We provide a rigorous Bayesian formulation of the EIT problem in an infinite
dimensional setting, leading to well-posedness in the Hellinger metric with
respect to the data. We focus particularly on the reconstruction of binary
fields where the interface between different media is the primary unknown. We
consider three different prior models - log-Gaussian, star-shaped and level
set. Numerical simulations based on the implementation of MCMC are performed,
illustrating the advantages and disadvantages of each type of prior in the
reconstruction, in the case where the true conductivity is a binary field, and
exhibiting the properties of the resulting posterior distribution.Comment: 30 pages, 10 figure