark wrf where 6cosets

is not effective but DIN is effective, WLC-based schemes are still the best approach.

The effectiveness of the proposed techniques comes from several factors. First, they

employ coset candidates that best map commonly occurring bit sequences to low energy

0.0E+00	
5.0E+03	
1.0E+04	
1.5E+04	
2.0E+04	
2.5E+04	
3.0E+04	
3.5E+04	

lesl	 milc		 wrf		 sopl	 zeus	 lbm		 gcc		 Ave.	 asta	 mcf		 cann	 libq	 omne	 	Ave.	 Ave.	

High	Memory	Intensity	(HMI)	 Low	Memory	Intensity	(LMI)	 (H+L)MI	

W
rit
e	
En

er
gy
	(p

J)
	

Baseline	 FlipMin	 FNW	 DIN	 6cosets	 COC+4cosets	 WLC+4cosets	 WLCRC-16	

52%	
10%	

Figure 39: Comparison of write energy for various schemes on SPEC CPU2006 and
PARSEC inputs.

99

states for different types of workloads. Second, WLC+4cosets and WLCRC achieve a small

data block granularity for encoding, which can more precisely select the best coset candidates

to map symbol encoding. Third, WLC compression can be applied to more than 90% of the

memory lines in these representative workloads, making coset encoding possible in a very high

percentage of blocks. Fourth, contrary to compression techniques that significantly change

the content of compressed data blocks even for relatively small changes in actual data, WLC

only compresses a small fraction of the 64-bit word to create room for the coset auxiliary

bits, retaining much of the temporal locality that makes differential writes effective. In

contrast 6cosets and FlipMin operate at a large data block granularity (512-bits) since they

require a substantial increase in auxiliary information to operate at a granularity similar

to WLC-based encoding. The additional auxiliary bits tend to work against the energy

saved in the data block due to the random nature of the encoding. For example, decreasing

the granularity for 6cosets from 512-bits to 16-bits increases the write energy ratio of the

auxiliary symbols to the data symbols from 0.78% to 12.5%. The restricted coset method

further decreases the number of auxiliary symbols, making encoding improvements to the

data block more impactful.

In contrast to DIN, which requires 25% compression of the memory line to accommodate

3-bit to 4-bit expansion, restricted coset encoding requires only 7.8% compression. Figure 32

shows that more than 70% of memory lines cannot be compressed for DIN while 90% of

memory lines are compressible with WLC. Moreover, the compression and BCH encoding

employed by DIN increase symbol flips in the memory line, limiting the possible energy

savings.

The 10% write energy reduction of WLCRC-16 versus WLC+4cosets is primarily due

to the latter’s need to operate on 32-bit blocks. For WLC+4cosets to operate at 16-bit

granularity would require WLC to reclaim eight bits every 64-bit words rather than five bits

for WLCRC-16. Unfortunately, the number of compressible memory lines reduces from 90%

to 48% when eight rather than five bits are to be reclaimed by WLC, making WLCRC-16

much more effective.

While COC+4cosets is somewhat effective in reducing the write energy for high memory

intensity workloads, it tends to increase the write energy for low memory intensity workloads.

100

Our analysis of the COC-4cosets encoded memory lines shows that it uses 16-bit data block

granularity for most write requests. However, since PCM uses differential write to update

only modified bits, it is important to ensure that compressors not increase the bit entropy

of consecutive write requests. Because COC was not designed to preserve bit entropy, it

often switches between the 28 different compressors, changing the data bit patterns from the

original. In contrast, WLCRC-16 does not change the bits in the data except in only a few

locations, which allows the differential write to take advantage of data locality. This is why,

on average, WLCRC-16 uses 39% less energy than COC+4cosets.

In summary, novelty of the WLC is that it is a simple compression mechanism that can,

with high probability, compress memory lines enough to make room for auxiliary encoding

bits, while preserving the bit location/locality of most of the bits. This is a crucial property

for effective differential writes.

5.2.7.2 Endurance PCM main memory employs differential write to decrease the num-

ber of written cells primarily to save energy. However, the reduced numbers of writes also

benefits endurance. Reducing the number of cells that are changed through intelligent en-

coding, such as WLC+4cosets and WLCRC-16, can further improve endurance. Figure 40

shows the average number of updated cells per write request. It shows that WLCRC-16 re-

duces the number of updated cells by 20%, 17%, 16% and 11% versus the baseline, FlipMin,

COC+4cosets and 6cosets schemes, respectively. However, the improvement or degrada-

tion in endurance varies highly for different benchmarks. For some workloads, such as wrf,

0	
20	
40	
60	
80	
100	
120	
140	
160	
180	

lesl	 milc		 wrf		 sopl	 zeus	 lbm		 gcc		 Ave.	 asta	 mcf		 cann	 libq	 omne	 	Ave.	 Ave.	

High	Memory	Intensity	(HMI)	 Low	Memory	Intensity	(LMI)	 (H+L)MI	

Av
e	
U
pd

at
ed

	C
el
ls
	

pe
r	L
in
e	
(b
lk
+a
ux
)	

Baseline	 FlipMin	 FNW	 DIN	 6cosets	 COC+4cosets	 WLC+4cosets	 WLCRC-16	

20%	

Figure 40: Average number of updated cells per memory line for SPEC CPU2006 and
PARSEC inputs.

101

zeus, gcc, and sopl, WLCRC-16 not only reduces write energy but also reduces the average

number of updated cells, thus improving endurance. For other workloads such as lesl, lbm,

mcf, and cann, WLCRC-16 more frequently maps high energy states to low energy states to

reduce write energy but causes an increase in the number of updated cells compared to other

schemes, thus harming endurance. Therefore, WLCRC-16 makes a trade-off between write

energy and the number of updated cells for this group of workloads. However, on average

WLCRC-16’s endurance is considerably better than 6cosets, COC+4cosets and DIN and is

on par with FNW.

5.2.7.3 Write Disturbance Write disturbance errors occur during the RESET process.

The high heat of RESET (melting the material) can change the resistance of nearby idle cells

that are not part of the actual write request. Write disturbance is unidirectional, so it can

only decrease the resistance of other cells. Cells with the minimum resistance (S2) are thus

immune to write disturbance. However, any RESET operation adjacent to a cell in states

S1, S3, or S4 may still incur write disturbance.

Our results shown in Figure 41 indicate that all schemes on average face write disturbance

errors ranging from three to four every request to write a 512-bit memory line. For more

memory intensive workloads such as lesl and milc, the average number of write disturbance

errors across all schemes ranges between seven and nine. DIN compressed data blocks in-

crease the number of cells written which increases write disturbance to be the highest among

all the approaches. However, its 20-bit BCH code offsets this somewhat by correcting two

disturbance errors. WLC+4cosets and WLCRC perform generally well, averaging around

the minimum point for all benchmarks.

Part of the trends observed in Figure 41 is the correlation between disturbance faults and

the number of updated cells per write operation. When more cells are written, the likelihood

of disturbing adjacent idle cells increases.

Since PCM uses differential writes, a memory line is always read before it is written.

This allows for the detection of write errors by a “read-after-write” process, thus avoiding

silent data corruption (SDC) due to write disturbance. It also allows for an iterative verify-

and-restore (VnR) process [Dong and Xie] which iterates until data is correctly written, thus

102

eliminating detected uncorrectable errors (DUE). Consequently, any available Chipkill capa-

bility can be used for non-write-disturbance errors. It was shown in [Jiang et al.] that write

disturbance errors can be completely removed if 3-5 iterations of VnR are used. Moreover,

only the cells that are neighbors of the written cells are involved in each VnR iteration,

which limits the effect on memory bandwidth and avoids resource starvation. As indicated

in [Jiang et al.], minimizing the probability of write disturbance (which WLCRC does) will

improve performance because of the reduction in the number of VnR iterations. Finally, we

note that although the different schemes differ in the average number of disturbances per

line, the maximum number of disturbances per line changes very little across schemes.

In summary, WLCRC improves write energy while achieving comparable endurance and

write disturbance compared to the schemes specifically designed to improve these metrics.

5.2.7.4 Multi-objective Optimization in MLC PCM The results in Figures 39 and

40 show that, for some applications with unbiased patterns, such as lesl and lbm, minimizing

the write energy may increase the number of updated cells and result in degraded endurance.

The main reason is that sometimes the coset candidate that minimizes energy actually

increases the number of cells written into low energy states to avoid a relatively smaller

number of writes into high energy states. It is possible, however, to select the encoding

cosets based on a function that combines energy and endurance, thus sacrificing some energy

improvement to attain better endurance. For example, recalling line 5 of Algorithm 2, if

0	

2	

4	

6	

8	

10	

lesl	 milc		 wrf		 sopl	 zeus	 lbm		 gcc		 Ave.	 asta	 mcf		 cann	 libq	 omne	 	Ave.	 Ave.	

High	Memory	Intensity	(HMI)	 Low	Memory	Intensity	(LMI)	 (H+L)MI	

Av
e	
W
rit
e	

	D
is
tu
rb
an

ce
	E
rr
or
s	

Baseline	 FlipMin	 FNW	 DIN	 6cosets	 COC+4cosets	 WLC+4cosets	 WLCRC-16	

Figure 41: Average number of disturbance errors per memory line for SPEC CPU2006
and PARSEC inputs.

103

the difference between cost1,2(w
i) and cost1,3(w

i) is smaller than a threshold, T , then the

encoding choice can be made based on the number of written symbols rather than energy.

We applied this multi-objective scheme to WLCRC-16 and successfully improved the

endurance with a negligible sacrifice in energy saving. For example, when WLCRC-16 with

T=1% is applied to lesl and lbm, the average number of updated cells is reduced from 153

to 133 and from 55 to 49, respectively, while the write energy increased by less than 1%.

When we applied WLCRC-16 with T=1% to all benchmarks, the number of updated cells

decreased by 19% (52 to 42) on average, while increasing the write energy from 6777pJ

to 6885pJ. Relative to the baseline, applying the multi-objective optimization to WLCRC-

16 increases the endurance improvement from 20% to 35% while resulting in a nominal

degradation of the write energy improvement from 52% to 51.4%, on average.

5.2.8 Sensitivity to Granularity

To better understand the interaction between WLC and coset encoding, we analyze the

impacts of data block granularity on write energy, the number of updated cells and write

disturbance errors. To clarify the difference of reducing one coset candidate and restricting

the coset configurability, we also include a 3cosets approach that is as flexible as 4cosets from

an encoding perspective but has the same coset candidates as the restricted coset (C1-C3 in

Table 11). We report separately the energy to write the auxiliary and the data symbols.

5.2.8.1 Impact of Granularity on Write Energy Figure 42 shows the write energy

when WLC is used with 4cosets, 3cosets and 3-r-cosets for four data block granularities.

WLCRC-16 (restricted coset with 16-bit block size), achieves the minimum write energy of

6777pJ on average of all the workloads. This is 10% and 11% lower than 4cosets and 3cosets,

respectively, at their minimum energy point, which is for a data block granularity of 32 bits.

To understand why 4cosets and 3cosets require more energy for a 16-bit data block than

at a 32-bit block size, as well as more energy than WLCRC at a 16-bit block size, we examine

the percentage of compressed memory lines by each scheme. Recall that WLCRC-16 uses one

global auxiliary bit per memory line and five auxiliary bits to encode the four independent

104

blocks of each 64-bit word. Thus, WLCRC-16 requires only six bits of compression per word

to be applied and this allows for 90% memory lines to be encoded. In contrast, 4cosets

and 3cosets at 16-bit granularity force WLC to provide 8-bits of storage for auxiliary bits

in addition to 1 bit for the compressed leading bits, requiring the reclamation of 9-bits.

As a result, the percentage of lines that can be encoded drops to 48%. Of course, since

both 4cosets-32 and 3-coset-32 require five bits to store auxiliary bits in the reclaimed part,

WLC can be applied on 90% of lines. This advantage to the application of compression

outweighs the encoding advantage of 4cosets-16 and 3cosets-16, respectively, making 32-bit

block granularity the minimum energy point for those approaches.

Of course WLCRC-32 is less effective than WLCRC-16 because it can be applied to

the same number of memory lines, but has a coarser granularity of encoding that is less

flexible for achieving low-energy states. To further increase the granularity to an 8-bit data

block, the reclaimed part must grow to include more than eight bits. Specifically, WLCRC-8

requires seven auxiliary bits to split the word into seven parts noting that the most-significant

(eighth) byte will need to be compressed away using WLC to reserve space for the auxiliary

bits. When combined with the restricted auxiliary bit, WLC compresses five symbols per

word for WLCRC-8, which is only possible for 46% of memory lines. The flexibility of

encoding cannot offset the lost compression effectiveness relative to WLCRC-16. -.05cm

0.0E+00	
2.0E+03	
4.0E+03	
6.0E+03	
8.0E+03	
1.0E+04	
1.2E+04	

8	 						 16	 					 32	 					 64	

W
rit
e	
En

er
gy
	(p

J)	

4cosets-blk	 3cosets-blk	 WLCRC-blk	

4cosets-aux	 3cosets-aux	 WLCRC-aux	

	11%	

Figure 42: Write energy comparison for four different data block granularities 8, 16, 32,
and 64.

105

0	

15	

30	

45	

60	

8	 						 16	 32	 					 64	

Av
e	
N
um

be
r	o

f		
U
pd

at
ed

	C
el
ls	

4cosets-blk	 3cosets-blk	 WLCRC-blk	

4cosets-aux	 3cosets-aux	 WLCRC-aux	

Figure 43: Comparison of average updated cells per memory line for four different data
block granularities: 8, 16, 32, and 64.

Figure 42 also breaks down the write energy into energy from the auxiliary part and the

data part, independently. Note that the average data block energy is reported based the

average write energy of data blocks of compressed words + incompressible memory lines.

The auxiliary part reaches a maximum of 5.5% of the total write energy for WLCRC-16,

which is less than the 7.8% of the space the auxiliary part requires. The main reason for the

low write energy of the auxiliary part is that the restricted cosets incur less bit changes in

the auxiliary part compared to unrestricted cosets. When group cosets switch between C1,

C2 and C1, C3 (as shown in Table 11), the coset candidate C1 which is the most frequent

coset, exists in both groups. We allocate the auxiliary bit ‘0’ to the coset candidate C1

that causes the most symbols in the reclaimed part to remain in the low energy states of

S1 or S2. For 4cosets, we allocate energy states S1, S2, S3 and S4 to coset candidates C1,

C2, C3 and C4. Since coset candidates C1 and C2 are the two most frequent candidates,

it keeps the auxiliary part in the low energy states, S1 and S2, for the most of the write

requests. 3cosets does not employ C4 (S4) similarly minimizing the high energy states. We

conclude that the use of WLC to make space for encoding auxiliary bits in the reclaimed part

is effective for minimizing write energy. Moreover, the selection of WLCRC-16 is supported

as the best trade-off of encoding and block size granularity to minimize write energy.

106

5.2.8.2 Impact of Granularity on Endurance Figure 43 shows the number of up-

dated cells (a metric of endurance) as data block granularity scales. At 16-bit granularity,

WLCRC reduces the number of updated cells by 8%, on average compared to WLC+4cosets

and WLC+3cosets. In this case, for smaller block granularities (i.e., eight bits) the restricted

coset reduces the number of updated cells. For example, at 16-bit granularity, the average

number of updated cells in a memory line for WLCRC is 10% less than for WLC+4cosets

and WLC+3cosets, while the auxiliary parts update roughly the same number of cells. As

the data block granularity increases to 64, all schemes require similar number of updated

cells, which is about 10% fewer than WLCRC-16.

5.2.8.3 Impact of Granularity on Disturbance Figure 44 shows the average write

disturbance errors for different data block granularities. The average write disturbance errors

is approximately three per memory line. However, when data block granularity becomes more

coarse, the number of symbol flips decreases, which results in fewer write disturbance errors.

One observation from this figure is that the data blocks incur a considerably higher number

of write disturbance errors compared to the auxiliary part for WLC-based techniques. This is

due to the incidence of 25% bit flips, on average, of the data block. However, the disturbance

0	

1	

2	

3	

4	

8	 						 16	 32	 					 64	

Av
e	
W
rit
e	
	

Di
st
ur
ba
nc
e	
Er
ro
rs
	

4cosets-blk	 3cosets-blk	 WLCRC-blk	

4cosets-aux	 3cosets-aux	 WLCRC-aux	

Figure 44: Comparison of the write disturbance errors per memory line for four different
data block granularities: 8, 16, 32, and 64.

107

errors from the auxiliary bits in the reclaimed part do not change dramatically across different

block sizes, as the larger reclaimed parts are only applied when WLC is successful.

5.2.9 Sensitivity to Energy Levels

The analysis in this paper is based on the MLC PCM write energy levels previously reported

in the literature [Bedeschi et al., 2009; Wang et al.] shown in Table 12. However, subsequent

improvements to MLC PCM devices along with better iterative programming approaches

may have significantly reduced the energy of writing to intermediate states. To estimate the

effect of these write energy improvements on the effectiveness of WLCRC-16, we repeated

our experiments with the write energy to high energy states (i.e., S4 and S3) reduced as

reported in Figure 45, while keeping the energy of S1 and S2 unchanged. The results show

that when the write energy cost of these high energy states is reduced by more than 6×,

WLCRC-16 still reduces the write energy by 32% relative to the baseline.

0%	
10%	
20%	
30%	
40%	
50%	
60%	

S4	=	(36+547)pJ	 S4	=	(36+273)pJ	 S4	=	(36+135)pJ	 S4	=	(36+80)pJ	

S3	=	(36+307)pJ	 S3	=	(36+152)pJ	 S3	=	(36+75)pJ	 S3	=	(36+50)pJ	W
rit
e	
En

er
gy
	Im

pr
ov
em

en
t		

Re
la
3v

e	
to
	B
as
eL
in
e	

Intermedite	State	Energy	Intermediate	State	Energy	

W
rit
e	
En

er
gy
	Im

pr
ov
em

en
t	

Re
la
5v
e	
to
	B
as
el
in
e	

Figure 45: Sensitivity of WLCRC-16 to energy levels.

108

5.3 REDUCING WRITE DISTURBANCE IN SLC PCM

As the proximity of bitlines and wordlines considerably reduces, both bitline and wordline

write disturbances constitute the main sources of unreliability in super dense PCM. Our

goal in this section is to tackle these critical reliability challenges. To this end, we use the

proposed multi-tiered compression in Section 5.1 and modify coset coding in Section 5.2.3

to minimize the number of aggressor cells that disturb victim cells in the active wordline

and the corresponding neighboring wordlines as shown in Figure 4. When the number of

aggressor cells reduces in super dense PCM, the number of extra write operations required

for eliminating write disturbance errors decreases that leads to performance improvement.

5.3.1 Coset Coding vs. Pointer Approach

Coset encoding uses a translation function to map each data block into multiple codeword

candidates. The codeword candidate that minimizes a cost function is then selected and

written into the system and auxiliary bits are used to record which translation function was

used. To develop a coset approach to minimize write disturbance, we can take advantage of

write disturbance asymmetry in PCM, as some cells have a high probability of disturbance

and others are “safe.” Specifically, the cost function we propose optimizes system efficiency

by minimizing the number of aggressor cells in proximity to potential victim cells.

First we partition a 512-bit cacheline into eight 64-bit datawords D0, D1, ..., D7 and

encode each of the datawords independently. To encode each dataword Di, we divide it

into equal-size sub-dataword Di,j where 0 ≤ i ≤ 7 and 0 ≤ j ≤ 3. Then, each 16-bit

sub-dataword picks out either the original value or its complement depending on which one

minimizes likelihood of incidence of write disturbance. Note that the complementary sub-

dataword is obtained by XORing each bit with ‘1.’ Furthermore, each sub-dataword requires

precisely one auxiliary bit to retrieve the original data sub-partition in the decoding process.

Thus, the encoding incurs 1/16=6.25% area overhead.

To solidify the idea of coset coding for write disturbance reduction in the active wordline

and the corresponding neighboring wordlines, we show an example using 16-bit data block

109

shown in Figure 46(a). When the corresponding dirty cacheline in the last level cache is

evicted, we describe only these particular 16 bits (Figure 46(b)) to show how it is encoded

and written in the main memory. The modified data block has four aggressor cells that

can probabilistically disturb neighboring cells because all aggressor cells must be reset to be

written, which produces heat that can affect neighboring cells. Moreover, each aggressor cell

is adjacent to four potential victim cells due to their stored ‘0’ values. Instead of writing the

data block Wn(new) (Figure 46(b)), if the complement of the data block Wn(new) (Figure 46(c))

is written instead, it only includes one aggressor cell. Furthermore, this aggressor can only

potentially disturb two victim cells as the neighboring cells within the wordline are ‘1.’ This

example shows how using coset coding can reduce the number of aggressor cells. However,

the encoded data block requires one auxiliary bit per 16 bits to indicate whether the data

block or its complement is used to be written in the physical cells. For the typical 512-bit

cacheline, this encoding requires 32 auxiliary bits.

While coset encoding can eliminate the potential for many disturbance errors, like in

	
 W!!! 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 W!(!"#) 0 1 0 0 1 0 1 0 1 0 0 0 0 1 0 0
W!!! 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

 W!!! 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 W!(!"#) 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 1
W!!! 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

 W!!! 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Wn(new) 1 1 1 1 1 1 0 1 1 1 0 1 1 1 1 0

 W!!! 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

(a) The old active wordline Wn(old).

	
 W!!! 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 W!(!"#) 0 1 0 0 1 0 1 0 1 0 0 0 0 1 0 0
W!!! 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

 W!!! 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 W!(!"#) 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 1
W!!! 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

 W!!! 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Wn(new) 1 1 1 1 1 1 0 1 1 1 0 1 1 1 1 0

 W!!! 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

(b) The new active wordline Wn(new).

	
 W!!! 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 W!(!"#) 0 1 0 0 1 0 1 0 1 0 0 0 0 1 0 0
W!!! 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

 W!!! 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 W!(!"#) 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 1
W!!! 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

 W!!! 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Wn(new) 1 1 1 1 1 1 0 1 1 1 0 1 1 1 1 0

 W!!! 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

(c) The complement of the new active wordline Wn(new).

Figure 46: Write disturbance crosstalk in super dense PCM cells. The red and yellow
cells represent the aggressor and victim cells, respectively.

110

the example from Figure 46, not all potential disturbance (crosstalk) can be eliminated.

However, if sufficient auxiliary bits are available, rather than setting the bit, the auxiliary

bits can point to the location to indicate that it is now storing the incorrect value. Because

write disturbance error is asymmetric in PCM, the pointer will always indicate a situation

where the status of aggressor cell is kept in the SET state in order to eliminate likelihood

of incidence of write disturbance errors. To log each aggressor cell location that was left

unchanged, each pointer requires log2(512) = 9 auxiliary bits. Note that the aggressor cell

induces potential write disturbance in the victim cells as long as its status changes from SET

state to RESET state (1→ 0) and idle cells remain in the reset state.

We compare the number of extra writes required for removing all write disturbance

errors (bitline+wordline) for three different approaches, ADAM, four pointers (4pointers),

and coset encoding, in Figure 47. ADAM [Swami and Mohanram] requires only one auxiliary

bit to indicate whether the cacheline is compressible or not. 4pointers uses 4 × 9 = 36

auxiliary bits (7% overhead) to log the cell locations that disturb their neighboring cells.

In contrast, coset encoding uses 6.25% additional storage overhead to reduce the number of

aggressor cells via increasing the number of codeword candidates. Coset encoding reduces the

number of extra writes by 24% and 43% versus 4pointers and ADAM, respectively. ADAM

is hampered by only being able to be applied for about 30% cachelines written into memory.

As a result, it has the worst performance in our tests. 4pointers is successful in reducing

write disturbance by eliminating the cases of highest probability for disturbing potential

victim cells in both the active and neighboring wordlines. However, the coset approach has

more flexibility to eliminate more potential crosstalk.

The impact of these encoding approaches on endurance (# reset cells) is shown in Fig-

ure 48. These tests show that coset encoding also reduces the number of reset cells about

35% and 45% versus 4pointers and ADAM, respectively. Fewer resets will result in longer

cell lifetimes. Also, the number of resets for cells directly has an effect on likelihood of dis-

turbance errors. Potential victim cells that have been reset more frequently can more easily

crystallize the amorphous state making them more likely to be disturbed over time.

Additionally, using encoding to target the incidence of write disturbance errors can im-

pact the operational energy consumption as shown in Figure 49. Our results show that coset

111

encoding achieves the minimum energy consumption of the approaches tested. Specifically,

it reduces the energy consumption about 18% and 35% versus 4pointers and ADAM, re-

spectively. The multiple codeword candidates of the coset approach for optimizing write

disturbance fortunately has positive impacts on both endurance and energy consumption.

0	

1	

2	

3	

4	

5	

6	

lesl	

m
ilc		

w
rf		

sopl	

zeus	

lbm
		

gcc		

asta	

m
cf		

cann	

libq		

om
ne	

ave.	
Ex
tr
a	
W
rit
es
	

ADAM	 4Pointers	 CosetCoding	

Figure 47: Comparison of extra writes of ADAM, 4pointers and CosetCoding.

0	

20	

40	

60	

80	

100	

120	

lesl	

m
ilc		

w
rf		

sopl	

zeus	

lbm
		

gcc		

asta	

m
cf		

cann	

libq		

om
ne	

ave.	
#	
Re

se
t	C

el
ls	

ADAM	 4Pointers	 CosetCoding	

Figure 48: Comparison of endurance of ADAM, 4pointers and CosetCoding.

0.E+00	

2.E+03	

4.E+03	

6.E+03	

8.E+03	

1.E+04	

lesl	

m
ilc		

w
rf		

sopl	

zeus	

lbm
		

gcc		

asta	

m
cf		

cann	

libq		

om
ne	

ave.	
W
&
R	
En

er
gy
	(p

J)	 ADAM	 4Pointers	 CosetCoding	

Figure 49: Comparison of energy efficiency of ADAM, 4pointers and Coset Coding.

112

Both coset and 4pointers incur a significant storage overhead compared to both the baseline

and the ADAM technique. These storage overheads can increase the embodied energy by

6-7%, which can dramatically reduce the operational energy benefits from using PCM.

5.3.2 Combined Compression and Encoding

While coset encoding in Section 5.3.1 outperforms ADAM and 4pointers, it incurs 6.25%

storage overhead. Our goal is to achieve the same performance (write disturbance mitiga-

tion) as coset encoding while incurring no (or at least negligible) area overhead. Note that

disturbance errors occur in the data bits and auxiliary bits, therefore removing 6.25% extra

area leads to further aggressor cell reduction.

We showed in Section 5.1 that the proposed multi-tiered compression reclaims a small

amount of room in 512-bit cachelines, ranging from 40- to 56-bits, without disturbing in-

place similarity. Coset encoding with 6.25% area overhead requires only 32 extra bits that

can easily be provided by these reclaimed bits. To further reduce disturbance error, we can

use remaining reclaimed bits 8- to 24-bits, to eliminate destructive effects of the remaining

aggressor cells after encoding through pointers.

The block diagram of our proposed holistic approach is shown in Figure 50. Our pro-

posed approach consists of three main units: the Multi-Tiered Compression (MTC) unit,

the Encoder (Enc) unit, and the Disturbance Pointer (DP) unit. During a write, MTC is

applied to the 512-bit cacheline. If the cacheline is not compressible, it is directly written

into the memory. If the cacheline is compressible, we prioritize the integration of MTC, coset

encoding and disturbance pointers as follows.

• MTC[H56]: If MTC compresses Horizontal bits and reclaims 56 bits as shown in Fig-

ure 31(a), each word is divided into four sub-words ‘D0 = b0...b15’, ‘D1 = b16...b31’,

‘D2 = b32...b47’, ‘D3 = b48...b55’. Each sub-word is encoded by its original data or the

complement of original data depending on which one minimizes the number of aggressor

cells. Because of the 32 sub-words in the cacheline, it is encoded by 32 reclaimed bits. We

use remaining 24 reclaimed bits and supplement with 3 extra auxiliary bits to implement

three 9-bit disturbance pointers.

113

• MTC[V 56]: If MTC compresses Vertical bits and reclaims 56 bits as shown in Fig-

ure 31(b), each word is similarly divided into four sub-words ‘D0 = b0...b15’, ‘D1 =

b16...b31’, ‘D2 = b32...b47’, ‘D3 = b48...b55’. The encoding process and addition of three

pointers to the design are similar to the MTC[H56]. Note that the main difference between

MTC[H56] and MTC[V 56] is the locations of reclaimed bits and both take advantage of

the same type of encoding and the same number of disturbance pointers.

• MTC[H40]: If MTC compresses Horizontal bits and reclaims 40 bits as shown in Fig-

ure 31(c), each word is divided into four sub-words ‘D0 = b0...b15’, ‘D1 = b16...b31’,

‘D2 = b32...b47’, ‘D3 = b48...b57’. The encoding process is similar to MTC[H56] except

that we use the remaining 8 reclaimed bits + 1 extra auxiliary bit to implement a single

9-bit pointer.

• The cacheline is not compressible and the uncompressed cacheline is directly written into

the memory.

Using this approach, each memory location requires a total of five additional auxiliary

DP0 DP1 DP2 DP3

Multi-Tiered
Compression

512-bit Cacheline

Encoded Cacheline

Cacheline Decompostion

Word0 Word1 Word2 Word3

Word4 Word5 Word6 Word7

 Encoder Unit
Enc0 Enc1 Enc2 Enc3

Enc4 Enc5 Enc6 Enc7

DP(s) Unit

Compressible?
Yes

No

Figure 50: The block diagram of the proposed holistic approach.

114

bits, where two auxiliary bits are used to indicate which version of MTC is selected by

compressor and three auxiliary bits are utilized by MTC[H56] and MTC[V 56] for the corre-

sponding disturbance pointers. This results in <1% storage overhead. All eight 64-bit words

are encoded in parallel and the corresponding cost function used for each encoder calculates

the total probability of incidence of write disturbance errors in the adjacent cells of the ag-

gressor cells. Then, it selects the codeword candidate with the minimum error probability.

Since the encoding can not deterministically eliminate all aggressor cells, our combined ap-

proach uses the disturbance pointer(s) to log the location of either three (either MTC[H56] or

MTC[V 56] is used) or one (if MTC[H40] is used) aggressor cell(s) with the highest probability

for disturbance due to the SET/RESET state of the neighboring cells.

5.3.3 Evaluation

In this section, we assess the efficiency of various approaches that occupy iso-area. We

compare our proposed approach that only uses 5 auxiliary bits per 512-bit cacheline compared

to ADAM [Swami and Mohanram] that uses 1 auxiliary bit per 512-bit cacheline (both

<1% overhead). We conduct our experiments using the simulator whose configuration is

illustrated in Section 5.2.5. According to [Lee et al., 2009], we select the set energy, reset

energy and read energy 19.2pJ , 13.5pJ , 2pJ , respectively. Because of bitline and wordline

write disturbance errors in super dense PCM, the bit error rates of bitline and wordline

write disturbances [Wang et al., 2015] are 9.9% and 11.5%, respectively.

5.3.3.1 Comparison to the State-of-the-art Approach Figure 51 shows the iso-

area comparison of our proposed approach and ADAM. For a variety of workloads from high

memory intensity workloads such as ‘lesl’ and ‘milc’ to low memory intensity workloads such

as ‘mcf’ and ‘omne’, our proposed approach consistently outperforms ADAM in terms of the

extra writes required due to correction of write disturbance errors. Our proposed approach

improves efficiency by about 46% versus ADAM via reducing the number of extra writes

from 3.67 to 1.98 on average. There are two reasons for this performance improvement.

First, while the compression used for our proposed approach is effective for 94% cachelines,

115

FPC+BDI in ADAM only compresses 30% cachelines. Therefore, ADAM is effective for

only a small fraction of cachelines. Second, the integration of coset encoding and the pointer

approach reduces the number of aggressor cells that results in the extra write reduction. In

contrast, ADAM does not use any encoding and pointers for compressed cachelines and only

relies on right and left alignments of compressed cachelines in order to reduce the number

of aggressor cells.

Figure 52 illustrates the number of resets as an endurance metric for our approach versus

ADAM. Our results show that our proposed approach experiences on average 33 reset cells

per write, versus 54 reset cells for ADAM. This results in a 38% endurance improvement.

As expected, reducing the number of reset operations also has a positive effect on system

performance as it decreases the number of aggressor cells. Figure 53 shows the operational

energy efficiency of the proposed approach versus ADAM. Specifically, the proposed approach

consumes about 34% less operational energy than ADAM. Recalling that managing write

disturbance requires additional reads and potentially rewrites to ensure the data is stored

correctly, that the energy reported in this figure encompasses the energy consumption of set

and reset operations of the initial write plus these subsequent reads and further rewrites.

5.3.3.2 Multi-Objective Optimization in SLC PCM The used cost function for the

coset coding in Section 5.3.2 minimizes likelihood of incidence of write disturbance errors

0	
1	
2	
3	
4	
5	
6	

lesl	

m
ilc		

w
rf		

sopl	

zeus	

lbm
		

gcc		

asta	

m
cf		

cann	

libq		

om
ne	

ave.	
Ex
tr
a	
W
rit
es
	 ADAM	 Proposed	

Figure 51: Comparison of extra writes of ADAM and the proposed approach. Both
approaches occupy iso-area.

116

0	

25	

50	

75	

100	

lesl	

m
ilc		

w
rf		

sopl	

zeus	

lbm
		

gcc		

asta	

m
cf		

cann	

libq		

om
ne	

ave.	
#	
Re

se
t	C

el
ls	

ADAM	 Proposed	

Figure 52: Comparison of # reset cells (endurance) of ADAM and the proposed ap-
proach. Both approaches occupy iso-area.

0.E+00	

3.E+03	

5.E+03	

8.E+03	

1.E+04	

lesl	

m
ilc		

w
rf		

sopl	

zeus	

lbm
		

gcc		

asta	

m
cf		

cann	

libq		

om
ne	

ave.	
W
&
R	
En

er
gy
	(p

J)	 ADAM	 Proposed	

Figure 53: Comparison of energy (write+read) efficiency of ADAM and the proposed
approach. Both approaches occupy iso-area.

that leads to extra write reduction. To obtain multi-objective optimization in super dense

PCM, we use another cost function that minimizes the number of reset cells. Note that

reducing the number of reset cells improves cell endurance in SLC PCM since the reset

process reduces PCM cell lifetime. Specifically, we define a disturbance error Threshold (T)

that determines whether the cost function optimizes performance or endurance.

Algorithm 3 is a pseudo-code for the multi-objective optimization where the eight 64-

bit words, Di, i = 0, ..., 7, are independently encoded in parallel when the memory line is

compressible. To encode a word, Di, it is divided into 4 sub-words Di
j, j = 0, ..., 3 (Lines 1-

2), and the sub-words are encoded in parallel using either the original sub-word Di
j or its

complement Di
j, depending on the sub-word cost. Note that the write disturbance error

117

cost Di
j (costWDE(Di

j)) is computed by the summation of likelihood of incidence of write

disturbance errors (WDE) in Di
j (Line 3).

As long as the absolute value difference of costWDE(Di
j) and costWDE(Di

j) is greater than

the disturbance error threshold (T) (Line 5), the codeword with the minimum cost is written

into the memory line (Lines 6-7). When the absolute value difference of costs is equal to or

less than T , the second cost function is used to minimize the number of reset cells (Line 4).

In this case, the cost function computes the number of reset cells for Di
j and Di

j and then

selects the codeword that minimizes the number of reset cells (Lines 8-9).

To analyse sensitivity to the disturbance error threshold, first we select the proposed

approach as baseline that only optimizes extra writes and then change T from 0.15 to 1. Our

key observation from Figures 54, 55 and 56 is that using the multi-objective optimization on

average negligibly changes extra writes and write+read energy while it improves on average

endurance 12.5% when the threshold reaches 0.5. For some applications such as ‘lesl’ that

the percentage of bit flips in the memory line is high, the second cost function minimizes

the number of transitions (‘1 → 0’ and ‘0 → 1’). In this case, it improves endurance

and reduces the total read + write energy. In contrast, for some applications such as ‘zeus’

that the percentage of bit transitions is not uniform, reducing the number of reset operations

Algorithm 3: Multi-objective optimization applied to a compressible memory line.

1 begin

2 for Di, i = 0, ..., 7, divide Di into four sub-words Di
j j = 0, ..., 3 in Parallel do

3 costWDE(Di
j) :
∑

likelihood of incidence of write disturbance errors in Di
j.

4 cost#ResetCells(D
i
j) :
∑

reset cells in Di
j.

5 if |costWDE(Di
j)− costWDE(Di

j)| > T then

6 Out = {costWDE(Di
j) < costWDE(Di

j)} ? Di
j : Di

j;

7 /*Di
j is Di

j complement.*/

8 else

9 Out = {cost#ResetCells(Di
j) < cost#ResetCells(Di

j)} ? Di
j : Di

j;

118

0	

1	

2	

3	

4	

5	

lesl	

m
ilc		

w
rf		

sopl	

zeus	

lbm
		

gcc		

asta	

m
cf		

cann	

libq		

om
ne	

ave.	
Ex
tr
a	
W
rit
es
	

Baseline	 T=0.15	 T=0.25	 T=0.5	 T=1	

Figure 54: Extra writes of the proposed approach when the threshold changes from 0.15
to 1. Note that the baseline only optimizes the extra writes.

0	

20	

40	

60	

80	

100	

lesl	

m
ilc		

w
rf		

sopl	

zeus	

lbm
		

gcc		

asta	

m
cf		

cann	

libq		

om
ne	

ave.	
#	
Re

se
t	C

el
ls	

Baseline	 T=0.15	 T=0.25	 T=0.5	 T=1	

Figure 55: # reset cells of the proposed approach when the threshold changes from 0.15
to 1. Note that the baseline only optimizes the extra writes.

increases the number of set operations that slightly sacrifices write and read energy. However,

when T increases from 0.5 to 1, the endurance optimization is saturated and the number of

reset and set operations remains unchanged.

5.4 CONCLUSION

Scaling PCM cells below 22nm technology node increases write disturbances among cells in

the active wordlines and the corresponding neighboring wordlines that jeopardize reliability

of future memory systems. In this chapter, we propose a generic approach that tackles

119

0.E+00	

2.E+03	

4.E+03	

6.E+03	

8.E+03	

1.E+04	

lesl	

m
ilc		

w
rf		

sopl	

zeus	

lbm
		

gcc		

asta	

m
cf		

cann	

libq		

om
ne	

ave.	
W
&
R	
En

er
gy
	(p

J)	

Baseline	 T=0.15	 T=0.25	 T=0.5	 T=1	

Figure 56: Write+Read energy of the proposed approach when write disturbance thresh-
old changes from 0.15 to 1. Note that the baseline only optimizes the extra writes.

write disturbance crosstalk in super dense PCM cells. We explore byte similarities within

and across words in the memory blocks (cachelines) and present a multi-tiered compression

(MTC) that can be applied to more than 94% of cachelines in benchmark workloads. We

integrate our compression technique to work with an encoding technique that uses cosets

and pointers to improve system performance, energy efficiency, and endurance of memory

cells without cutting memory capacity.

Our goal in this chapter is to tackle write disturbances in MLC and SLC PCM. In

MLC PCM, we reduce the inter-cell spacing along the wordline that eliminates bitline write

disturbance errors increasing write energy and wordline write disturbance error rates. We

use a special case of MTC, called word level compression (WLC), and integrate with a new

Restricted Coset coding to propose WLCRC. The experimental results on real workloads

show that WLCRC at 16-bit block granularity improves the write energy by about 52% and

39%, on average, compared to the baseline and the leading write-minimization approach,

respectively. It also improves cell endurance and reliability.

To achieve high memory capacity in PCM, the inter-cell spacing along the bitline and

wordline is reduced. To tackle both sources (bitline+wordline) of disturbances, we inte-

grate MTC with a coset coding and a disturbance error pointer approach. While coset

coding reduces the number of aggressor cells, the pointer approach logs each aggressor cell

location that was left unchanged. The experimental tests on realistic workloads show that

the proposed approach improves system performance, cell endurance and energy efficiency

120

about 46%, 38% and 33% versus the state of the art approach while incurring very low

area overhead. Furthermore, we improve cell endurance of the proposed approach on aver-

age 12.5% via a multi-objective optimization technique without sacrificing energy efficiency,

performance and memory capacity.

121

6.0 SUMMARY AND CONCLUSION OF THE THESIS

In data deluge era, 2.5 quintillion bytes trillion Gigabytes of data are created every day [Do-

bre and Xhafa, 2014]. This high volume of data forces increasingly insistent demands for

many core systems. As the number of cores per chip continues to increase, the need for a

large memory capacity that serves the requests of the executing cores is pressing more than

ever. Scaling down process technology enables higher memory capacity through reducing

the size and proximity of memory cells. Unfortunately, this trend jeopardizes current mem-

ory designs, especially when scaling beyond 22nm technology node, because of fundamental

obstacles related to voltage fluctuations and process variation problems. For example, when

the cumulative interference to a DRAM wordline becomes strong enough due to technology

scaling, the state of nearby cells can change leading to inter-cell read disturbance errors.

Technology scaling in promising technologies like STT-RAM limits thermal stability

and increases accumulated read current pulses. In this case, a intra-cell read disturbance

accidentally flips the value stored within a cell resulting in subsequent read errors that

persist until a new value is written into the cell. For technology nodes below 22nm in super

dense PCM, the heat used during the writing process bleeds to neighboring cells and leads to

inadvertent writing, referred to as write disturbance errors. Therefore, tackling disturbance

errors to guarantee memory reliability is a key concern to enable technology scaling for

building high-density memory chips. To address these concerns, this dissertation suggests

three broad designs and techniques over three chapters.

Chapter 3 introduces a tree-based non-uniform row partitioning for tackling read dis-

turbance errors in DRAM banks. It develops a low-cost implementation with three key ideas:

(1) A low-cost implementation to maintain and access Counter-based Adaptive Trees that

assign counters to rows non-uniformly and detects more precisely victim rows. (2) A scheme

122

to compute the split thresholds that cause the trees to dynamically evolve and match the

row access patterns. (3) A scheme, DRCAT, for dynamically reconfiguring the CAT to track

the temporal changes in memory access patterns resulting from either changing the run-

ning applications or changing the phases of a running application. The experimental results

show that DRCAT outperforms the leading approaches for wordline disturbance mitigation.

Specifically, for quad-core systems and refresh threshold of T = 16K, DRCAT reduces the

power overhead to 7%, which is an improvement over the 21% and 18% incurred in de-

terministic and probabilistic approaches, respectively. Moreover, DRCAT incurs very low

performance overhead (<0.5%).

Chapter 4 studies three approaches to mitigate read disturbances for STT-RAM com-

pared to the conservative approach of writing back after every read (WAR). These approaches

leverage a single ECC to cover all three different types of faults/errors. In particular, the

schemes are proposed to write back blocks after any error is detected (WAE), after a persis-

tent error (due to read disturbance or write fault) is detected (WAP), or after multiple errors

are detected (WAT). Further, a Markov modeling approach is provided to evaluate all three

types of errors and generate a single reliability of the system in terms of uncorrectable bit

error rate. Moreover, an energy reliability product metric is described to be able to quanti-

tative evaluate the trade-off between system energy and reliability. In summary, it is shown

qualitatively that WAE, WAP and WAT provide dramatic improvement in energy consump-

tion and memory bandwidth overhead (due to additional write-backs) while eliminating the

effects of read disturbance and retaining near WAR reliability.

Chapter 5 explores byte similarities within and across words in the memory blocks

(cachelines) and presents a Multi-Tiered Compression (MTC) that can be applied to more

than 94% of cachelines in benchmark workloads. Also, it proposes a generic approach that

integrates MTC with the coset coding in order to optimize cost functions based on write

energy reduction and performance improvement while not sacrificing memory capacity. To

this end, this chapter tries to deal with bitline and wordline write disturbances in SLC and

MLC PCM.

Given the reduction of inter-cell spacing along the wordline, we combat wordline write

disturbance errors. To increase memory capacity, MLC PCM that suffers from high write

123

energy and high wordline bit error rates is taken into account. A novel restricted coset

encoding is proposed that largely reduces the number of auxiliary bits compared to known

coset encodings while achieving similar write energy reduction. Furthermore, a Word Level

Compression (WLC) technique is used that compresses 90% of the memory blocks while

reclaiming enough space in the compressed lines to fit the auxiliary bits. Finally, a new

and low hardware overhead architecture, WLCRC, is presented that integrates WLC and

restricted coset encoding to effectively reduce the write energy in MLC PCM. Hardware

synthesis indicates that WLCRC encoders and decoders incur low area, latency, and energy

overheads. Our experimental results on real workloads show that WLCRC at 16-bit block

granularity improves the write energy by about 52% and 39%, on average, compared to the

baseline and the leading write-minimization approach, respectively. It also improves cell

endurance and reliability although no specific provisions are made during the encoding to

optimize these metrics.

Given the reduction of inter-cell spacing along the wordline and the bitline, we also

combat both bitline and wordline write disturbances in super dense PCM. We utilize MTC

technique to work with an encoding technique that uses cosets and pointers to improve

system performance, cell endurance, and energy efficiency of single level memory cells. The

experimental tests on realistic workloads show that the proposed approach improves system

performance, cell endurance and energy efficiency about 46%, 38% and 33% versus the state

of the art approach while incurring very low area overhead. Furthermore, by multi-objective

optimization, cell endurance of the proposed approach is improved on average 12.5% while

not sacrificing energy, performance and memory capacity.

While the proposed generic approach in Chapter 5 tackles high programming energy and

high wordline disturbance error rates in MLC PCM and also bitline+wordline disturbances

in SLC PCM, it can be reconciled with various objectives for other memory technologies.

For example, while flash memories [Berman and Birk, 2012; Buzaglo and Siegel, 2017] are

one of the most important types of non-volatile memories, still they suffer inter-cell interfer-

ences that are data dependent. Specifically, when data patterns ‘101’ appear in the bitlines

and wordlines of the flash memory, the voltage level of the victim cell thanks to parasitic

capacitances increases and the cell state changes from 0 to 1. The data-dependency and

124

uni-directionality of errors provide opportunity for the cost function in the restricted coset

coding to diminish likelihood of incidence of data patterns ‘101’ while improving flash mem-

ory reliability. Our generic approach also can be used for reducing asymmetric transmission

costs in the I/O memory bus [Song and Ipek; Wang and Ipek] whose energy consumption is

correlated to the type of symbols transmitted over long and highly capacitive interconnects.

Finally, we conclude that as memory technology scales in size, the goals of reliability, en-

ergy efficiency, performance and security often clash with one another. Leveraging practical

hardware techniques to efficiently and accurately resolve vulnerabilities in future memory

systems is a promising strategy to adjust these conflicting objectives to the correct pitch.

The work in this dissertation identifies the root of forthcoming critical challenges in future

memory systems and eradicates it through low-overhead architectural techniques.

125

BIBLIOGRAPHY

https://users.ece.cmu.edu/ koopman/lfsr/.

4Gb DDR3 SDRAM, 2011. 2011.

Nidhi Aggarwal, Jason F Cantin, Mikko H Lipasti, and James E Smith. Power-efficient dram
speculation. In HPCA 2008.

Su Jin Ahn, Yoonjong Song, Hoon Jeong, Byeungchul Kim, Youn-Seon Kang, Dong-Ho Ahn,
Yongwoo Kwon, Seok Woo Nam, Gitae Jeong, Hokyu Kang, et al. Reliability perspectives
for high density pram manufacturing. In IEDM 2011.

Alaa R Alameldeen and David A Wood. Frequent pattern compression: A significance-
based compression scheme for l2 caches. Dept. Comp. Scie., Univ. Wisconsin-Madison,
Tech. Rep, 1500, 2004.

Mohammad Arjomand, Mahmut T Kandemir, Anand Sivasubramaniam, and Chita R Das.
Boosting access parallelism to pcm-based main memory. In ACM SIGARCH Computer
Architecture News, volume 44, pages 695–706, 2016.

Manu Awasthi and et al. Efficient scrub mechanisms for error-prone emerging memories. In
HPCA 2012.

Zelalem Birhanu Aweke, Salessawi Ferede Yitbarek, Rui Qiao, Reetuparna Das, Matthew
Hicks, Yossi Oren, and Todd Austin. Anvil: Software-based protection against next-
generation rowhammer attacks. ACM SIGPLAN Notices, 51(4):743–755, 2016.

Kuljit S Bains and John B Halbert. Distributed row hammer tracking, March 29 2016. US
Patent 9,299,400.

Kuljit S Bains, John B Halbert, Christopher P Mozak, Theodore Z Schoenborn, and Zvika
Greenfield. Row hammer refresh command, January 12 2016. US Patent 9,236,110.

Saisanthosh Balakrishnan and Gurindar S Sohi. Exploiting value locality in physical register
files. In MICRO 2003.

Ferdinando Bedeschi, Rich Fackenthal, Claudio Resta, Enzo Michele Donze, Meenatchi Ja-
gasivamani, Egidio Cassiodoro Buda, Fabio Pellizzer, David W Chow, Alessandro Cabrini,

126

Giacomo Matteo Angelo Calvi, et al. A bipolar-selected phase change memory featuring
multi-level cell storage. IEEE Journal of Solid-State Circuits, 44(1):217–227, 2009.

Amit Berman and Yitzhak Birk. Constrained flash memory programming. In ISIT 2011.

Amit Berman and Yitzhak Birk. Low-complexity two-dimensional data encoding for memory
inter-cell interference reduction. In IEEEI, pages 1–5, 2012.

Ishwar Bhati, Mu-Tien Chang, Zeshan Chishti, Shih-Lien Lu, and Bruce Jacob. Dram refresh
mechanisms, penalties, and trade-offs. IEEE Transactions on Computers, 65(1):108–121,
2016.

Erik Bosman, Kaveh Razavi, Herbert Bos, and Cristiano Giuffrida. Dedup est machina:
Memory deduplication as an advanced exploitation vector. In SP 2016.

Stefania Braga, Alessandro Sanasi, Alessandro Cabrini, and Guido Torelli. Voltage-driven
partial-reset multilevel programming in phase-change memories. IEEE Transactions on
Electron Devices, 57(10):2556–2563, 2010.

Sarit Buzaglo and Paul H Siegel. Row-by-row coding schemes for inter-cell interference in
flash memory. IEEE Transactions on Communications, 65(10):4101–4113, 2017.

Yu Cai and et al. Read disturb errors in mlc nand flash memory: Characterization, mitiga-
tion, and recovery. In DSN 2015.

Yu Cai, Gulay Yalcin, and et al. Flash correct-and-refresh: Retention-aware error manage-
ment for increased flash memory lifetime. In ICCD 2012.

SY Cha. Dram and future commodity memories. VLSI Technology Short Course, 2011.

Niladrish Chatterjee, Rajeev Balasubramonian, Manjunath Shevgoor, Seth Pugsley, Anirud-
dha Udipi, Ali Shafiee, Kshitij Sudan, Manu Awasthi, and Zeshan Chishti. Usimm: the
utah simulated memory module. University of Utah, Tech. Rep, 2012.

E Chen and et al. Advances and future prospects of spin-transfer torque random access
memory. IEEE Transactions on Magnetics, 2010.

Sangyeun Cho and Hyunjin Lee. Flip-n-write: A simple deterministic technique to improve
pram write performance, energy and endurance. In MICRO 2009.

Howard David, Chris Fallin, Eugene Gorbatov, Ulf R Hanebutte, and Onur Mutlu. Memory
power management via dynamic voltage/frequency scaling. In DAC 2011.

Ciprian Dobre and Fatos Xhafa. Intelligent services for big data science. Future Generation
Computer Systems, 37:267–281, 2014.

Xiangyu Dong and Yuan Xie. Adams: Adaptive mlc/slc phase-change memory design for
file storage. In ASP-DAC 2011.

127

Magnus Ekman and Per Stenstrom. A robust main-memory compression scheme. In ACM
SIGARCH Computer Architecture News, volume 33, pages 74–85, 2005.

G David Forney. Coset codes. i. introduction and geometrical classification. IEEE Transac-
tions on Information Theory 1988.

FreePDK45. http://www.eda.ncsu.edu/wiki/.

Mohsen Ghasempour, Mikel Lujan, and Jim Garside. Armor: A run-time memory hot-row
detector, 2015.

Mohsen Ghasempour, Mikel Lujan, and Jim Garside. Armor: A run-time memory hot-row
detector., http://apt.cs.manchester.ac.uk/projects/ARMOR /RowHammer/ index.html.

Mrinmoy Ghosh and Hsien-Hsin S Lee. Smart refresh: An enhanced memory controller
design for reducing energy in conventional and 3d die-stacked drams. In MICRO 2007.

Zvika Greenfield, Kuljit S Bains, Theodore Z Schoenborn, Christopher P Mozak, and John B
Halbert. Row hammer condition monitoring, January 20 2015. US Patent 8,938,573.

Charles Miller Grinstead and James Laurie Snell. Introduction to probability. American
Mathematical Soc., 2012.

Daniel Gruss, Clémentine Maurice, and Stefan Mangard. Rowhammer. js: A remote
software-induced fault attack in javascript. In International Conference on Detection of
Intrusions and Malware, and Vulnerability Assessment, pages 300–321. Springer, 2016.

N Herath and A Fogh. These are not your grand daddy’s cpu performance counters: Cpu
hardware performance counters for security. Black Hat 2015.

Mark Horowitz, Thomas Indermaur, and Ricardo Gonzalez. Low-power digital design. In
IEEE Symposium on Low Power Electronic 1994.

M Hosomi, H Yamagishi, T Yamamoto, K Bessho, Y Higo, K Yamane, H Yamada, M Shoji,
H Hachino, C Fukumoto, et al. A novel nonvolatile memory with spin torque transfer
magnetization switching: Spin-ram. In IEDM 2005.

Bruce Jacob and et al. Memory systems: cache, DRAM, disk. 2010.

Adam N Jacobvitz, Robert Calderbank, and Daniel J Sorin. Coset coding to extend the
lifetime of memory. In HPCA 2013.

Min Kyu Jeong, Doe Hyun Yoon, Dam Sunwoo, Mike Sullivan, Ikhwan Lee, and Mattan
Erez. Balancing dram locality and parallelism in shared memory cmp systems. In HPCA
2012.

Lei Jiang, Youtao Zhang, and Jun Yang. Mitigating write disturbance in super-dense phase
change memories. In DSN 2014.

128

http://www.eda.ncsu.edu/wiki/

Madhura Joshi, Wangyuan Zhang, and Tao Li. Mercury: A fast and energy-efficient multi-
level cell based phase change memory system. In HPCA 2011.

Wang Kang, WeiSheng Zhao, Zhaohao Wang, Yue Zhang, Jacques-Olivier Klein, Youguang
Zhang, Claude Chappert, and Dafiné Ravelosona. A low-cost built-in error correction
circuit design for stt-mram reliability improvement. Microelectronics Reliability, 53(9):
1224–1229, 2013.

Takayuki Kawahara and et al. 2mb spin-transfer torque ram (spram) with bit-by-bit bidi-
rectional current write and parallelizing-direction current read. In ISSCC 2007.

Mazen Kharbutli and Yan Solihin. Counter-based cache replacement algorithms. In ICCD
2005.

Byeungchul Kim, Yoonjong Song, Sujin Ahn, Younseon Kang, Hoon Jeong, Dongho Ahn,
Seokwoo Nam, Gitae Jeong, and Chilhee Chung. Current status and future prospect of
phase change memory. In ASIC, pages 279–282, 2011.

Dae-Hyun Kim, Prashant J Nair, and Moinuddin K Qureshi. Architectural support for
mitigating row hammering in dram memories. IEEE Computer Architecture Letters, 14
(1):9–12, 2015.

Joohee Kim and Marios C Papaefthymiou. Block-based multiperiod dynamic memory design
for low data-retention power. IEEE Transactions on Very Large Scale Integration (VLSI)
Systems, 11(6):1006–1018, 2003.

Jungrae Kim, Michael Sullivan, Esha Choukse, and Mattan Erez. Bit-plane compression:
Transforming data for better compression in many-core architectures. In ISCA 2016, a.

Jungrae Kim, Michael Sullivan, Seong-Lyong Gong, and Mattan Erez. Frugal ecc: Efficient
and versatile memory error protection through fine-grained compression. In International
Conference for High Performance Computing, Networking, Storage and Analysis 2015, b.

Kinam Kim. Technology for sub-50nm dram and nand flash manufacturing. In IDEM 2005.

Kinarn Kim and Su Jin Ahn. Reliability investigations for manufacturable high density
pram. In Reliability Physics 2005.

Yoongu Kim, Ross Daly, Jeremie Kim, Chris Fallin, Ji Hye Lee, Donghyuk Lee, Chris Wilk-
erson, Konrad Lai, and Onur Mutlu. Flipping bits in memory without accessing them: An
experimental study of dram disturbance errors. In ACM SIGARCH Computer Architecture
News, volume 42, pages 361–372, 2014.

John F Kitchin. Practical markov modeling for reliability analysis. In Reliability and Main-
tainability Symposium, 1988.

RH Koch and et al. Time-resolved reversal of spin-transfer switching in a nanomagnet.
Physical review letters, 2004.

129

Jagadish B Kotra, Narges Shahidi, Zeshan A Chishti, and Mahmut T Kandemir. Hardware-
software co-design to mitigate dram refresh overheads: a case for refresh-aware process
scheduling. In ASPLOS 2017.

Emre Kultursay and et al. Evaluating stt-ram as an energy-efficient main memory alternative.
In ISPASS 2013.

Benjamin C Lee, Engin Ipek, Onur Mutlu, and Doug Burger. Architecting phase change
memory as a scalable dram alternative. In ACM SIGARCH Computer Architecture News,
volume 37, pages 2–13, 2009.

SH Lee, MS Kim, GS Do, SG Kim, HJ Lee, JS Sim, NG Park, SB Hong, YH Jeon, KS Choi,
et al. Programming disturbance and cell scaling in phase change memory: For up to 16nm
based 4f 2 cell. In VLSIT 2010.

Song Liu, Karthik Pattabiraman, Thomas Moscibroda, and Benjamin G Zorn. Flikker:
saving dram refresh-power through critical data partitioning. ACM SIGPLAN Notices, 47
(4):213–224, 2012.

Peter S Magnusson, Magnus Christensson, Jesper Eskilson, Daniel Forsgren, Gustav Hall-
berg, Johan Hogberg, Fredrik Larsson, Andreas Moestedt, and Bengt Werner. Simics: A
full system simulation platform. Computer, 35(2):50–58, 2002.

Jack A Mandelman, Robert H Dennard, Gary B Bronner, John K DeBrosse, Rama Di-
vakaruni, Yujun Li, and Carl J Radens. Challenges and future directions for the scaling
of dynamic random-access memory (dram). IBM Journal of Research and Development
2002.

howpublished = http://www.cs.utah.edu/rajeev/jwac12/ Mem-
ory Scheduling Championship.

Justin Meza, Jing Li, and Onur Mutlu. Evaluating row buffer locality in future non-volatile
main memories. 2012.

Asit K Mishra, Xiangyu Dong, Guangyu Sun, Yuan Xie, Narayanan Vijaykrishnan, and
Chita R Das. Architecting on-chip interconnects for stacked 3d stt-ram caches in cmps.
In ACM SIGARCH Computer Architecture News, volume 39, pages 69–80, 2011.

Janani Mukundan, Hillery Hunter, Kyu-hyoun Kim, Jeffrey Stuecheli, and José F Mart́ınez.
Understanding and mitigating refresh overheads in high-density ddr4 dram systems. ACM
SIGARCH Computer Architecture News, 41(3):48–59, 2013.

Naveen Muralimanohar, Rajeev Balasubramonian, and Norman P Jouppi. Cacti 6.0: A tool
to understand large caches. University of Utah and Hewlett Packard Laboratories, Tech.
Rep, 2009.

Helia Naeimi, Charles Augustine, Arijit Raychowdhury, Shih-Lien Lu, and James Tschanz.
Sttram scaling and retention failure. Intel Technology Journal, 17(1), 2013.

130

http://www.cs.utah.edu/ rajeev/jwac12/

Prashant Nair, Chia-Chen Chou, and Moinuddin K Qureshi. A case for refresh pausing in
dram memory systems. In HPCA 2013.

T Nirschl, JB Philipp, TD Happ, Geoffrey W Burr, B Rajendran, M-H Lee, A Schrott,
M Yang, M Breitwisch, C-F Chen, et al. Write strategies for 2 and 4-bit multi-level
phase-change memory. In IEDM 2007.

Taku Ohsawa, Koji Kai, and Kazuaki Murakami. Optimizing the dram refresh count for
merged dram/logic lsis. In ISLPED 1998.

A Pantazi, A Sebastian, N Papandreou, MJ Breitwisch, C Lam, H Pozidis, and E Eleftheriou.
Multilevel phase change memory modeling and experimental characterization. Proceedings
of EPCOS, 2009.

Gennady Pekhimenko, Vivek Seshadri, Yoongu Kim, Hongyi Xin, Onur Mutlu, Phillip B
Gibbons, Michael A Kozuch, and Todd C Mowry. Linearly compressed pages: a low-
complexity, low-latency main memory compression framework. In MICRO 2013.

Gennady Pekhimenko, Vivek Seshadri, Onur Mutlu, Phillip B Gibbons, Michael A Kozuch,
and Todd C Mowry. Base-delta-immediate compression: practical data compression for
on-chip caches. In PACT, pages 377–388. ACM, 2012.

Amir Rahmati, Matthew Hicks, Daniel Holcomb, and Kevin Fu. Refreshing thoughts on
dram: Power saving vs. data integrity. In WACAS 2014.

Arijit Raychowdhury. Pulsed read in spin transfer torque (stt) memory bitcell for lower read
disturb. In NANOARCH 2013.

Michael Redeker, Bruce F Cockburn, and Duncan G Elliott. An investigation into crosstalk
noise in dram structures. In MTDT 2002.

Eric Rotenberg. Ar-smt: A microarchitectural approach to fault tolerance in microprocessors.
In Fault-Tolerant Computing 1999.

Toshinori Sato and Toshimasa Funaki. Dependability, power, and performance trade-off on
a multicore processor. In ASP-DAC 2008.

Luca Schiano, Marco Ottavi, and Fabrizio Lombardi. Markov models of fault-tolerant mem-
ory systems under seu. In MTDT 2004.

Mark Seaborn and Thomas Dullien. Exploiting the dram rowhammer bug to gain kernel
privileges. Black Hat 2015.

Hoseok Seol, Wongyu Shin, Jaemin Jang, Jungwhan Choi, Jinwoong Suh, and Lee-Sup Kim.
Energy efficient data encoding in dram channels exploiting data value similarity. In ISCA
2016.

131

Seyed Mohammad Seyedzadeh, Rakan Maddah, Alex Jones, and Rami Melhem. Pres:
Pseudo-random encoding scheme to increase the bit flip reduction in the memory. In
DAC 2015.

Seyed Mohammad Seyedzadeh, Rakan Maddah, Alex Jones, and Rami Melhem. Leveraging
ecc to mitigate read disturbance, false reads and write faults in stt-ram. In DSN, pages
215–226, 2016a.

Seyed Mohammad Seyedzadeh, Rakan Maddah, Donald Kline, Alex K Jones, and Rami
Melhem. Improving bit flip reduction for biased and random data. IEEE Transactions on
Computers, 65(11):3345–3356, 2016b.

SeyedMohammad Seyedzadeh, Alex Jones, and Rami Melhem. Enabling fine-grain restricted
coset coding through word-level compression for pcm. In HPCA, pages 350–361, 2018.

Wongyu Shin, Jungwhan Choi, Jaemin Jang, Jinwoong Suh, Youngsuk Moon, Yongkee
Kwon, and Lee-Sup Kim. Dram-latency optimization inspired by relationship between
row-access time and refresh timing. IEEE Transactions on Computers, 65(10):3027–3040,
2016.

Kirill A Shutemov. Pagemap: Do not leak physical addresses to non-privileged userspace.
Retrieved on November, 10:2015, 2015.

Padhraic Smyth. Hidden markov models for fault detection in dynamic systems. Pattern
recognition, 27(1):149–164, 1994.

Yanwei Song and Engin Ipek. More is less: Improving the energy efficiency of data movement
via opportunistic use of sparse codes. In MICRO 2015.

Suresh Srinivasan, Sanu Mathew, Rajaraman Ramanarayanan, Farhana Sheikh, Mark An-
ders, Himanshu Kaul, Vasantha Erraguntla, Ram Krishnamurthy, and Greg Taylor. 2.4
ghz 7mw all-digital pvt-variation tolerant true random number generator in 45nm cmos.
In VLSIC 2010.

Zhenyu Sun, Hai Li, and Wenqing Wu. A dual-mode architecture for fast-switching stt-ram.
In ISLPED 2012.

Shivam Swami and Kartik Mohanram. Adam: Architecture for write disturbance mitigation
in scaled phase change memory. In DATE 2018.

R Takemura and et al. Highly-scalable disruptive reading scheme for gb-scale spram and
beyond. In IMW 2010.

William Turin and M. Mohan Sondhi. Modeling error sources in digital channels. IEEE
Journal on Selected Areas in Communications, 11(3):340–347, 1993.

132

Ad J Van De Goor and Ivo Schanstra. Address and data scrambling: Causes and impact on
memory tests. In Proceedings First IEEE International Workshop on Electronic Design,
Test and Applications 2002.

Jue Wang, Xiangyu Dong, Guangyu Sun, Dimin Niu, and Yuan Xie. Energy-efficient multi-
level cell phase-change memory system with data encoding. In ICCD 2011.

Rujia Wang and et al. Selective restore: an energy efficient read disturbance mitigation
scheme for future stt-mram. In DAC 2015.

Rujia Wang, Lei Jiang, Youtao Zhang, and Jun Yang. Sd-pcm: Constructing reliable su-
per dense phase change memory under write disturbance. ACM SIGARCH Computer
Architecture News, 43(1):19–31, 2015.

Shibo Wang and Engin Ipek. Reducing data movement energy via online data clustering
and encoding. In MICRO 2016.

Wujie Wen, Yaojun Zhang, Yiran Chen, Yu Wang, and Yuan Xie. Ps3-ram: A fast portable
and scalable statistical stt-ram reliability analysis method. In DAC 2012.

Chengen Yang and et al. Improving reliability of non-volatile memory technologies through
circuit level techniques and error control coding. EURASIP, 2012.

Jun Yang, Youtao Zhang, and Rajiv Gupta. Frequent value compression in data caches. In
MICRO, pages 258–265, 2000.

Kaiyuan Yang, David Fick, Michael B Henry, Yoonmyung Lee, David Blaauw, and Dennis
Sylvester. 16.3 a 23mb/s 23pj/b fully synthesized true-random-number generator in 28nm
and 65nm cmos. In ISSCC 2014.

Wangyuan Zhang and Tao Li. Characterizing and mitigating the impact of process variations
on phase change based memory systems. In MICRO 2009.

Yaojun Zhang, Ismail Bayram, Yu Wang, Hai Li, and Yiran Chen. Adams: Asymmetric
differential stt-ram cell structure for reliable and high-performance applications. In ICCAD
2013.

Yaojun Zhang, Wujie Wen, and Yiran Chen. The prospect of stt-ram scaling from readability
perspective. IEEE Transactions on Magnetics, 48(11):3035–3038, 2012.

Yaojun Zhang, Yong Li, Zhenyu Sun, Hai Li, Yiran Chen, and Alex K Jones. Read per-
formance: The newest barrier in scaled stt-ram. IEEE Transactions on Very Large Scale
Integration (VLSI) Systems, 23(6):1170–1174, 2015.

Youtao Zhang, Jun Yang, and Rajiv Gupta. Frequent value locality and value-centric data
cache design. ACM SIGPLAN Notices, 35(11):150–159, 2000.

133

WS Zhao and et al. Failure and reliability analysis of stt-mram. Microelectronics Reliability,
2012.

Ping Zhou, Bo Zhao, Jun Yang, and Youtao Zhang. A durable and energy efficient main
memory using phase change memory technology. In ACM SIGARCH computer architecture
news, 2009.

134

	TITLE PAGE
	COMMITTEE MEMBERSHIP PAGE
	ABSTRACT
	TABLE OF CONTENTS
	LIST OF TABLES
	1. System configuration
	2. Hardware energy (per bank) of DRCAT, PRCAT and SCA
	3. Area (per bank) of DRCAT, PRCAT and SCA
	4. Comparison of WAR and ECC641 in terms of UBER
	5. The interpretation of states for WAE and WAP.
	6. The interpretation of states for WAT.
	7. Bit error rates of different types of errors for single MTJ STT-RAM
	8. Bit error rates of different types of errors for dual-MTJ STT-RAM
	9. Write bit error rate by changing the write pulse width.
	10. The comparison of different policies across different RBERs for STT-RAM
	11. Four coset candidates for data mapping in MLC PCM
	12. System configuration

	LIST OF FIGURES
	1. Scope of the dissertation.
	2. DRAM organization.
	(a). DRAM memory block.
	(b). DRAM bank.
	3. Spin-Transfer Torque Magnetic Random-Access Memory.
	(a). STT-RAM cell.
	(b). The equivalent circuit.
	4. Write disturbance crosstalk in the deep scaled PCM cells
	(a). The active wordline WLn with old data values.
	(b). The active wordline WLn with new data values.
	5. PRA unsurvivability for refresh thresholds 32k, 24k, 16k and 8k.
	6. The energy overhead of SCA and the counter cache approach
	7. Row address frequency in a DRAM bank with 64K rows.
	8. The adaptive tress of counters for different workloads
	(a). Biased row address frequency.
	(b). Uniform row address frequency.
	9. The CAT approach using pointer chasing
	10. Two possible evolutions of the CAT
	11. A CAT with one of the counters at level m
	12. The CAT of Figure 9 after reconfiguration.
	13. The CMRPO
	14. ETO resulting from refreshing vulnerable rows
	15. CMRPO per bank for DRCAT
	16. Effect of different mapping polices and number of cores on CMRPO
	17. CMRPO for refresh thresholds
	18. ETO for three kernel attack modes
	19. Probability of at least one error resulting from read disturbance
	20. Modeling the state of a data block protected by ECC1.
	(a). Read disturbances and false reads.
	(b). Read disturbances, false reads and write faults.
	21. Modeling write back after read (WAR).
	22. The flowcharts of on-demand write-back policies.
	(a). Write after any error detection.
	(b). Second read after error detection.
	(c). Leave z errors behind, z < k.
	23. The Markov models for on-demand write-back policies
	(a). WAE used with ECC1.
	(b). WAP used with ECC1.
	(c). WAT used with ECC2.
	24. UBER vs. RBERs for single MTJ STT-RAM as approaches leverage ECC1
	25. UBER vs. RBERs for single MTJ STT-RAM as approaches leverage ECC2
	26. The average energy overhead of different approaches for single MTJ STT-RAM
	(a). All approaches utilize ECC1.
	(b). All approaches utilize ECC2.
	27. The average energy overhead of different approaches for dual-MTJ STT-RAM
	(a). All approaches utilize ECC1.
	(b). All approaches utilize ECC2.
	28. Energy reliability product of different approaches for single MTJ STT-RAM
	(a). All approaches utilize ECC1.
	(b). All approaches utilize ECC2.
	29. Energy reliability product of different approaches for dual-MTJ STT-RAM
	(a). All approaches utilize ECC1.
	(b). All approaches utilize ECC2.
	30. Energy reliability product of the different policies for six different scenarios.
	(a). pw is the highest bit error rate.
	(b). pf is the highest bit error rate.
	(c). pd is the highest bit error rate.
	31. Multi-Tiered Compression (MTC)
	(a). Similarity of each bit position within MSBs*.
	(b). Similarity of leading six bits of each MSB*.
	(c). Similarity across MSBs*.
	32. Comparison of the percentage of compressed memory lines
	33. Write energy analysis.
	(a). Random workloads.
	(b). Biased workloads (SPEC2006 and PARSEC benchmarks).
	34. Write energy analysis for 200 million random data blocks
	(a). Auxiliary symbols.
	(b). Data block symbols.
	(c). Auxiliary + data block symbols.
	35. Write energy analysis for SPEC2006 and PARSEC benchmarks
	(a). Auxiliary symbols.
	(b). Data block symbols.
	(c). Auxiliary + data block symbols.
	36. Write energy analysis for restricted and non-restricted approaches
	(a). Auxiliary symbols.
	(b). Data symbols.
	(c). Auxiliary + data symbols.
	37. Integrating WLC with restricted coset coding.
	(a). Word Level Compression (WLC).
	(b). Restricted coset coding at 16-bit granularity.
	38. On-chip WLCRC architecture for 16-bit granularity. 0.15em
	39. Comparison of write energy for various schemes
	40. Average number of updated cells per memory line
	41. Average number of disturbance errors per memory line
	42. Write energy comparison for four different data block granularities
	43. The average updated cells per memory line for different data block granularities
	44. The write disturbance errors per memory line for different data block granularities
	45. Sensitivity of WLCRC-16 to energy levels.
	46. Write disturbance crosstalk in super dense PCM cells
	(a). The old active wordline Wn(old).
	(b). The new active wordline Wn(new).
	(c). The complement of the new active wordline Wn(new).
	47. Comparison of extra writes of ADAM, 4pointers and CosetCoding.
	48. Comparison of endurance of ADAM, 4pointers and CosetCoding.
	49. Comparison of energy efficiency of ADAM, 4pointers and Coset Coding.
	50. The block diagram of the proposed holistic approach.
	51. Comparison of extra writes of ADAM and the proposed approach
	52. Comparison of # reset cells (endurance) of ADAM and the proposed approach
	53. Comparison of energy efficiency of ADAM and the proposed approach
	54. Extra writes when the threshold changes from 0.15 to 1
	55. The number of reset cells when the threshold changes from 0.15 to 1
	56. Write+Read energy when write disturbance threshold changes from 0.15 to 1

	1.0 INTRODUCTION
	1.1 Scalability Challenges in Future Memory Systems
	1.2 Research Overview
	1.2.1 Mitigating Wordline disturbances in DRAM using Adaptive Trees of Counters
	1.2.2 Leveraging ECC to Mitigate Read Disturbances, in addition to False Reads and Write Faults in STT-RAM
	1.2.3 Integrating Multi-Tiered Compression with Coset Coding for PCM to Mitigate Write Disturbances

	1.3 Thesis Contribution
	1.4 Organization

	2.0 BACKGROUND AND RELATED WORK
	2.1 Inter-Cell Read Disturbance (Wordline Crosstalk)
	2.1.1 DRAM Organization
	2.1.2 Related Work

	2.2 Intra-Cell Read Disturbance
	2.2.1 STT-RAM
	2.2.2 Errors in read and write operations
	2.2.3 Related work

	2.3 Inter-Cell Write Disturbance
	2.3.1 Single Level Cell PCM
	2.3.2 Multi Level Cell PCM
	2.3.3 Related Work

	3.0 MITIGATING WORDLINE CROSSTALK USING TREES OF COUNTERS
	3.1 Motivation
	3.1.1 Probabilistic Refresh Analysis
	3.1.2 Static Counter Assignment (SCA) Analysis

	3.2 Counter-Based Adaptive Tree
	3.2.1 A simple CAT Example
	3.2.2 Constructing the CAT
	3.2.3 Efficient CAT Management Using SRAM
	3.2.4 Determining Split Threshold Values

	3.3 Reconfiguring the CAT to Track Changes in Access Patterns
	3.3.1 Periodically Reset CAT (PRCAT)
	3.3.2 Dynamically Reconfigured CAT (DRCAT)

	3.4 Experimental Methodology
	3.5 Evaluation
	3.5.1 Hardware Overhead
	3.5.2 CMPRO
	3.5.3 Execution Time Overhead

	3.6 Sensitivity Study
	3.6.1 Sensitivity to the Number of Counters and the Maximum CAT depth
	3.6.2 Sensitivity to Mapping Policy and Number of Cores
	3.6.3 Sensitivity to Refresh Thresholds
	3.6.4 Performance Under Malicious attacks

	3.7 Conclusion

	4.0 LEVERAGING ECC TO MITIGATE READ DISTURBANCES, FALSE READS AND WRITE FAULTS IN STT-RAM
	4.1 Motivation for Intra-cell Disturbance Mitigation
	4.2 Using Markov Chains to Model Read Disturbance, False Reads and Write Faults
	4.3 Revisiting write back after user read
	4.4 On-demand write back policies
	4.5 Reliability analysis of the different schemes via Markov Models
	4.5.1 Write back After Error detection (WAE)
	4.5.2 Write back After Persistent error detection (WAP)
	4.5.3 Write back After error Threshold (WAT)
	4.5.4 Accounting for miscorrections and undetected errors
	4.5.5 Markov models for other memory technologies

	4.6 Evaluation
	4.6.1 Baseline
	4.6.2 Uncorrectable Bit Error Rate
	4.6.3 Energy Overhead Evaluation
	4.6.4 Energy Reliability Product

	4.7 Sensitivity Analysis
	4.8 Conclusion

	5.0 INTEGRATING MULTI-TIERED COMPRESSION WITH COSET CODING FOR PCM
	5.1 Multi-Tiered Compression (MTC)
	5.2 Reducing write disturbance in MLC PCM
	5.2.1 Motivation
	5.2.2 Revisiting Coset Candidates
	5.2.3 Restricted Coset Coding
	5.2.4 WLCRC: Integrating WLC with Restricted Coset Encoding
	5.2.4.1 WLCRC Architecture
	5.2.4.2 Hardware Overhead

	5.2.5 Experimental Settings
	5.2.6 Workloads
	5.2.7 Evaluation
	5.2.7.1 Write Energy
	5.2.7.2 Endurance
	5.2.7.3 Write Disturbance
	5.2.7.4 Multi-objective Optimization in MLC PCM

	5.2.8 Sensitivity to Granularity
	5.2.8.1 Impact of Granularity on Write Energy
	5.2.8.2 Impact of Granularity on Endurance
	5.2.8.3 Impact of Granularity on Disturbance

	5.2.9 Sensitivity to Energy Levels

	5.3 Reducing write disturbance in SLC PCM
	5.3.1 Coset Coding vs. Pointer Approach
	5.3.2 Combined Compression and Encoding
	5.3.3 Evaluation
	5.3.3.1 Comparison to the State-of-the-art Approach
	5.3.3.2 Multi-Objective Optimization in SLC PCM

	5.4 Conclusion

	6.0 SUMMARY AND CONCLUSION OF THE THESIS
	BIBLIOGRAPHY

