100 research outputs found

    Hamiltonian Monte Carlo Acceleration Using Surrogate Functions with Random Bases

    Full text link
    For big data analysis, high computational cost for Bayesian methods often limits their applications in practice. In recent years, there have been many attempts to improve computational efficiency of Bayesian inference. Here we propose an efficient and scalable computational technique for a state-of-the-art Markov Chain Monte Carlo (MCMC) methods, namely, Hamiltonian Monte Carlo (HMC). The key idea is to explore and exploit the structure and regularity in parameter space for the underlying probabilistic model to construct an effective approximation of its geometric properties. To this end, we build a surrogate function to approximate the target distribution using properly chosen random bases and an efficient optimization process. The resulting method provides a flexible, scalable, and efficient sampling algorithm, which converges to the correct target distribution. We show that by choosing the basis functions and optimization process differently, our method can be related to other approaches for the construction of surrogate functions such as generalized additive models or Gaussian process models. Experiments based on simulated and real data show that our approach leads to substantially more efficient sampling algorithms compared to existing state-of-the art methods

    A surrogate modelling approach based on nonlinear dimension reduction for uncertainty quantification in groundwater flow models

    Get PDF
    In this paper, we develop a surrogate modelling approach for capturing the output field (e.g., the pressure head) from groundwater flow models involving a stochastic input field (e.g., the hy- draulic conductivity). We use a Karhunen-Lo`eve expansion for a log-normally distributed input field, and apply manifold learning (local tangent space alignment) to perform Gaussian process Bayesian inference using Hamiltonian Monte Carlo in an abstract feature space, yielding outputs for arbitrary unseen inputs. We also develop a framework for forward uncertainty quantification in such problems, including analytical approximations of the mean of the marginalized distri- bution (with respect to the inputs). To sample from the distribution we present Monte Carlo approach. Two examples are presented to demonstrate the accuracy of our approach: a Darcy flow model with contaminant transport in 2-d and a Richards equation model in 3-d

    The Bayesian Formulation of EIT: Analysis and Algorithms

    Get PDF
    We provide a rigorous Bayesian formulation of the EIT problem in an infinite dimensional setting, leading to well-posedness in the Hellinger metric with respect to the data. We focus particularly on the reconstruction of binary fields where the interface between different media is the primary unknown. We consider three different prior models - log-Gaussian, star-shaped and level set. Numerical simulations based on the implementation of MCMC are performed, illustrating the advantages and disadvantages of each type of prior in the reconstruction, in the case where the true conductivity is a binary field, and exhibiting the properties of the resulting posterior distribution.Comment: 30 pages, 10 figure

    Markov chain Monte Carlo with Gaussian processes for fast parameter estimation and uncertainty quantification in a 1D fluid‐dynamics model of the pulmonary circulation

    Get PDF
    The past few decades have witnessed an explosive synergy between physics and the life sciences. In particular, physical modelling in medicine and physiology is a topical research area. The present work focuses on parameter inference and uncertainty quantification in a 1D fluid‐dynamics model for quantitative physiology: the pulmonary blood circulation. The practical challenge is the estimation of the patient‐specific biophysical model parameters, which cannot be measured directly. In principle this can be achieved based on a comparison between measured and predicted data. However, predicting data requires solving a system of partial differential equations (PDEs), which usually have no closed‐form solution, and repeated numerical integrations as part of an adaptive estimation procedure are computationally expensive. In the present article, we demonstrate how fast parameter estimation combined with sound uncertainty quantification can be achieved by a combination of statistical emulation and Markov chain Monte Carlo (MCMC) sampling. We compare a range of state‐of‐the‐art MCMC algorithms and emulation strategies, and assess their performance in terms of their accuracy and computational efficiency. The long‐term goal is to develop a method for reliable disease prognostication in real time, and our work is an important step towards an automatic clinical decision support system

    Inverse Problems in a Bayesian Setting

    Full text link
    In a Bayesian setting, inverse problems and uncertainty quantification (UQ) --- the propagation of uncertainty through a computational (forward) model --- are strongly connected. In the form of conditional expectation the Bayesian update becomes computationally attractive. We give a detailed account of this approach via conditional approximation, various approximations, and the construction of filters. Together with a functional or spectral approach for the forward UQ there is no need for time-consuming and slowly convergent Monte Carlo sampling. The developed sampling-free non-linear Bayesian update in form of a filter is derived from the variational problem associated with conditional expectation. This formulation in general calls for further discretisation to make the computation possible, and we choose a polynomial approximation. After giving details on the actual computation in the framework of functional or spectral approximations, we demonstrate the workings of the algorithm on a number of examples of increasing complexity. At last, we compare the linear and nonlinear Bayesian update in form of a filter on some examples.Comment: arXiv admin note: substantial text overlap with arXiv:1312.504
    • 

    corecore