6,628 research outputs found

    Most Likely Transformations

    Full text link
    We propose and study properties of maximum likelihood estimators in the class of conditional transformation models. Based on a suitable explicit parameterisation of the unconditional or conditional transformation function, we establish a cascade of increasingly complex transformation models that can be estimated, compared and analysed in the maximum likelihood framework. Models for the unconditional or conditional distribution function of any univariate response variable can be set-up and estimated in the same theoretical and computational framework simply by choosing an appropriate transformation function and parameterisation thereof. The ability to evaluate the distribution function directly allows us to estimate models based on the exact likelihood, especially in the presence of random censoring or truncation. For discrete and continuous responses, we establish the asymptotic normality of the proposed estimators. A reference software implementation of maximum likelihood-based estimation for conditional transformation models allowing the same flexibility as the theory developed here was employed to illustrate the wide range of possible applications.Comment: Accepted for publication by the Scandinavian Journal of Statistics 2017-06-1

    Estimation of Conditional Power for Cluster-Randomized Trials with Interval-Censored Endpoints

    Get PDF
    Cluster-randomized trials (CRTs) of infectious disease preventions often yield correlated, interval-censored data: dependencies may exist between observations from the same cluster, and event occurrence may be assessed only at intermittent clinic visits. This data structure must be accounted for when conducting interim monitoring and futility assessment for CRTs. In this article, we propose a flexible framework for conditional power estimation when outcomes are correlated and interval-censored. Under the assumption that the survival times follow a shared frailty model, we first characterize the correspondence between the marginal and cluster-conditional survival functions, and then use this relationship to semiparametrically estimate the cluster-specific survival distributions from the available interim data. We incorporate assumptions about changes to the event process over the remainder of the trial---as well as estimates of the dependency among observations in the same cluster---to extend these survival curves through the end of the study. Based on these projected survival functions we generate correlated interval-censored observations, and then calculate the conditional power as the proportion of times (across multiple full-data generation steps) that the null hypothesis of no treatment effect is rejected. We evaluate the performance of the proposed method through extensive simulation studies, and illustrate its use on a large cluster-randomized HIV prevention trial

    Penalized log-likelihood estimation for partly linear transformation models with current status data

    Full text link
    We consider partly linear transformation models applied to current status data. The unknown quantities are the transformation function, a linear regression parameter and a nonparametric regression effect. It is shown that the penalized MLE for the regression parameter is asymptotically normal and efficient and converges at the parametric rate, although the penalized MLE for the transformation function and nonparametric regression effect are only n1/3n^{1/3} consistent. Inference for the regression parameter based on a block jackknife is investigated. We also study computational issues and demonstrate the proposed methodology with a simulation study. The transformation models and partly linear regression terms, coupled with new estimation and inference techniques, provide flexible alternatives to the Cox model for current status data analysis.Comment: Published at http://dx.doi.org/10.1214/009053605000000444 in the Annals of Statistics (http://www.imstat.org/aos/) by the Institute of Mathematical Statistics (http://www.imstat.org

    A sieve M-theorem for bundled parameters in semiparametric models, with application to the efficient estimation in a linear model for censored data

    Full text link
    In many semiparametric models that are parameterized by two types of parameters---a Euclidean parameter of interest and an infinite-dimensional nuisance parameter---the two parameters are bundled together, that is, the nuisance parameter is an unknown function that contains the parameter of interest as part of its argument. For example, in a linear regression model for censored survival data, the unspecified error distribution function involves the regression coefficients. Motivated by developing an efficient estimating method for the regression parameters, we propose a general sieve M-theorem for bundled parameters and apply the theorem to deriving the asymptotic theory for the sieve maximum likelihood estimation in the linear regression model for censored survival data. The numerical implementation of the proposed estimating method can be achieved through the conventional gradient-based search algorithms such as the Newton--Raphson algorithm. We show that the proposed estimator is consistent and asymptotically normal and achieves the semiparametric efficiency bound. Simulation studies demonstrate that the proposed method performs well in practical settings and yields more efficient estimates than existing estimating equation based methods. Illustration with a real data example is also provided.Comment: Published in at http://dx.doi.org/10.1214/11-AOS934 the Annals of Statistics (http://www.imstat.org/aos/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Conditional Transformation Models

    Full text link
    The ultimate goal of regression analysis is to obtain information about the conditional distribution of a response given a set of explanatory variables. This goal is, however, seldom achieved because most established regression models only estimate the conditional mean as a function of the explanatory variables and assume that higher moments are not affected by the regressors. The underlying reason for such a restriction is the assumption of additivity of signal and noise. We propose to relax this common assumption in the framework of transformation models. The novel class of semiparametric regression models proposed herein allows transformation functions to depend on explanatory variables. These transformation functions are estimated by regularised optimisation of scoring rules for probabilistic forecasts, e.g. the continuous ranked probability score. The corresponding estimated conditional distribution functions are consistent. Conditional transformation models are potentially useful for describing possible heteroscedasticity, comparing spatially varying distributions, identifying extreme events, deriving prediction intervals and selecting variables beyond mean regression effects. An empirical investigation based on a heteroscedastic varying coefficient simulation model demonstrates that semiparametric estimation of conditional distribution functions can be more beneficial than kernel-based non-parametric approaches or parametric generalised additive models for location, scale and shape
    corecore