30,094 research outputs found

    Optimization of Oil-in-Water Emulsion Stability: Experimental Design, Multiple Light Scattering, and Acoustic Attenuation Spectroscopy

    Get PDF
    To find an optimal formulation of oil-in-water (O/W) emulsions (o = 0.05), the effect of emulsifier nature and concentration, agitation speed, emulsifying time, storage temperature and their mutual interactions on the properties and behavior of these dispersions is evaluated by means of an experimental design (Nemrodw software). Long-term emulsion stability is monitored by multiple light scattering (Turbiscan ags) and acoustic attenuation spectroscopy (Ultrasizer). After matching surfactant HLB and oil required HLB, a model giving the Sauter diameter as a function of emulsifier concentration, agitation speed and emulsification time is proposed. The highest stability of C12E4-stabilized O/W emulsions is observed with 1% emulsifier

    Antioxidant activity of alkyl gallates and glycosyl alkyl gallates in fish oil in water emulsions: Relevance of their surface active properties and of the type of emulsifier

    Get PDF
    The antioxidant activity of gallic acid and a series of alkyl gallates (C4-C18) and glycosylated alkyl gallates (C4-C18) on fish oil-in-water emulsions was studied. Three types of emulsifiers, lecithin, Tween-20 and sodium dodecyl sulphate (SDS) were tested. A nonlinear behavior of the antioxidant activity of alkyl gallates when increasing alkyl chain length was observed for emulsions prepared with lecithin. Medium-size alkyl gallates (C6-C12) were the best antioxidants. In contrast, for emulsions prepared with Tween-20, the antioxidants seem to follow the polar paradox. Glucosyl alkyl gallates were shown previously to be better surfactants than alkyl gallates. Nevertheless, they exhibited a worse antioxidant capacity than their corresponding alkyl gallates, in emulsions prepared with lecithin or Tween-20, indicating the greater relevance of having three OH groups at the polar head in comparison with having improved surfactant properties but just a di-ortho phenolic structure in the antioxidant

    Formulation development and microstructure analysis of a polymer modified bitumen emulsion road surfacing : a thesis presented in partial fulfilment of the requirements for the degree of Master of Technology in Product Development at Massey University, Palmerston North, New Zealand

    Get PDF
    The purpose of this research was to develop a formulation for a polymer modified bitumen emulsion road surfacing product called microsurfacing to a mid-scale prototype stage. A supplementary part of the development was to investigate the polymer-bitumen interactions and how they affected the products end properties using confocal microscopy. The formulation development consisted of three stages: technical design specifications, initial design, detailed design. The technical specification was developed to define the product performance in quantitative measures, and set the initial formulation parameters to work within. The initial design development screened three polymers, four methods of adding polymer to the emulsion and two grades of bitumen. Experimental design techniques were used to determine the best polymer-bitumen combination and emulsion process method. Further experimental investigations consisted of screening three emulsifiers and assessing the effect of aggregate cleanliness on the surfacing abrasion and curing rate. The detailed design used experimental factorial design to examine the effects of polymer concentration, emulsifier level, and emulsifier pH on the emulsion stability, microsurfacing wear resistance and cure rate. The emulsion residue was observed using confocal microscopy with fluorescence light and the microsurfacing mixture using both fluorescent and reflected light. The research showed that a emulsion using 100 penetration grade Safaniya bitumen with SBR latex polymer post added could provide microsurfacing abrasion resistance of less than 100 g/m 2 ; an improvement of 85% on the minimum specification. The vertical permanent deformation was less than the 10% and could not be attained without polymer addition. The use of aggregate with a high cleanliness and an alkyl amidoamine emulsifier resulted in surfacing cohesion development of 20 kg-cm within 90 minutes, which compares closely to the international specification. Unexpected results not reported before were that the emulsion residue from biphase modified emulsions had a softening point up to 10°C higher than polymer modified hot bitumen with the same polymer concentration. The biphase emulsified binder residue also has a very different microstructure to hot modified bitumen and this structure has been proposed to help account for the improved resistance to high temperature and applied stress. Modifications to the formulation are to improve the emulsion settlement and should focus on the density difference between the bitumen and polymer latex. This research has shown that a microsurfacing reading product can be successfully formulated with New Zealand bitumen and aggregate sources to meet key specified performance requirements. By systematically investigating the effects of materials on the performance properties of the product, a formulation ready for a mid-scale experiment has been proposed

    Preparation, characterisation and application of naturally derived polar lipids through lipolysis : a thesis presented in partial fulfilment of the requirements for the degree of Doctor of Philosophy in Food Technology at Massey University, Palmerston North, New Zealand

    Get PDF
    Monoglycerides are lipid based emulsifiers extensively used for their broad technical function in the food industry. Commercial monoglycerides are generally manufactured through chemical synthesis; however, lipolysis of triglycerides by lipase enzyme provides a biochemical pathway by which monoglycerides may be produced. This is particularly appealing for consumers for whom all natural and clean labelled food products are a particular driver. Accordingly, rather than replacing monoglycerides from formulations with other types of emulsifiers (and that may lack the requisite functionality), an alternative approach may be to develop a non-chemical and more natural pathway to produce the emulsifier, thereby allowing the particular monoglyceride functionality to be retained within products. Therefore, this study was conducted to investigate the feasibility of using lipase enzyme as a processing tool to synthesise polar lipids, namely monoglycerides, in situ of the manufacture of whippable food emulsions, such as cream and ice cream. This concept idea was initially proven viable through interfacial tension (IFT) measurements obtained using a straight-forward surface characterisation technique. R. miehei lipase was found to competitively bind at the interface of vegetable oils-water and that the adsorbed protein (sodium caseinate and whey protein isolate) or surfactant layer (lecithin and Tween 80) did not act as a barrier to lipase adsorption at the oil-water interface. IFT measurements were also able to demonstrate the progressive accumulation of polar lipids at the oil-water interface arising from lipolysis, and were additionally used to indicate how thermal treatment of the enzyme could be used to terminate activity. In considering how the requisite functionality could be achieved for whippable emulsion formulations, emulsion droplet size, type of emulsifiers used as well as lipase concentration were shown to be key variables by which the extent and rate of lipolysis could be manipulated and controlled. The results showed that formulation (emulsifier types and oil content) and processing conditions (Microfluidizer® pressure and number of passes) had significant effects on the emulsion droplet size. As part of controlling the extent of lipolysis, the conditions by which the reaction could be terminated were investigated by measuring the viability of R. miehei lipase against thermal treatment. Results showed that the R. miehei lipase was thermostable up to temperatures of 70 °C. Above this temperature, substantial reduction of the residual activity occurred. However, even elevated temperature of between 90 and 100 oC did not immediately inactivate the lipase, with heating for ~ 2 min required before activity was no longer detected. In terms of emulsion stability, the palm oil emulsion tested in this study was found to be thermostable up to 100 oC, thus allowing development of a thermalisation step that was able to inactivate the enzyme without compromising the stability of the emulsion. The shear stability analyses on lipolysed O/W emulsion showed the lipolysed emulsions were susceptible to shear-induced aggregation, and that the degree of aggregation could be manipulated as a consequence of controlling the extent of lipolysis through either enzyme concentration or holding time. The drastic increase in the viscosity curve between the nonlipolysed and lipolysed emulsion suggested that the shear–induced partial coalescence was primarily due to the lipolysis reaction and was not as a result of the high fat content (30 %). The findings elucidate the ability of the generated polar lipids in the emulsion to displace the existing sodium caseinate adsorbed layer, thus compromising emulsion stability upon shearing. The quantification of synthesised polar lipids from the triglyceride component of fat droplets by the lipolysis reaction showed a mixture of fatty acids, di- and mono-glycerides being produced. Palmitic acid was observed to be the main liberated fatty acids. While, monoolein and monopalmitin were the most prominent monoglycerides, with measured concentrations of 3.755 ± 0.895 and 1.660 ± 0.657 mg / g fat respectively after 15 min with lipase concentration of 50 mg /g fat. The relative concentration of polar lipids produced was found to be dependent on the lipase concentration as well as time of lipolysis. Furthermore, up to 30 min of lipolysis (concentration 50 mg /g fat) were seen to have no observable effect on the droplet size distribution of the emulsion suggesting that quiescently stable emulsions could be produced. The results show the importance of controlling reaction conditions (both enzyme concentration and reaction time) in order to provide requisite functionality without excessively destabilising emulsions such that droplet structuring can occur under quiescent conditions. The generation of monoglycerides at quantum satis levels able to impart critical functionality was demonstrated in whipped cream and ice cream. The addition of R. miehei lipase at very low concentration of 5 mg /g fat was able to produce a rigid and stable whipped cream with overrun exceeding 100 %. However, good stability of the whipped cream over time was achievable with concentration above 10 mg /g fat. Similarly, ice cream made with the addition of 5 mg /g fat exhibited good melt stability and firmness. The findings proved the feasibility of in situ production of polar lipids, namely monoglycerides and fatty acids, in replicating the functionality imparted by commercial monoglycerides in whippable emulsions. Thus, the findings in this thesis offer an alternative biochemical pathway for the generation of polar lipids to that of commercially available monoglycerides, which are currently produced synthetically. The potential for using this approach as part of the processing step for food emulsion manufacture has also been demonstrated. The concept can be tailored for various emulsion based food products

    PERFORMANCE EVALUATION OF FORMULATED AND COMMERCIALLY AVAILABLE DE-EMULSIFIERS

    Get PDF
    The de-emulsification of water-in-oil emulsion of Ogharefe crude oil samples was studied by using formulated polyester based de-emulsifier sample A and a commercially available de-emulsifier sample C. The bottle test method was used to screen the de-emulsifier samples. The performance of the de-emulsifiers was expressed in terms of percentage of water separated from 100 ml samples of emulsions. For both the formulated and commercial de-emulsifiers, the performance increased with increased concentration of the de-emulsifiers, separation time and operating temperature. The effect of the operating temperature was much higher and there was a linear between performance and temperature. The performance of the best of the formulated de-emulsifiers, sample A, was better than that of the commercial de-emulsifier under all the conditions of this study- the volume of water expelled by sample A was 5 times that of the commercial one at 30oC. At 70oC, this ratio increased to 14

    Emulsions stabilised by whey protein microgel particles: Towards food-grade Pickering emulsions

    Get PDF
    We have investigated a new class of food-grade particles, whey protein microgels, as stabilisers of triglyceride-water emulsions. The sub-micron particles stabilized oil-in-water emulsions at all pH with and without salt. All emulsions creamed but exhibited exceptional resistance to coalescence. Clear correlations exist between the properties of the microgels in aqueous dispersion and the resulting emulsion characteristics. For conditions in which the particles were uncharged, fluid emulsions with relatively large drops were stabilised, whereas emulsions stabilized by charged particles contained smaller flocculated drops. A combination of optical microscopy of the drops and spectrophotometry of the resolved aqueous phase allowed us to estimate the interfacial adsorption densities of the particles using the phenomenon of limited coalescence. We deduce two classes of particle arrangement. Complete adsorption of the particles was obtained when they were neutral or when their charges were screened by salt resulting in at least one particle monolayer at the interface. By contrast, only around 50% of the particles adsorbed when they were charged with emulsion drops being covered by less than half a monolayer. These findings were supported by direct visualization of drop interfaces using cryo-scanning electron microscopy. Uncharged particles were highly aggregated and formed a continuous 2-D network at the interface. Otherwise particles organized as individual aggregates separated by particle-free regions. In this case, we suggest that some particles spread at the interface leading to the formation of a continuous protein membrane. Charged particles displayed the ability to bridge opposing interfaces of neighbouring drops to form dense particle disks protecting drops against coalescence; this is the main reason for the flocculation and stability of emulsions containing sparsely covered drops. © 2014 the Partner Organisations

    Food-grade Pickering stabilisation of foams by in situ hydrophobisation of calcium carbonate particles

    Get PDF
    © 2016 Elsevier Ltd The aim of this study was to investigate the possibility of stabilising foam bubbles in water by adsorption of calcium carbonate (CaCO 3 ) particles. Because CaCO 3 is hydrophilic and not surface-active, particles were hydrophobised in situ with several emulsifiers. The used emulsifiers were food-grade and negatively charged at the pH employed. The effect of particle addition on foamability and foam stability of solutions containing either β-lactoglobulin, sodium caseinate, Quillaja, sodium dodecanoate (SD) or sodium stearoyl-2-lactylate (SSL) was studied. It was found that the ability of the emulsifiers to induce surface activity such that the particles are able to adsorb to the air-water interface is related to their structure. The structure needs to consist of a well-defined hydrophobic part and a charged part. Large emulsifiers with a complex structure, such as β-lactoglobulin, sodium caseinate and Quillaja, were able to partially hydrophobise the particles but were not able to act synergistically with the particles to increase the foam stability. Low molecular weight emulsifiers, however, consisting of a single tail with one charged group, such as SD and SSL, adsorbed at the particle surface rendering the particles partially hydrophobic such that they adsorb to the air-water interface. In a subsequent investigation, the pH was changed to a value typical for food products (pH 6–7) and the addition of milk salts on the foamability and foam stability was assessed. Based on these results, the use of food-grade CaCO 3 particles hydrophobised in situ with food-grade surfactants (SD or SSL) to prepare ultra-stable aqueous foams is demonstrated
    corecore