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JACKKNIFE EMPIRICAL LIKELIHOOD METHOD AND ITS APPLICATIONS

by

HANFANG YANG

Under the Direction of Dr. Yichuan Zhao

ABSTRACT

In this dissertation, we investigate jackknife empirical likelihood methods motivated by

recent statistics research and other related fields. Computational intensity of empirical like-

lihood can be significantly reduced by using jackknife empirical likelihood methods without

losing computational accuracy and stability. We demonstrate that proposed jackknife em-

pirical likelihood methods are able to handle several challenging and open problems in terms

of elegant asymptotic properties and accurate simulation result in finite samples. These in-

teresting problems include ROC curves with missing data, the difference of two ROC curves



in two dimensional correlated data, a novel inference for the partial AUC and the difference

of two quantiles with one or two samples. In addition, empirical likelihood methodology can

be successfully applied to the linear transformation model using adjusted estimation equa-

tions. The comprehensive simulation studies on coverage probabilities and average lengths

for those topics demonstrate the proposed jackknife empirical likelihood methods have a good

performance in finite samples under various settings. Moreover, some related and attractive

real problems are studied to support our conclusions. In the end, we provide an extensive

discussion about some interesting and feasible ideas based on our jackknife EL procedures

for future studies.

INDEXWORDS: Empirical likelihood, Transformation model, U-statistics, Jackknife,
Partial AUC, Smoothed empirical likelihood, Missing data, ROC
curves, Difference of two quantiles.
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CHAPTER 1

INTRODUCTION

Empirical likelihood (EL) is an nonparametric likelihood method for statistical infer-

ence, which employs the maximum likelihood method without having to assume a known

distribution family for the data. Empirical likelihood enables us to successfully incorpo-

rate the advantages of the likelihood methods. First, unnecessary assumption of a family

of distributions can be avoided in the empirical likelihood inference in the sense that the

object is driven by data. Secondly, empirical likelihood confidence regions also can be es-

tablished without manual adjustment, which shows advantage over many other nonparamet-

ric methods. Empirical likelihood can integrate external information through deterministic

constraint, etc. Finally, the empirical likelihood is Bartlett correctable and can improve the

accuracy of inferences.

However, the computational intensity is challenging for the application of empirical like-

lihood methods in practice. For some nonlinear multi-variables estimation equations, people

can not neglect time spent on optimizing likelihoods function by current scientific computing

technology. ”Jackknife, as a kind of re-sample method, is applied with empirical likelihood

and named as jackknife empirical likelihood, which surprisingly transforms nonlinear esti-

mation equations as linear’s and multi-variable optimization problem as simple-variables”

(Jing et al., 2009). Hence, the jackknife EL can greatly simplify the optimization procedure,

more precisely, split the entire computational problem into two segments, re-sample and

optimizing.

For complete data, automatic confidence interval is determined by EL as Wilk’s theorem

occurs under the traditional EL procedure. We consider ROC curves with missing data.

After hot deck imputation dealing with completely random missing data, scaled chi-squared

distribution can be obtained from the likelihood function.
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Motivated by comparison of two diagnostics tests, we attempt to investigate the differ-

ence of two ROC curves. General empirical likelihood method need involve three linking vari-

ables which dramatically influence the optimization. Hence, jackknife empirical likelihood

demonstrates its advantage by the reduction about the nuisance variables. In addition, two

tests are correlated in practical sense. Wilk’s theorem shows jackknife empirical likelihood

confidence intervals can be determined automatically for complete data even if correlation

exists. The standard chi-square distribution controls the asymptomatic property of jackknife

empirical likelihood. In some cases, rather than focusing on the entire ROC curve, people

are interested in the ROC curve on the a special range of thresholds. Partial AUC (area

under the ROC curve) is designed to answer this concern. We also proposed the jackknife

empirical likelihood for the partial AUC’s and the difference of two partial AUC’s and show

Wilk’s theorem for partial AUC still holds.

Due to the less sensitivity with extremely value, quantile is recognized as a crucial

robust statistics. Considering comparison of two distributions at a fixed criterion value, we

recommend the difference of quantiles to explore the distance of distributions when the data

has some outliers are distributed far away according to an assumed distribution. However,

the structure of difference of two quantiles is complicated for us to make a reliable inference in

small sample problem. Especially for some tail behavior problems, the existing method could

help much. Jackknife empirical likelihood methodology is expected to be able to contribute

its advantages in small sample for the difference of two quantiles and some applications, such

as the difference of two quantiles and low income proportion, etc.

The transformation model is a natural generalization of proportional hazard models and

proportional odds models and provides many other potential choices in survival analysis. In

order to construct applicable empirical likelihood method for linear transformation models,

we need to overcome the difficulty in the estimation of weights in the limiting distribution

(Zhao, 2010). Involving additional compensation terms in the estimation equation, a new

empirical likelihood method is appealing to avoid estimating weights. The proposed jackknife

EL method is discussed in the last part.
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CHAPTER 2

JACKKNIFE EMPIRICAL LIKELIHOOD FOR ROC CURVES WITH

MISSING DATA

2.1 Background

2.1.1 ROC curve

The ROC curve has received considerable attention over past decades, and has been

widely used in epidemiology, medical research, industrial quality control and signal detection,

diagnostic medicine and material testing. In medical studies, the sensitivity or true positive

rate (TPR) of the diagnostic test is the proportion of the diseased patients who have positive

tests among diseased patients. The specificity or true negative rate (TNR) of the test is

the proportion of the healthy people who have negative test among non-diseased people.

A plot of sensitivity (TPR) against 1-specificity (FPR) defines the ROC curve, which is

a graphical summary of the discriminatory accuracy of diagnostic tests. Furthermore, the

ROC curve function can be represented by ROC(p) = 1−F (G−1(1−p)), where F and G are

continuous cumulative distribution functions of positive population and negative population,

respectively. Recent interesting literatures include Swets and Pickett (1982), Tosteson and

Begg (1988), Hsieh and Turnbull (1996), Zou et al. (1997), Lloyd (1998), Pepe (1997),

Metz et al. (1998) and Lloyd and Yong (1999), among others. Moreover, Pepe (2003)

provided an excellent summary for recent research work and useful applications of ROC

curves. Claeskens et al. (2003) developed smoothed empirical likelihood confidence intervals

for the continuous-scale ROC curve in the absence of censoring.

2.1.2 Empirical likelihood

Empirical likelihood (EL) is a nonparametric method for statistical inference, which

employs the maximum likelihood method without having to assume a known distribution
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family of data. Owen (1988, 1990) introduced EL method to construct confidence regions for

the mean vector. Some related literatures include the Bartlett-correctability (DiCiccio and

Hall, 1991), general estimating equations (Qin and Lawless, 1994), the general plug-in EL

(Hjort et al., 2009) and so on. For ROC curves and copulas, a natural way is to transform

nonlinear constraints to linear constraints by introducing some link variables as in Claeskens

et al. (2003) and Chen et al. (2009), etc. More recently, jackknife empirical likelihood

method, based on jackknife pseudo-sample, becomes more attractive. Jing et al. (2009)

proposed the jackknife empirical likelihood method for a U -statistic. Gong et al. (2010)

demonstrated that the smoothed jackknife empirical likelihood method for the continuous-

scale ROC curve can outperform EL methods with more accurate coverage probability in a

smaller sample size.

The imputation-based procedure is one of the most common methods to deal with

missing data problem. In this chapter, we assume that data are missing completely at

random (MCAR), which indicates ”the causality of missing data is not associated with other

values of observed or unobserved variables” (Little and Rubin, 2002; Qin and Qian, 2009).

Using imputation method, Wang and Rao (2002) addressed missing response questions based

on empirical likelihood methods. By empirical likelihood method, missing data problem was

also studied by Wang and Rao (2001), Qin and Zhang (2008) and Qin and Qian (2009) among

others. In this chapter, we consider hot deck imputation, which is the procedure in which

missing data are randomly substituted by values from the observed sample data. In addition,

An (2010) derived smoothed empirical likelihood for the ROC curve with missing data.

However, the selection of bandwidth is still disputable about kernel estimators, especially

with regard to missing data.

To the best of our knowledge, no paper has addressed the problem on how to construct

confidence intervals for the continuous-scale ROC curve with missing completely at random

data by jackknife EL methods. In this chapter, we apply smoothed jackknife EL to construct

confidence intervals for the ROC curve with missing data to avoid adding extra constraints.

This chapter is organized as follows. Major procedures for the jackknife empirical like-
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lihood ratio are proposed in Section 2.2, including methods to develop smoothed empirical

likelihood and asymptotic results of jackknife empirical likelihood ratio. In Section 2.3, we

conduct simulation studies to evaluate smoothed jackknife empirical likelihood confidence

intervals for continuous-scale ROC curves in small and moderate samples in terms of cov-

erage probability and average length of confidence intervals. Furthermore, we illustrate our

approach using a real data example. We make a brief discussion in Section 2.4. All proofs

are given in the Appendix.

2.2 Inference Procedure

2.2.1 Missing data and hot deck imputation

Consider random samples of xi, i = 1, ...,m in distribution F and independent missing

indicators δxi, i = 1, ...,m in Bernoulli distribution with response rate P1, which means P1 =

P (δxi = 1|xi). Similarly, the random samples are denoted by yi, i = 1, ..., n in distribution G

and missing indicators δyi, i = 1, ..., n in Bernoulli distribution with response rate P2. Thus,

we have P2 = P (δyi = 1|yi). Combining xi with δxi, we can define xi,m = xi ∗ δxi, i = 1, ...,m

as completely random missing data. Also, we have yi,m = yi ∗ δyi, i = 1, ..., n. Denote

the observed set as Xobs = {xi : δxi = 1 , i = 1, ...,m} and Yobs = {yi : δyi = 1 , i = 1, ..., n}.

Then, we adopt the procedure of the hot deck imputation, replacing the missing value with

values from observed set Xobs and Yobs. Denote r1 =
∑m

i=1 δxi
, r2 =

∑n
j=1 δyj , m1 = m − r1

and m2 = n − r2. Let Srx = {i : δxi
= 1}, Smx = {i : δxi

= 0} , Sry = {j : δyj = 1} and

Smy = {j : δyj = 0}. x∗
i are generated by the discrete uniform distribution from observed

data set Xobs, and y∗i are generated by the discrete uniform distribution from observed data

set Yobs. Finally, we obtain the data after hot deck imputation xI,i = xi,m+x∗
i ∗ (1−δxi), i =

1, ...,m and yI,i = yi,m + y∗i ∗ (1− δyi), i = 1, ..., n.

2.2.2 Smoothed empirical likelihood ratio

Let F and G be the distribution functions of the diseased and non-diseased populations,

respectively. The ROC curve can be written as ROC(p) = 1−F (G−1(1−p)), where 0 < p < 1
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and G−1 denotes the quantile function of G. Denote Fm(x) = 1/m
∑m

i=1 I(xI,i ≤ x) and

Gn(y) = 1/n
∑n

j=1 I(yI,j ≤ y). Let

K(p) =

∫
u≤p

w(u)du,

where w is a the smooth symmetric kernel function with support [−1, 1]. Define the smooth

estimator of ROC(p) as

R̂m,n(p) = 1− 1

m

m∑
j=1

K

(
1− p−Gn(xI,j)

h

)
,

where h = h(n) > 0 is a bandwidth. Define

R̂m,n,i(p) = 1− 1

m− 1

∑
1≤j≤m,j ̸=i

K

(
1− p−Gn(xI,j)

h

)
, 1 ≤ i ≤ m,

R̂m,n,i(p) = 1− 1

m

m∑
j=1

K

(
1− p−Gn,m−i(xI,j)

h

)
,m+ 1 ≤ i ≤ m+ n,

where

Gn,−k(y) =
1

n− 1

∑
1≤i≤n,i̸=k

I(yI,i ≤ y), k = 1, . . . , n.

The jackknife pseudo-sample is defined as

V̂i(p) = (m+ n)R̂m,n(p)− (m+ n− 1)R̂m,n,i(p), i = 1, . . . ,m+ n. (2.1)

The empirical likelihood ratio at R̃, based on the V̂i(p), is

L(R̃, p) =
sup{

∏m+n
i=1 {pi} :

∑m+n
i=1 pi = 1,

∑m+n
i=1 piV̂i(p) = R̃, pi > 0, i = 1, . . . ,m+ n}

sup{
∏m+n

i=1 {pi},
∑m+n

i=1 pi = 1, pi > 0, i = 1, . . . ,m+ n}
.
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By using the Lagrange multiplier method, we have

l(R̃, p) = −2 logL(R̃, p) = 2
n∑

i=1

log{1 + λ(V̂i(p)− R̃)}, (2.2)

where λ satisfies the equation

m+n∑
i=1

V̂i(p)− R̃

1 + λ{V̂i(p)− R̃}
= 0.

Define

vm,n(p) =
1

m+ n

m+n∑
i=1

{
V̂i(p)−

1

m+ n

m+n∑
i=1

V̂i(p)

}2

. (2.3)

We will develop the asymptotic properties of empirical variance vm,n(p) and the empirical

likelihood ratio statistic for the true value R(p) of the ROC curve at point p based on xI,i,

i = 1, ...,m, yI,j, j = 1, ..., n. These results are used to construct an asymptotic confidence

interval for R(p). We give the following regularity conditions.

A.1. p ∈ (a, b) for any subset (a, b) ⊂ (0, 1);

A.2. F (x) and G(y) are continuous functions;

A.3. sup |f(x)| < ∞ and sup |g(y)| < ∞ , where f(x) = dF (x)/dx and g(y) = dG(y)/dy;

A.4. Assume that m/n → γ, as m+ n → ∞. 0 < P1 < 1 and 0 < P2 < 1;

A.5. w
′
(u) is bounded by M < ∞ for u ∈ (−1, 1);

A.6. The distribution function F (x) ∈ F , where F and G are Donsker classes, i.e., F ∈

CLT (PF ) and G ∈ CLT (PG), where F ∈ CLT (PF ) means
√
n(PFn − PF ) converges weakly

to PF -Brownian bridge Bp which has bounded uniformly continuous sample paths almost

surely.

Theorem 2.1. Under assumptions A.1-A.6, assume conditions h = h(n) → 0, nh2/ log n →
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∞ and nh4 → 0 as n → ∞. Then, for p ∈ (a, b),

vm,n(p)
P→ σ2

1(p),

where

σ2
1(p) = (1− P1 + P−1

1 )

(
1 +

1

r

)
R(p){1−R(p)}+ (1− P2 + P−1

2 )(1 + r)R
′2(p)p(1− p).

Theorem 2.2. Under the conditions of Theorem 2.1, for p ∈ (a, b), we have

l(R(p), p)
D→ c(p)χ2

1,

where R(p) is the true ROC curve at p,

c(p) =
σ2
1(p)

σ2
2(p)

,

σ2
2(p) =

(
1 +

1

r

)
R(p)(1−R(p)) + (1 + r)R

′2(p)p(1− p).

Remark: In our setting, the limiting distribution is the scaled chi-squared distribu-

tion because of missing mechanism. When the response rate P1 = P2 = 1, the limiting

distribution is a standard chi-squared distribution.

We may use a consistent estimator ĉ of c(p) to construct our confidence intervals of

R(p). Thus, the asymptotic 100(1−α)% smoothed jackknife EL confidence interval for R(p)

is given by

I(p) =
{
R̃ : l(R̃, p) ≤ ĉχ2

1(α)
}
,

where χ2
1(α) is the upper α-quantile of χ2

1.



9

2.3 Numerical Studies

In this section, we conduct simulation studies to compare the performance of jackknife

empirical likelihood (JEL) method and smoothed empirical likelihood (SEL) proposed by An

(2010) for the ROC curve in terms of coverage accuracy and average length of confidence in-

tervals with various distributions, response rates and sample sizes. In the simulation studies,

distributions of the diseased population (X) and the non-diseased population (Y) are repre-

sented by F (x) and G(y). We consider three scenarios, which are (A)F ∼ N(0.2, 0.5), G ∼

N(0, 0.5), (B)F ∼ Exp(1), G ∼ N(0, 0.5) and (C)F ∼ Exp(1), G ∼ Exp(1). Random sam-

ples x and y are independently drawn from populations X and Y. The response rates for data

x and y are chosen as, (P1, P2) = (0.7, 0.6) or (0.9, 0.8). The sample sizes for x and y are

(m,n) = (50, 50), (100, 100) and (200, 150). For certain response rate and sample size, we

generate 1000 independent random samples of missing data. Without the loss of generality,

we use both methods to construct confidence intervals for ROC curves at p= 0.2, 0.3. The

nominal level of the confidence intervals is 1− α = 0.95. Then, the Epanechnikov kernel

w(u) =


3
4
(1− u2) if |u| ≤ 1

0 otherwise

is used for both JEL method and SEL method (see An, 2010) and the smoothing parameter

is chosen to be h = n−1/3 for JEL method and h1 = m−1/3 and h2 = n−1/3 for SEL method.

The simulation results of coverage probability are illustrated in Table 2.1. From Table 2.1,

we find out that JEL method has much better performance than SEL method in the most

simulation settings.

Next, we investigate the performance of average length of ROC curves using JEL method

and SEL method. We arrange the same simulation settings as before. To obtain the average

length, we applied the bisection method to find solutions. The process does not involve

high computation costs because jackknife method can simplify the complexity of equations

significantly. This is one of main advantages of the smoothed jackknife EL method. Table 2.2
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Table 2.1 Coverage probability of 95% confidence intervals for ROC(p).

n1 n2 p P1 P2 JEL (A) SEL (A) JEL (B) SEL (B) JEL (C) SEL (C)
50 50 0.1 0.7 0.6 0.918 0.942 0.951 0.787 0.932 0.773
100 100 0.1 0.7 0.6 0.923 0.940 0.953 0.813 0.917 0.789
200 150 0.1 0.7 0.6 0.937 0.952 0.946 0.804 0.927 0.814
50 50 0.3 0.7 0.6 0.928 0.950 0.968 0.812 0.946 0.856
100 100 0.3 0.7 0.6 0.928 0.948 0.955 0.848 0.925 0.903
200 150 0.3 0.7 0.6 0.942 0.953 0.955 0.853 0.932 0.908
50 50 0.1 0.9 0.8 0.908 0.960 0.951 0.822 0.919 0.821
100 100 0.1 0.9 0.8 0.923 0.953 0.951 0.859 0.929 0.847
200 150 0.1 0.9 0.8 0.933 0.962 0.958 0.869 0.938 0.877
50 50 0.3 0.9 0.8 0.926 0.962 0.941 0.832 0.930 0.894
100 100 0.3 0.9 0.8 0.929 0.960 0.955 0.865 0.940 0.918
200 150 0.3 0.9 0.8 0.932 0.941 0.947 0.905 0.933 0.928

shows comparable results between JEL method and SEL method based on average length.

In summary, the JEL method has better coverage probability and similar average length in

small samples, compared with the traditional SEL method.

In addition, we study empirical likelihood confidence intervals for ROC curves at differ-

ent specificities generated by simulated data. Data A is employed in this case. We choose

two sample sizes (50, 50) and (300, 300) with different response rates (1, 1) and (0.8, 0.9). We

select 100 points on the ROC curve evenly to obtain JEL confidence intervals respectively.

As Figure 2.1 shows, it is clear that the confidence intervals of ROC curves are located

above diagonal line, which indicates two distributions can be distinguished by ROC curves.

In addition, the ROC curve has the shorter confidence intervals when the sample sizes are

larger.

2.4 Real Application

Moreover, using the real example, we illustrate our proposed method. Data set can

be accessed publicly from the website of the Center for Machine Learning and Intelligent

Systems at University of California, Irvine and are originated from Hewlett-Packard Labs.

It contains 4601 observations with 57 attributes and one indicator variable for spam e-mails,
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Figure 2.1 95% point-wise jackknife empirical likelihood confidence interval for ROC curves,
where JEL Upper indicates the upper bound of jackknife empirical likelihood confidence
interval, JEL Lower indicates the lower bound of jackknife empirical likelihood confidence
interval, SEE means smoothed empirical estimator and True means the true value of ROC
curve.

which are considered as the advertisements for products or web sites, make money fast

schemes and pornography. Most of those attributes are valued by percentages of certain

words appearing in the e-mail. In this chapter, we split the 24th attribute into two groups

based on the spam indicator variable in order to construct the ROC curve with missing

completely at random (MCAR) at 20% missing rate. Figure 2.2 shows the confidence interval

for the ROC curve. The confidence intervals of ROC curves are above the diagonal line.

Thus, the spam observation in 24th attribute can be clearly distinguished from the non-

spam observation.

2.5 Discussion

In this chapter, we apply jackknife empirical likelihood method to construct confidence

intervals for the continuous-scale ROC curve with missing data. The theoretical results

provide asymptotic properties, including asymptotic variance and limiting distribution of

the empirical likelihood ratio statistics. The simulation results demonstrate that coverage
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Figure 2.2 95% point-wise jackknife empirical likelihood confidence interval for ROC curves
from spam data A, where JEL Upper indicates the upper bound of jackknife empirical
likelihood confidence interval, JEL Lower indicates the lower bound of jackknife empirical
likelihood confidence interval, SEE means smoothed empirical estimator and True means the
true value of ROC curve.

probability of EL confidence interval can be close to nominal level at various high response

rates and in the different locations of the ROC curve. Comparing with traditional SEL

methods, JEL methods have less computational cost and a more precise coverage probability

and similar average length.

There are other topics, which should be studied in the future. For instance, combining

jackknife empirical likelihood method, imputation methods could be applied to solve other

missing data problems. Moreover, we may consider to develop smoothed jackknife empir-

ical likelihood method for ROC curves with other kinds of incomplete data, such as right

censoring data and current status data.



13

Table 2.2 Average length of 95% confidence intervals for ROC(p).

m n p P1 P2 JEL (A) SEL (A) JEL (B) SEL (B) JEL (C) SEL (C)
50 50 0.1 0.7 0.6 0.42492 0.40518 0.32284 0.21781 0.35455 0.22543
100 100 0.1 0.7 0.6 0.31733 0.31807 0.23647 0.18237 0.26238 0.19084
200 150 0.1 0.7 0.6 0.25668 0.27594 0.19612 0.15152 0.20800 0.16759
50 50 0.3 0.7 0.6 0.45558 0.44693 0.35349 0.24882 0.42148 0.33445
100 100 0.3 0.7 0.6 0.33850 0.36403 0.25595 0.21040 0.30840 0.28424
200 150 0.3 0.7 0.6 0.27029 0.31737 0.21029 0.17784 0.24542 0.24410
50 50 0.1 0.9 0.8 0.35404 0.36128 0.27093 0.20495 0.29431 0.22238
100 100 0.1 0.9 0.8 0.26807 0.28567 0.20001 0.17431 0.21982 0.18420
200 150 0.1 0.9 0.8 0.21693 0.25042 0.16592 0.15093 0.17548 0.16502
50 50 0.3 0.9 0.8 0.38486 0.41028 0.29694 0.22772 0.35025 0.31367
100 100 0.3 0.9 0.8 0.28426 0.33791 0.21581 0.19633 0.25848 0.26212
200 150 0.3 0.9 0.8 0.22810 0.28021 0.17743 0.17743 0.20477 0.22474
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CHAPTER 3

SMOOTHED JACKKNIFE EMPIRICAL LIKELIHOOD INFERENCE FOR

THE DIFFERENCE OF ROC CURVES

3.1 Background

3.1.1 The difference of two ROC curves

The ROC curve is a popular technique used to measure the performance of a classifi-

cation, which is broadly applied in medical studies, machine learning and decision making,

etc. It enables us to comprehensively visualize the discrimination ability of a decision rule

at various thresholds. For instance, in a medical study, it can evaluate how well a diagnostic

test distinguishes diseased people from non-diseased people. Many researchers have made

great contributions to ROC curves studies, such as Metz et al.(1978), Tosteson and Begg

(1988), Hsieh and Turnbull (1996), Pepe (1997), Lloyd (1998), Lloyd and Yong (1999) and

Claeskens et al. (2003).

In practice, people have a great opportunity to encounter with bivariate correlated data

(x1, x2) from diseased group and correlated data (y1, y2) from non-diseased group. A criterion

is appealing to choose a better diagnostic test which is based on the data x1 and y1 or the

alternative test from the data x2 and y2 with respect to the discriminant ability. In order to

select a more powerful diagnostic test in the sense of the ROC curve, people consider to study

the difference of two correlated ROC curves. Hanley et al. (1983) established the parametric

model for the difference of two ROC curves. Delong et al. (1988) proposed a nonparametric

approach for the difference of two correlated ROC curves. Moreover, the comparison of two

diagnostic tests was studied in the following papers, such as Linnet (1987), Wieand et al.

(1989) and Venkatraman and Begg (1996).
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3.1.2 Empirical likelihood

Empirical likelihood was first introduced by Owen (1988, 1990). Later, other researchers

expanded empirical likelihood methodology to many statistical fields, including some papers

closely related to our topics, such as general estimating equations (Qin and Lawless, 1994)

and ROC curves (Claeskens et al., 2003). However, due to involving nonlinear systems with

many nuisance variables in some applications, such as the ROC curve and copulas, the ap-

plication of empirical likelihood method is hindered by intensive computational burdens.

Recently, jackknife empirical likelihood method has received more attention because it im-

proves the computational efficiency successfully by reducing nuisance parameters. Jing et al.

(2009) proposed jackknife empirical likelihood method for U -statistic. Gong et al. (2010)

applied smoothed jackknife empirical likelihood method for ROC curves, and Peng and Qi

(2010) developed tail copulas by jackknife empirical likelihood method.

In this chapter, for the p, we make an inference for two correlated continuous-scale ROC

curves ∆(p) = ROC1(p)−ROC2(p) by smoothed jackknife empirical likelihood method.

The rest of this chapter is organized as follows. In Section 3.2, we prove that the

smoothed jackknife empirical log-likelihood ratio for the difference of two correlated ROC

curves converges to a chi-squared distribution. Furthermore, the simulation studies in terms

of coverage probability and average length of confidence intervals are carried out in Section

3.3. We make a discussion about the future work in Section 3.4. The proofs are given in the

Appendix.

3.2 Inference Procedure

3.2.1 Preliminaries

Let X = (X1, X2) and Y = (Y1, Y2) be two-dimensional random variables. X and Y

are independent. F (x1, x2) and G(y1, y2) are corresponding continuous bivariate distribu-

tion functions of the diseased and non-diseased populations, respectively. Denote marginal

distributions F1(x1), F2(x2), G1(y1) and G2(y2). Consider a diagnostic test on X1 and Y1.
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The continuous-scale ROC curve can be written as R1(p) = 1 − F1(G
−1
1 (1 − p)), where

0 < p < 1, and G−1
1 denotes a quantile function of Y1. Similarly, we can define the

continuous-scale ROC curve, R2(p) = 1 − F2(G
−1
2 (1 − p)), where G−1

2 is a quantile func-

tion of Y2. Thus, the difference of two correlated ROC curves at a fixed specificity p can be

written as ∆(p) = F2(G
−1
2 (1− p))− F1(G

−1
1 (1− p)).

Consider two dimensional data (X1i, X2i), i = 1, ...,m, associated with diseased popu-

lation and (Y1j, Y2j), j = 1, ..., n, associated with non-diseased population, where (X1i, X2i),

i = 1, ...,m are i.i.d., and (Y1j, Y2j), j = 1, ..., n are i.i.d. Denote empirical estimators of

bivariate distribution functions as Fm(x1, x2) = 1/m
∑m

j=1 I(X1,j ≤ x1, X2,j ≤ x2) and

the Gn(y1, y2) = 1/n
∑n

j=1 I(Y1,j ≤ y1, Y2,j ≤ y2). The empirical estimators of marginal

distributions are Fm,1(x1) = 1/m
∑m

i=1 I(X1,i ≤ x1), Fm,2(x2) = 1/m
∑m

i=1 I(X2,i ≤ x2),

Gn,1(y1) = 1/n
∑n

i=1 I(Y1,j ≤ y1) and Gn,2(y2) = 1/n
∑n

i=1 I(Y2,j ≤ y2).

3.2.2 Methodology

Let K(p) be the smooth distribution function which is

K(p) =

∫
u≤p

w(u)du,

where w(u) is a symmetric density function with support [−1, 1]. Because of Remark 1 of

Gong et al. (2010), we also consider the smooth estimators of ROC curves and the difference

of two continuous-scale ROC curves as,

R̂m,n,1(p) = 1− 1

m

m∑
j=1

K

{
1− p−Gn,1(X1,j)

h

}
,

R̂m,n,2(p) = 1− 1

m

m∑
j=1

K

{
1− p−Gn,2(X2,j)

h

}
,

∆̂m,n(p) = R̂m,n,1(p)− R̂m,n,2(p),
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where h = h(n) > 0 is a bandwidth. Then, we introduce the procedure to generate jackknife

pesudo-sample. We denote

∆̂m,n,i(p) =
1

m−1

∑
1≤j≤m,j ̸=i

{
K
(

1−p−Gn,2(X2,j)

h

)
−K

(
1−p−Gn,1(X1,j)

h

)}
, 1 ≤ i ≤ m,

∆̂m,n,i(p) =
1

m−1

∑m
j=1

{
K
(

1−p−Gn,m−i,2(X2,j)

h

)
−K

(
1−p−Gn,m−i,1(X1,j)

h

)}
,m+ 1 ≤ i ≤ m+ n,

where

Gn,−i,k(y) =
1

n

∑
1≤j≤n,j ̸=i

I(Yk,j ≤ y), i = 1, . . . , n, k = 1, 2.

The jackknife pseudo-sample is defined as

V̂i(p) = (m+ n)∆̂m,n(p)− (m+ n− 1)∆̂m,n,i(p), i = 1, . . . ,m+ n. (3.1)

Then, the empirical likelihood log-ratio at p and general value ∆̃ based on the pesudo-

sample V̂i(p) is

L(∆̃, p) =
sup{

∏m+n
i=1 pi :

∑m+n
i=1 pi = 1,

∑m+n
i=1 piV̂i(p) = ∆̃, pi > 0, i = 1, . . . ,m+ n}

sup{
∏m+n

i=1 pi,
∑m+n

i=1 pi = 1, pi > 0, i = 1, . . . ,m+ n}
.

Using the Lagrange method, we have

l(∆̃, p) = −2 logL(∆̃, p) = 2
n∑

i=1

log{1 + λ(V̂i(p)− ∆̃)}, (3.2)

where Lagrange multiplier λ satisfies the equation

m+n∑
i=1

V̂i(p)− ∆̃

1 + λ(V̂i(p)− ∆̃)
= 0.



18

Define the pseudo-sample variance

vm,n(p) =
1

m+ n

m+n∑
i=1

{
V̂i(p)−

1

m+ n

m+n∑
i=1

V̂i(p)

}2

. (3.3)

In order to establish the main theorem, we assume the following regularity conditions similar

to Gong et al. (2010):

A.1. F1(x1), F2(x2), G1(y1), G2(y2), F (x1, x2) and G(y1, y2) are continuous functions and

have continuous, bounded first derivatives;

A.2. ROC curves R1(p) and R2(p), and their first derivatives R
′
1(p) and R

′
2(p), are bounded

and continuous in p ∈ (0, 1);

A.3. w(u) is a symmetric density function with support [−1, 1] and w
′
(u) is bounded,

continuous for u ∈ [−1, 1];

A.4. h = h(n) → 0, nh2/ log n → ∞, nh4 → 0 as n → ∞;

A.5. p ∈ (a, b) for any subset (a, b) ⊂ (0, 1);

A.6. m/n → r, where r > 0.

Remark: A.1-A.2 provide mathematical descriptions for the continuity of ROC curves,

which allow us to accomplish the proof of Theorem 2.1 and Theorem 2.2. Hence, in real

application, the continuous-scaled diagnostic tests are appropriate for our results. A.3-A.4

specify the regular properties of the kernel function and its bandwidth. A.5 makes us avoid

discussing the boundary issue which is negligible in practice. A.6 guarantees the two sample

sizes are comparable.

Theorem 3.1. Under assumptions A.1−A.6, for p ∈ (a, b), the pseudo sample variance has

the asymptotic property

vm,n(p)
P→ σ2(p),

where

σ2(p) = σ2
1(p) + σ2

2(p) + 2σ2
12(p),

σ2
i (p) =

1 + r

r
Ri(p){1−Ri(p)}+ (1 + r)(1− p)p{R′

i(p)}2, i = 1, 2,
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σ2
12(p) =

1 + r

r
[F{G−1

1 (p), G−1
2 (p)} − {1−R1(p)}{1−R2(p)}]

+(1 + r)[G{G−1
1 (p), G−1

2 (p)} − p2]R
′

1(p)R
′

2(p).

Thus, the asymptotic 100(1− α)% smoothed jackknife EL confidence interval for ∆(p)

is given by

I(p) =
{
∆̃ : l(∆̃, p) ≤ χ2

1(α)
}
,

where χ2
1(α) is the upper α-quantile of χ2

1.

3.3 Numerical Studies

In order to examine the finite sample performance of Theorem 2.2, we conduct exten-

sive simulation studies in terms of coverage probability and average lengths of confidence

intervals under various data settings. For data set A, F (x1, x2) is generated from a multi-

normal distribution with mean (1, 2) and covariance matrix

 1 0.4

0.4 1

, and G(y1, y2) is

a multi-normal distribution with mean (0, 1) and covariance matrix

 2 −0.8

−0.8 2

. For

data set B, we select a multi-normal distribution with mean (0, 1) and covariance matrix 1 0.4

0.4 1

 as F (x1, x2) and a multi-normal distribution with mean (0, 1) and covariance

matrix

 2 −0.8

−0.8 2

 as G(y1, y2). For data set C, we select a log-normal distribution as

F (x1, x2), which is created by a normal distribution with mean (1, 2) and covariance matrix 1 0.5

0.5 1

, and we choose a log-normal distribution G(y1, y2) transformed from a normal

distribution with mean (0, 1) and covariance matrix

 1 0

0 1

. For data set D, we select bi-

variate exponential distribution as F (x1, x2) which has two independent marginal standard
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exponential distribution, and choose a Gumbels Type I bivariate exponential distribution as

G(y1, y2) introduced by Gumbel (1960), i.e.,

G(y1, y2) = 1− e−y1 − e−y2 + e−(y1+y2+ϕy1y2), 0 ≤ ϕ ≤ 1,

where ϕ is the parameter which relates the correlation coefficient ρ. In fact, if ϕ = 1, the

correlation coefficient ρ = −0.404. To generate random data from Gumbel Type I bivariate

distribution, we employ a density mixture method. See details in Balakrishnan and Lai

(2009).

In our simulation studies, we focus on two points lying on ROC curves, p = 0.4, 0.6.

Moreover, three pairs of sample sizes are chosen, i.e., (50, 50), (100, 100) and (200,150). We

clarify the kernel functions, which is one crucial factor in our JEL procedure. We use the

Epanechnikov kernel function

w(u) =


3
4
(1− u2) if |u| ≤ 1

0 otherwise

for JEL in the simulation study. The bandwidth is defined as h = n−1/3, which is determined

automatically from the sample size. Furthermore, in order to find average lengths of confi-

dence intervals, the bisection method with small jump 0.001 is applied for seeking the upper

bound and lower bound. The nominal level is fixed at 95% and data sets are simulated with

1000 repetitions.

In Table 3.1, we report coverage probabilities. We can observe that all results are close

to nominal level 95%. The simulation results of average lengths are illustrated in Table 3.2.

It is clear that average length becomes shorter as the sample size becomes larger.

In addition, we plot the jackknife empirical likelihood confidence interval for the differ-

ence of two correlated ROC curves. Data set E is simulated from a multi-normal distribution

with mean (2, 1) and covariance matrix

 1 0.4

0.4 1

, and G(y1, y2) is a multi-normal dis-
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tribution with mean (0, 1) and covariance matrix

 2 −0.8

−0.8 2

. Data set B and Data

set E are employed to demonstrate its performance at various specificities. Choosing two

sample sizes (50, 50) and (200, 200), we plot the difference of two correlated ROC curves

as Figure 3.1 including empirical estimators and smoothed JEL confidence intervals at 100

points, respectively. The two true ROC curves from the distributions about data B are

identically same. From Figure 1, we find the 95% jackknife EL confidence intervals of Data

set B include the x axis at most levels p. Hence, it is not significant that one ROC curve is

different from the other. For data set E, we can clearly distinguish the test with a dominant

discrimination ability from another one.

3.4 Real Application

Furthermore, we utilized the Pancreatic Cancer Serum Biomarkers data (see Wieand et

al. 1989) to illustrate the proposed JEL method. Mayo Clinic’s case cohort study collected

those dataset originally and the data were investigated by Wieand et al. (1989) using non-

parametric and semi-parametric methods. The dataset including two biomarkers, CA-125

(V1), a cancer antigen, and CA-19-9 (V2), a carbohydrate antigen, were split according to

indicators, which distinguish pancreatic cancer (90 patients) and pancreatitis (51 patients),

respectively. To compare the efficiency of diagnostics evaluations based on each biomarker,

we calculate the estimate of the difference of two ROC curves. Figure 2 shows the jackknife

Table 3.1 Coverage probability of 95% confidence interval for the difference of two ROC
curves ∆(p).

m n p (A) (B) (C) (D)
50 50 0.4 0.945 0.930 0.935 0.941
100 100 0.4 0.941 0.940 0.947 0.950
200 150 0.4 0.927 0.955 0.943 0.946
50 50 0.6 0.955 0.936 0.948 0.953
100 100 0.6 0.955 0.920 0.949 0.945
200 150 0.6 0.942 0.935 0.943 0.937
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JEL Upper
JEL Lower
SEE
True

Figure 3.1 95% point-wise jackknife empirical likelihood confidence interval for the difference
of two ROC curves from data B, where JEL Upper indicates the upper bound of jackknife
empirical likelihood confidence interval, JEL Lower indicates the lower bound of jackknife
empirical likelihood confidence interval and SEE means smoothed empirical estimator.
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empirical likelihood confidence interval and smoothed empirical estimators for the difference

of two ROC curves. It is clear that the 95% confidence interval is located above than 0 at

1-specificities from 0 to 0.7. Hence, the first biomarker, CA-125 (V1), a cancer antigen, has

better capability to distinguish pancreatic cancer and pancreatitis.

3.5 Discussion

In this chapter, we study the difference of two correlated ROC curves based on smoothed

jackknife empirical likelihood method. Jackknife pseudo-sample makes the computation less

intensive because it can avoid solving nonlinear system with link variables as the standard

empirical likelihood does. From the simulation studies, we demonstrate that smoothed

jackknife empirical likelihood method works very well in finite sample sizes, and the coverage

probabilities are close to the nominal level. The key contribution of this chapter is that we

extend the application of jackknife empirical likelihood to two dimensional correlated data

and save the computational intensity. In the future, we will report our result for the difference

of two ROC curves, ∆p with incomplete data, such as missing at random.

Table 3.2 Average length of 95% confidence interval for the difference of two ROC curves
∆(p).

m n p (A) (B) (C) (D)
50 50 0.4 0.5193 0.5735 0.3668 0.4683
100 100 0.4 0.3853 0.4260 0.2706 0.3430
200 150 0.4 0.3173 0.3533 0.2132 0.2505
50 50 0.6 0.3174 0.5720 0.2591 0.5460
100 100 0.6 0.2237 0.4243 0.1877 0.4022
200 150 0.6 0.1772 0.3526 0.1476 0.2947
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Figure 3.2 95% point-wise jackknife empirical likelihood confidence interval for the difference
of two ROC curves from Pancreatic Cancer Serum Biomarkers, where JEL Upper indicates
the upper bound of jackknife empirical likelihood confidence interval, JEL Lower indicates the
lower bound of jackknife empirical likelihood confidence interval and SEE means smoothed
empirical estimator.
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CHAPTER 4

JACKKNIFE EMPIRICAL LIKELIHOOD INFERENCE FOR THE

PARTIAL AUC

4.1 Background

For comparing two diagnostic tests, a ROC curve is a fundamental tool which has been

extensively studied. However, even if ROC curve provides a graphical measurement, it can

not be easily used to make an indisputable judgement which curve indicates a better test

generally. For instance, two ROC curves maybe meet together at some thresholds points

and no one curve dominates the other absolutely. As a summary of the whole ROC curve,

AUC (area under ROC curve) is regarded as an integration of sensitivity over specificity. In

most cases, rather than focusing on the entire ROC curve, People’s interest can be based

on the a special threshold range, partial AUC. By aggregating ROC curve on the partial

range of threshold, the partial AUC takes the advantages of both ROC curve and AUC. The

underlying range of partial AUC is able to be adjusted by people with their own interest.

As an index, the partial AUC is convenient for people to make an evaluation, comparison

and inference, etc.

Nonparametric method about partial AUC has been developed by Hsieh and Turnbull

(1996). Under empirical likelihood framework, Qin and Zhou (2006) proposed the inference

procedure about the AUC. Further, after Jing et al. (2009) introduce the jackknife empirical

likelihood, Adimari and Chiogna (2011) applied this methodology to the partial AUC using

standard nonparametric estimation. However, this estimation equation involves many ar-

guable and disputable discussions, such as Remark mentioned by Gong et al. (2010). On the

other hand, Wang and Chang (2011) seminally developed a novel estimation for the partial

AUC based on the integration and smoothing technique. In this chapter, we construct the

jacknife empirical likelihood method for partial AUC with the smoothed estimation intro-
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duced by Wang and Chang (2011).

The rest of the chapter is organized as follows. In Section 4.2, we provide the outline of

inference procedure for partial AUC using jackknife empirical likelihood method. In Section

4.3, we conduct simulation studies in terms of coverage probability and average length of

confidence intervals. Furthermore, we make a discussion about the difference of two pAUC’s

and our future work in Section 4.4.

4.2 Inference Procedure

4.2.1 Preliminaries

First, we clarify settings in this chapter. Let X and Y be two independent random

variables with distribution functions F(x) and G(x). We define the partial AUC from 0 to

p, pAUC(p) =
∫ p

0
ROC(t)dt, where ROC(t) = 1 − F (G−1(1 − t)). We can simply obtain

the partial AUC with two boundary points from p1 to p2 as pAUC(p2) − pAUC(p1), if

0 < p1 < p2 < 1.

Let x = {xi, i = 1, ...,m} and y = {yi, i = 1, ...,m} be random samples from the

distribution function F (x) and G(y), respectively. A straightforward discrete estimator of

partial AUC is provided by Wang and Chang (2011) as follows,

Â(p) =
1

n

n∑
i=1

[
p−min

{
1

m

m∑
j=1

I(Xj > Yi), p

}]
.

A consistent smoothed estimator of partial AUC is proposed by Wang and Chang (2011) as

follows,

Ã(p) =
1

n

n∑
i=1

[
p− h log

1 + exp(p/h)

1 + exp{[p− 1
m

∑m
j=1K{(Xj − Yi)}/h]/h}

]
,

where K(t) = 1/[1 + exp(−t)].
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4.2.2 Methodology

Starting from the discrete estimator, we define other estimators from partial samples,

Â−k(p) =
1

n

n∑
i=1

[
p−min

{
1

m

m∑
j=1,j ̸=k

I(Xj > Yi), p

}]
, 1 ≤ k ≤ m,

Â−k(p) =
1

n

n∑
i=1,i̸=k−m

[
p−min

{
1

m

m∑
j=1

I(Xj > Yi), p

}]
,m+ 1 ≤ k ≤ m+ n.

The corresponding jackknife pseudo-samples are obtain by

Q̂k(p) = (m+ n)Â(p)− (m+ n− 1)Â−k(p), 1 ≤ k ≤ m+ n.

Similarly, based on the smoothed estimator, we construct the jackknife pseudo-sample as

follows.

Ã−k(p) =
1

n

n∑
i=1

[
p− h log

1 + exp(p/h)

1 + exp{[p− 1
m−1

∑m
j=1,j ̸=k K{(Xj − Yi)}/h]/h}

]
, 1 ≤ k ≤ m.

Ã−k(p) =
1

n− 1

n−1∑
i=1,i̸=k−m

[
p− h log

1 + exp(p/h)

1 + exp{[p− 1
m

∑m
j=1K{(Xj − Yi)}/h]/h}

]
,m+1 ≤ k ≤ m+n.

Then, we have

Q̃k(p) = (m+ n)Ã(p)− (m+ n− 1)Ã−k(p), 1 ≤ k ≤ m+ n.

We treat Q̃k(p), k = 1, ...,m+ n as pseudo-sample of partial AUC from 0 to p.

Based on jackknife pesudo-sample, the empirical likelihood log-ratio at p, L̂(p, pAUC(p)),

is

sup{
∏m+n

i=1 pi :
∑m+n

i=1 pi = 1,
∑m+n

i=1 piQ̂i(p) = pAUC(p), pi > 0, i = 1, . . . ,m+ n}
sup{

∏m+n
i=1 pi,

∑m+n
i=1 pi = 1, pi > 0, i = 1, . . . ,m+ n}

.

Using standard Lagrange multiplier method, we obtain a log-empirical likelihood ratio rou-
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tinely,

l̂(p, pAUC(p)) = −2 log L̂(p, pAUC(p)) = 2
n∑

i=1

log{1 + λ(Q̂i(p)− pAUC(p))}, (4.1)

where Lagrange multiplier λ satisfies the equation

m+n∑
i=1

(Q̂i(p)− pAUC(p))

1 + λ(Q̂i(p)− pAUC(p))
= 0. (4.2)

Similarly, we have smoothed log-empirical likelihood ratio,

l̃(p, pAUC(p)) = 2
n∑

i=1

log{1 + λ(Q̃i(p)− pAUC(p))}, (4.3)

where Lagrange multiplier λ satisfies the equation

m+n∑
i=1

(Q̃i(p)− pAUC(p))

1 + λ(Q̃i(p)− pAUC(p))
= 0. (4.4)

To build up the theorems of this chapter, we make these assumptions as Wang and Chang

(2011):

D.1 Random variables X and Y have uniformly continuous density function;

D.2 m and n are comparable, i.e., m/n → r, r > 0;

D.3 h = O(n−1/4);

D.4 p ∈ (0, 1).

Theorem 4.1. Under the regularity conditions D.1-D.4, we have

l̂(p, pAUC(p))
D→ χ2

1. (4.5)
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Theorem 4.2. Under the regularity conditions D.1-D.4, we have

l̃(p, pAUC(p))
D→ χ2

1. (4.6)

The proof of Theorem 4.1 and 4.2 is very similar to the proof of Jing et al. (2009). It

is a natural extension from the U-statistics to our setting.

4.3 Numerical Studies

In order to investigate the performance of our proposed method in small samples, we

conduct comprehensive simulation studies in this section. Focusing on two indexes, the

coverage probability and average lengths of confidence intervals, we expect the coverage

probability is close to 95% nominal level and average lengths get narrower as sample sizes

become larger. In this simulation, we only illustrate partial AUC from 0 to varied p and can

easily extend to the case with two flexible p1 and p2 and even the difference of two partial

AUC’s with our methodology. First, we assume random variable X follows the normal

distribution with mean 0.2 and standard deviation 0.5 and Y follows a normal distribution

with mean 0 and standard deviation 0.5. Using the built-in function in Matlab, we generate

the data set A under above assumption. Similarly, we obtain the data set B from the

exponential distribution with parameter 1 for X and a normal distribution with mean 1

and standard deviation 0.5 for Y . In data set C, we apply the exponential distribution

with parameter 1 for both distributions. Two possible p’s in our simulation studies are

selected as 0.4 or 0.6. A group of sample sizes m and n are chosen as (50, 50), (80, 80)

and (100, 100). The bandwidth is selected as h = m−1/4. Table 4.1 and Table 4.2 show

the simulation result for the discrete version. Table 4.3 and Table 4.4 demonstrate the

performance of jackknife empirical likelihood based on the smoothed estimation equation.

From Table 4.1 and Table 4.3, coverage probabilities of 95% confidence interval for the

partial AUC at different scenarios are close to 95%. Table 4.2 and Table 4.4 demonstrates

the average length of 95% confidence interval for the partial AUC at different scenarios
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become smaller when the sample size become larger. We make a comparison about two

types of interval estimations and realize that jackknife empirical likelihood method with

the discrete estimator can provide the comparable average lengths with jackknife EL with

smoothed estimator. In a special setting, the discrete estimator has a little under-coverage

problem, comparing with jackknife EL in the smoothed estimator. However, it is the trade-

off or drawback of smooth jackknife empirical likelihood that people need choose appropriate

bandwidth h and argue how to make an optimal selection even if it is not crucial to obtain

accurate results based on our simulations.

4.4 Discussion

Inspired by Wang and Chang (2011) and Jing et al. (2009), we proposed jackknife

empirical likelihood inference for partial AUC with an elegant estimation which is different

from Adimari and Chiogna (2011). Jackknife pseudo-sample avoids many link variables and

reduces the computational intensity. Wilk’s theorem in our case is proved under regularity

conditions. A simulation study shows a great performance for our methodology in small and

moderate sample size.

Moreover, we develop jacknife empirical likelihood method for the difference of two

partial AUC’s. As in Chapter 3, we introduce two-dimensional random variables. Let

X = (X1, X2) and Y = (Y1, Y2) be two-dimensional random variables. X and Y are

independent with bivariate distribution functions F (x1, x2) and G(y1, y2). Consider two

Table 4.1 Coverage probability of 95% confidence interval for the partial AUC from 0 to p
based on discrete estimators.

m n p (A) (B) (C)
50 50 0.4 0.907 0.902 0.900
80 80 0.4 0.927 0.912 0.926
100 100 0.4 0.928 0.925 0.926
50 50 0.6 0.949 0.941 0.949
80 80 0.6 0.951 0.961 0.943
100 100 0.6 0.948 0.942 0.946
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dimensional data (X1i, X2i), i = 1, ...,m, and (Y1j, Y2j), j = 1, ..., n. Denote marginal dis-

tributions F1(x1), F2(x2), G1(y1) and G2(y2). We define the partial AUC from 0 to p,

pAUCj(p) =
∫ p

0
ROCj(t)dt, where ROCj(t) = 1 − Fj(G

−1
j (1 − t)), j = 1, 2. We can simply

get the difference of two partial AUC’s as D(p) = pAUC1(p)− pAUC2(p), if 0 < p < 1.

A discrete estimator of the difference of two partial AUC’s is easily obtain from Wang

and Chang (2011) as follows, D̂(p) = Â1(p)− Â2(p), where

Â1(p) =
1

n

n∑
i=1

[
p−min

{
1

m

m∑
j=1

I(X1j > Y1i), p

}]
,

Â2(p) =
1

n

n∑
i=1

[
p−min

{
1

m

m∑
j=1

I(X2j > Y2i), p

}]
.

The difference of two partial AUC’s is estimated smoothly as follows, D̃(p) = Ã1(p)− Ã2(p),

Ã1(p) =
1

n

n∑
i=1

[
p− h log

1 + exp(p/h)

1 + exp{[p− 1
m

∑m
j=1K{(X1j − Y1i)}/h]/h}

]

and

Ã2(p) =
1

n

n∑
i=1

[
p− h log

1 + exp(p/h)

1 + exp{[p− 1
m

∑m
j=1 K{(X2j − Y2i)}/h]/h}

]
,

where K(t) = 1/[1 + exp(−t)].

Following the routine process, we construct two kinds of jackknife pseudo samples for

Table 4.2 Average length of 95% confidence interval for the partial AUC from 0 to p based
on discrete estimators.

m n p (A) (B) (C)
50 50 0.4 0.1286 0.1436 0.1088
80 80 0.4 0.1036 0.1144 0.0877
100 100 0.4 0.0930 0.1037 0.0785
50 50 0.6 0.1819 0.2085 0.1678
80 80 0.6 0.1455 0.1674 0.1343
100 100 0.6 0.1305 0.1505 0.1209
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the difference of two partial AUC’s at p. For discrete conditions, D̂−k(p) = Â−k,1(p) −

Â−k,2(p), 1 ≤ k ≤ m+ n, where

Â−k,l(p) =
1

n

n∑
i=1

[
p−min

{
1

m

m∑
j=1,j ̸=k

I(Xlj > Yli), p

}]
, 1 ≤ k ≤ m, l = 1, 2,

Â−k,l(p) =
1

n

n∑
i=1,i̸=k−m

[
p−min

{
1

m

m∑
j=1

I(Xlj > Yli), p

}]
,m+ 1 ≤ k ≤ m+ n, l = 1, 2.

The jackknife pseudo-samples are obtain by

Ĥk(p) = (m+ n)D̂(p)− (m+ n− 1)D̂−k(p), 1 ≤ k ≤ m+ n.

Similarly, for the smoothed estimator, the jackknife pseudo-samples are obtained as follows.

D̃−k(p) = Ã−k,1(p)− Ã−k,2(p), 1 ≤ k ≤ m+ n, where

Ã−k,1(p) =
1

n

n∑
i=1

[
p− h log

1 + exp(p/h)

1 + exp{[p− 1
m−1

∑m
j=1,j ̸=k K{(Xlj − Yli)}/h]/h}

]
, 1 ≤ k ≤ m, l = 1, 2,

Ã−k,2(p) =
1

n−1

∑n−1
i=1,i ̸=k−m

[
p− h log 1+exp(p/h)

1+exp{[p− 1
m

∑m
j=1 K{(Xlj−Yli)}/h]/h}

]
,

m+ 1 ≤ k ≤ m+ n, l = 1, 2.

Table 4.3 Coverage probability of 95% confidence interval for the partial AUC from 0 to p
based on smoothed estimators.

m n p (A) (B) (C)
50 50 0.4 0.947 0.923 0.935
80 80 0.4 0.946 0.938 0.956
100 100 0.4 0.939 0.940 0.950
50 50 0.6 0.955 0.939 0.943
80 80 0.6 0.945 0.944 0.942
100 100 0.6 0.943 0.946 0.948
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Hence,

H̃k(p) = (m+ n)D̃(p)− (m+ n− 1)D̃−k(p), 1 ≤ k ≤ m+ n.

From the regular jackknife empirical likelihood method, we obtain log-empirical likeli-

hood ratio for the difference of two partial AUC’s under both discrete and smooth estimates,

l̂D(p,D(p)) = 2
n∑

i=1

log{1 + λ(Ĥi(p)−D(p))}, (4.7)

where Lagrange multiplier λ satisfies the equation

m+n∑
i=1

(Ĥi(p)−D(p))

1 + λ(Ĥi(p)−D(p))
= 0. (4.8)

Similarly,

l̃D(p,D(p)) = 2
n∑

i=1

log{1 + λ(H̃i(p)−D(p))}, (4.9)

where Lagrange multiplier λ satisfies the equation

m+n∑
i=1

(H̃i(p)−D(p))

1 + λ(H̃i(p)−D(p))
= 0. (4.10)

Table 4.4 Average length of 95% confidence interval for the partial AUC from 0 to p based
on smoothed estimators.

m n p (A) (B) (C)
50 50 0.4 0.1238 0.1334 0.1068
80 80 0.4 0.1016 0.1106 0.0859
100 100 0.4 0.0914 0.1011 0.0785
50 50 0.6 0.1763 0.2019 0.1635
80 80 0.6 0.1432 0.1643 0.1331
100 100 0.6 0.1291 0.1485 0.1195
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Theorem 4.3. Under the regularity conditions D.1-D.4, we have

l̂D(p,D(p))
D→ χ2

1. (4.11)

Theorem 4.4. Under the regularity conditions D.1-D.4, we have

l̃D(p,D(p))
D→ χ2

1. (4.12)

The proofs of Theorem 4.3 and 4.4 are similar to those of Theorem 4.1 and 4.2.

Using the same distributions to generate the data sets as we did in Chapter 3, the

correlated two dimensional data sets (A), (B) and (C) are applied in this simulation envi-

ronment. To compare the two partial AUC’s from 0 to p = 0.4 or from 0 to p = 0.6, Table

4.5 and Table 4.6 with discrete estimations and Table 4.7 and Table 4.8 with the smoothed

estimations demonstrate as follows. It can be found the coverage probabilities under differ-

ent settings are close to nominal level 95% and the average lengths became narrow when

sample sizes increase. From the comparison between the discrete estimator and smoothed

estimator, it is another evidence to support the rule we found in the last section that the

jackknife empirical likelihood method with smoothed estimator has better performance in

terms of coverage probabilities of confidence interval. However, people need to discuss the

selection of bandwidth h for their theoretical rigourousness.

Moreover, we conduct the real data study for the difference of two partial AUC’s. Using

Table 4.5 Coverage probability of 95% confidence interval for the partial AUC from 0 to p
based on discrete estimators.

m n p (A) (B) (C)
50 50 0.4 0.954 0.954 0.918
80 80 0.4 0.925 0.942 0.944
100 100 0.4 0.949 0.946 0.929
50 50 0.6 0.935 0.946 0.937
80 80 0.6 0.940 0.944 0.957
100 100 0.6 0.937 0.949 0.960
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Pancreatic Cancer Serum Biomarkers data, the same data set as we used in Chapter 3, we

calculate jackknife empirical likelihood confidence intervals for the difference of two partial

AUC’s at changing criterion level p from 0 to 1. From Figure 4.1, we prefer the first biomarker

CA-125 (V1) rather than CA-19-9 (V2) as the index to distinguish pancreatic cancer and

pancreatitis.

Furthermore, we may consider the difference of two partial AUC’s with covariates.

Missing data would be another interesting idea which can be applied to extend JEL for the

difference of two partial AUC’s.

Table 4.6 Average length of 95% confidence interval for the partial AUC from 0 to p based
on the discrete estimators.

m n p (A) (B) (C)
50 50 0.4 0.1319 0.1603 0.0674
80 80 0.4 0.1056 0.1272 0.0537
100 100 0.4 0.0960 0.1148 0.0483
50 50 0.6 0.1796 0.2404 0.1222
80 80 0.6 0.1436 0.1912 0.0963
100 100 0.6 0.1292 0.1722 0.0864
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Figure 4.1 95% point-wise jackknife empirical likelihood confidence interval for the difference
of two partial AUC’s with Pancreatic Cancer Serum Biomarkers, where JEL Upper indicates
the upper bound of jackknife empirical likelihood confidence interval, JEL Lower indicates the
lower bound of jackknife empirical likelihood confidence interval and SEE means smoothed
empirical estimator.
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Table 4.7 Coverage probability of 95% confidence interval for the partial AUC from 0 to p
based on smoothed estimators.

m n p (A) (B) (C)
50 50 0.4 0.943 0.954 0.960
80 80 0.4 0.955 0.951 0.951
100 100 0.4 0.947 0.940 0.953
50 50 0.6 0.946 0.948 0.954
80 80 0.6 0.953 0.960 0.954
100 100 0.6 0.942 0.952 0.951

Table 4.8 Average length of 95% confidence interval for the partial AUC from 0 to p based
on smoothed estimators.

m n p (A) (B) (C)
50 50 0.4 0.1286 0.1564 0.0668
80 80 0.4 0.1039 0.1260 0.0533
100 100 0.4 0.0966 0.1150 0.0480
50 50 0.6 0.1771 0.2376 0.1210
80 80 0.6 0.1424 0.1898 0.0960
100 100 0.6 0.1283 0.1711 0.0866
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CHAPTER 5

SMOOTHED JACKKNIFE EMPIRICAL LIKELIHOOD INFERENCE FOR

THE DIFFERENCE OF TWO QUANTILES

5.1 Background

The quantile is an attractive statistics measure with robustness property against the

extreme value. Motivated by this favorable property, the researchers from different fields

developed the many applications of quantile as their fundamental tools, such as Value-at-

Risk (VaR) in risk management, quantile regression in econometrics, etc. Generally, the

quantile is defined by F−1(x) = inf{x : F (x) > p}, where 0 < p < 1. Csörgo (1987)

established the theoretical foundation of quantile estimation. To overcome the discreteness

issue of empirical estimation of quantile, Sheather and Marron (1990) introduced the kernel

quantile estimators and the bandwidth selection procedure.

The empirical likelihood (EL) is a popular methodology featured by nonparametric like-

lihood function. Owen (1988, 1990, 2001) built up the framework of EL as a new philosophy

of statistics. Chen (1993) studied the quantile estimation using empirical likelihood method.

Qin and Lawless (1994) proposed empirical likelihood for the general estimation equation

incorporating side information. Claeskens et al. (2003) developed the EL confidence inter-

vals for ROC curves. Recently, the jackknife empirical likelihood is recognized as a better

method over traditional empirical likelihood for complicated nonlinear question due to its

computational efficiency in small sample, see Jing et al. (2009) and Gong et al. (2010) for

detailed discussions.

For comparison of two quantiles, some well-known methods include Q-Q plot and inter-

quartile range, which are less vulnerable to extreme value and heavy-tail data. Kosorok

(1999) developed two-sample quantile nonparametric tests for a variety of empirical distri-

bution function for censored data and repeated measures data. Veraverbeke (2001) studied
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the asymptotical properties of the difference of quantiles for one sample. Zhou and Jing

(2003a, 2003b) constructed the smoothed empirical likelihood confidence interval for quan-

tiles and one sample difference of quantiles. Shen and He (2007) proposed the empirical

likelihood method for one sample difference of quantiles with right censoring. Yau (2009)

has proposed EL method for the difference of two quantiles with censoring. Baysal and

Staum (2010) developed the empirical likelihood inference for the value-at-risk and expected

shortfall.

In this chapter, we develop the novel method for the inference of the difference of

two sample quantiles θ(p) = F−1
1 (p) − F−1

2 (p) and one sample difference of two quantiles

η(s, t) = F−1(t) − F−1(s), where the quantile functions are defined as F−1
j (x) = inf{x :

Fj(x) > p}, j = 1, 2. In order to reduce heavy computational intensity of multiple estimation

equations (see Zhou and Jing, 2003; Shen and He, 2007), motivated by Jing et al. (2009), we

construct the jackknife pseudo samples and derive the empirical likelihood based on those

pseudo samples. Moreover, we obtain the asymptotical result of the difference of quantiles

with one sample and two samples using jackknife empirical likelihood and demonstrate the

computational efficiency and accuracy in the small sample.

The rest of the chapter is organized as follows. In Section 5.2, we prove that it is an

asymptotically chi-squared distribution for jackknife empirical log-likelihood ratio for the

difference of two quantiles with one sample. In Section 5.3, we develop the same theorem

with two samples. For a small sample simulation studies and real data application, coverage

probability and average length of confidence intervals are reported in Section 5.4. Further-

more, we discuss some extensions of our method and future work in Section 5.5. The proofs

are provided in the Appendix.
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5.2 Main Results

5.2.1 Inference procedure for the difference of quantiles with two samples

Let X1 and X2 be independent random variables with distribution functions F1(x)

and F2(x). The difference of quantiles at p can be written as θ(p) = F−1
1 (p) − F−1

2 (p),

where 0 < p < 1 and F−1
j denotes the quantile function of Fj(x), j = 1, 2. We can define

D(θ, p) = F1(θ + F−1
2 (p)) and rearrange the difference of quantiles as D(θ, p) = p. D

′
(θ, p)

is the first derivative of D(θ, p) with respect to p.

Let X1,i, i = 1, ...,m and X2,i, i = 1, ..., n be i.i.d. random samples from the dis-

tribution functions F1(x) and F2(x), respectively. The empirical estimators of distribu-

tions function F1(x) and F2(x) are defined by Fm,1(x) = 1/m
∑m

i=1 I(X1,i ≤ x), Fn,2(x) =

1/n
∑n

i=1 I(X2,i ≤ x). To analyze this problem using continuous function, we use smoothed

version of those non-parametric estimators. Let K(p) be the smooth distribution function

which satisfies

K(p) =

∫
u≤p

w(u)du,

where w(u) is a symmetric density function with support [−1, 1]. We propose the smooth

estimation equation for the difference of two quantiles

Πm,n(p, θ) =
1

m

m∑
j=1

K

{
p− Fn,2(X1,j − θ)

h

}
− p,

where h = h(n) > 0 is a bandwidth. We assume the following regularity conditions,

A.1. w(u) is a symmetric density function with support [−1, 1] and w
′
(u) is bounded, con-

tinuous for u ∈ [−1, 1];

A.2. Let p ∈ (0, 1). We assume m/n → r, where r > 0;

A.3. h = h(n) → 0, nh2/ log n → ∞, nh4 → 0 as n → ∞.
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Theorem 5.1. Under the regularity conditions A.1-A.3, we have

Πm,n(p, θ)
P→ 0, (5.1)

where θ(p) is a true value of difference of two quantiles at p.

After obtaining a consistent kernel estimation equation of difference of quantiles, we

develop the procedure to generate jackknife pesudo-sample. Denote

Πm,n,i(p, θ) =
1

m−1

∑
1≤j≤m,j ̸=iK

(
p−Fn,2(X1,j−θ)

h

)
− p, 1 ≤ i ≤ m,

Πm,n,i(p, θ) =
1
m

∑m
j=1K

(
p−Fn,2,m−i(X1,j−θ)

h

)
− p, m+ 1 ≤ i ≤ m+ n,

where

Fn,2,−i(p, θ) =
1

n− 1

∑
1≤j≤n,j ̸=i

I(X2,j ≤ y), i = 1, . . . , n.

The jackknife pseudo-sample is defined as

V̂i(p, θ) = (m+ n)Πm,n(p, θ)− (m+ n− 1)Πm,n,i(p, θ), i = 1, . . . ,m+ n. (5.2)

We consider the following conditions:

A.4. F1(x), F2(x) are continuous functions and have continuous, bounded first derivatives;

A.5. D(θ, p) and its first derivative D
′
(θ, p) are bounded and continuous in p ∈ [−1, 1];

Theorem 5.2. Under the regularity conditions A.1-A.5, we have

√
m+ n

{
1

m+ n

m+n∑
i=1

V̂i(p, θ)

}
D→ N(0, σ2), (5.3)

where

σ2 =
1 + r

r
(1− p)p+ (1 + r)(1− p)pD

′
(θ, p)2.
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Define the pseudo-sample variance

vm,n(p, θ) =
1

m+ n

m+n∑
i=1

{
V̂i(p, θ)−

1

m+ n

m+n∑
i=1

V̂i(p, θ)

}2

. (5.4)

Theorem 5.3. Under the conditions A.1-A.5, we have

vm,n(p, θ)
P→ σ2.

Based on jackknife pesudo-sample, the empirical likelihood log-ratio at θ(p) is

L(p, θ) =
sup{

∏m+n
i=1 pi :

∑m+n
i=1 pi = 1,

∑m+n
i=1 piV̂i(p, θ) = 0, pi > 0, i = 1, . . . ,m+ n}

sup{
∏m+n

i=1 pi,
∑m+n

i=1 pi = 1, pi > 0, i = 1, . . . ,m+ n}
.

We follow the standard Lagrange multiplier method and have

l(p, θ) = −2 logL(p, θ) = 2
n∑

i=1

log{1 + λV̂i(p)}, (5.5)

where Lagrange multiplier λ satisfies the equation

m+n∑
i=1

V̂i(p, θ)

1 + λV̂i(p, θ)
= 0. (5.6)

Assuming the regularity conditions A.1-A.5, we can establish the main theorem as follows.

Theorem 5.4. Under the regularity conditions of Theorem 5.1, we have

l(p, θ)
D→ χ2

1, (5.7)

where θ is the true value of the difference of quantiles at p ∈ (0, 1).

Remark: Under our settings for the difference of quantiles with two samples, it is

straightforward to extend two quantiles from fixed one point to different two points.
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Thus, using smoothed jackknife empirical likelihood method, the asymptotic 100(1−α)%

jackknife EL confidence interval for the difference of two quantiles is proposed as

I(p) =
{
θ̃ : l(p, θ̃) ≤ χ2

1(α)
}
,

where χ2
1(α) is the upper α-quantile of χ2

1.

5.2.2 Inference procedure for the difference of quantiles with one sample

Suppose X is a random variable and F (x) is its distribution function. The difference

of quantiles with one sample between s and t is defined as η(s, t) = F−1(t)− F−1(s), where

0 < s < t < 1 and F−1(x) is the quantile function. Let Xi, i = 1, ...,m be i.i.d. random

sample from the distribution function F (x). Denote Fm(x) = 1/m
∑m

i=1 I(Xi ≤ x) as the

empirical estimators of distributions function. Consider the smooth estimation equation for

the the difference of quantiles with one sample

Φm(s, t, η) =
1

m

m∑
j=1

K

{
s− Fm(Xj − η)

h

}
− t,

where K(x) is the smooth distribution function with bandwidth h = h(n) > 0 defined pre-

viously. Assume the following regularity conditions,

B.1. w(u) is a symmetric density function with support [−1, 1] and w
′
(u) is bounded, con-

tinuous for u ∈ [−1, 1];

B.2. h = h(m) → 0, mh2/ logm → ∞, mh4 → 0 as m → ∞.

Theorem 5.5. Under the regularity conditions B.1, B.2, we have

Φm(s, t, η)
P→ 0, (5.8)

where η is a true difference of quantiles with one sample between at t and s.
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Theorem 5.6. Under the regularity conditions B.1-B.2, we have

√
mΦm(s, t, η)

D→ N(0, σ2
1), (5.9)

where

σ2
1 = (1− s)sQ

′
(s, t, η)2 + 2(1− s)sQ

′
(s, t, η) + t(1− t),

Q(s, t, η) = F(η + F−1(s))− t, and Q
′
(s, t, η) the first derivative of Q(s, t, η) with respect to

s.

Further, we propose jackknife pesudo-sample based on our estimation equation. Denote

Φm,−i(s, t, η) =
1

m−1

∑m
j=1 K

(
s−Fm,−i(Xj−η)

h

)
− t, 1 ≤ i ≤ m,

where

Fm,−i(y) =
1

m− 1

∑
1≤j≤n,j ̸=i

I(Xj ≤ y), i = 1, . . . ,m.

The jackknife pseudo-sample is defined as

Ûi(s, t, η) = mΦm(s, t, η)− (m− 1)Φm,−i(s, t, η), i = 1, . . . ,m. (5.10)

We consider the following conditions:

B.3. F(x) is continuous functions and has continuous, bounded first derivative;

B.4. Q(s, t, η) and its first derivative Q
′
(s, t, η) are bounded and continuous;

Theorem 5.7. Under the regularity conditions B.1-B.4, we have

√
m

{
1

m

m∑
i=1

Ûi(s, t, η)

}
D→ N(0, σ2

1), (5.11)
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Define the pseudo-sample variance

vm(s, t, η) =
1

m

m∑
i=1

{
Ûi(s, t, η)−

1

m

m∑
i=1

Ûi(s, t, η)

}2

. (5.12)

Theorem 5.8. Under the conditions B.1-B.4, we have

vm(s, t, η)
P→ σ2

1.

Based on jackknife pesudo-sample, the empirical likelihood log-ratio at η(p) is

L̃(s, t, η) =
sup{

∏m
i=1 pi :

∑m
i=1 pi = 1,

∑m
i=1 piÛi(s, t, η) = 0, pi > 0, i = 1, . . . ,m}

sup{
∏m

i=1 pi,
∑m

i=1 pi = 1, pi > 0, i = 1, . . . ,m}
.

We follow the standard Lagrange multiplier method and have

l̃(s, t, η) = −2 logL(s, t, η) = 2
n∑

i=1

log{1 + λÛi(s, t, η)}, (5.13)

where Lagrange multiplier λ satisfies the equation

m+n∑
i=1

Ûi(s, t, η)

1 + λÛi(s, t, η)
= 0. (5.14)

Theorem 5.9. Under the above regularity conditions B.1-B.4, we have

l̃(s, t, η)
D→ χ2

1, (5.15)

where η is the true the difference of quantiles with one sample between s and t.

Using smoothed jackknife empirical likelihood method, the 100(1 − α)% jackknife EL

confidence interval for the difference of quantiles with one sample is constructed as,

I(t, s) =
{
η̃ : l̃((s, t, η̃) ≤ χ2

1(α)
}
,
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where χ2
1(α) is the upper α-quantile of χ2

1.

5.3 Numerical Studies

5.3.1 Two sample simulation

We conduct a comprehensive simulation study to illustrate our method. It includes

two benchmarks, the converge probability and average lengths of confidence intervals and

involves various factors, such as sample size, the value of p and the distribution functions F1

and F2. For data set A, F1(x) is generated from a normal distribution with mean 0.2 and

standard deviation 0.5. F2(x) is a normal distribution with mean 0 and standard deviation

0.5. For data set B, X1 is simulated from the exponential distribution with parameter 1,

and F2(x) is a normal distribution with mean 1 and standard deviation 0.5. For data set C,

F1(x) and F2(x) have the same exponential distribution with parameter 1. In our simulation

studies, two points on the difference of quantiles are selected to p = 0.2, 0.6, and sample size

m and n are chosen as (50, 50), (100, 100) and (200,150). Furthermore, the kernel function

is the Epanechnikov kernel function

w(u) =


3
4
(1− u2) if |u| ≤ 1

0 otherwise.

Without the secondary estimation, the bandwidth is determined automatically as h = m−1/3.

We utilized the f-solve function in Matlab to solve the λ in (2.6). The nominal level is fixed

at 95% and data sets are simulated with 1000 repetitions.

The coverage probability in Table 5.1 can reach the nominal level 95% closely. The

simulation results of average lengths are reported in Table 5.2.

Furthermore, the bisection method with small jump 0.001 is applied for seeking the

upper bound and lower bound of the difference of quantiles at the level p = 0.2 or p = 0.6.

In Table 5.2, we find that the results with larger sample size have shorter average length.

In addition, using the proposed method, we make a plot to illustrate the confidence
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interval for the difference of quantiles. In order to show the effect of sample sizes and

specified points, we choose two sample sizes (50, 50) and (300, 300) and 100 points on x-

axis. Figure 5.1 shows the smoothed jackknife empirical likelihood confidence interval for

the difference of two quantiles and its smoothed empirical estimators. Under the setting A,

the true value of the difference of two quantiles is constantly equal to 0.2, which is inside

the jackknife empirical likelihood confidence intervals at almost every point except for some

boundary points in Figure 5.1. Under the setting C, two identical exponential distributions,

the jackknife empirical likelihood confidence intervals includes the x-axis, the true value of

the difference of two quantiles. From Figure 5.1, we can also observe the narrower confidence

interval in the larger samples.

5.3.2 One sample simulation

Inter-quartile range is the most widely used for the difference of one sample quantile,

which specifics s = 0.25 and t = 0.75. We generate data from a chi-squared distribution

with degree of freedom 2 (Distribution D), an exponential with parameter 2 (Distribution

E) and a normal distribution with mean 0 and standard deviation 0.5 (Distribution F). The

small sample sizes are selected as 50, 80 and 100. Two benchmarks, coverage probability

and average length of confidence intervals, are considered in our simulation. The results are

reported at Table 5.3 and Table 5.4. Coverage probabilities are close to nominal 95% level

in most cases for moderate sample sizes, average lengths become smaller as the sample sizes

Table 5.1 Coverage probability of 95% confidence interval for the difference of quantiles with
two samples at p.

m n p (A) (B) (C)
50 50 0.2 0.941 0.907 0.929
100 100 0.2 0.948 0.895 0.954
200 150 0.2 0.943 0.903 0.944
50 50 0.6 0.941 0.951 0.942
100 100 0.6 0.956 0.939 0.939
200 150 0.6 0.931 0.944 0.942
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Figure 5.1 95% point-wise jackknife empirical likelihood confidence interval for the difference
of quantiles, where JEL Upper indicates the upper bound of jackknife empirical likelihood
confidence interval, JEL Lower indicates the lower bound of jackknife empirical likelihood
confidence interval and SEE means smoothed empirical estimator.
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get larger.

5.4 Real Application

Moreover, we apply the real data to illustrate our proposed method. Data set can

be accessed publicly from the website of the Center for Machine Learning and Intelligent

Systems at University of California, Irvine and are originated from Hewlett-Packard Labs.

It contains 4601 observations with 57 attributes and one indicator variable for spam e-mails,

which are considered as the advertisements for products or web sites, make money fast

schemes and pornography. Most of those attributes are valued by percentages of certain

words appearing in the e-mail. In this chapter, we split the 24th attribute into two groups

based on the spam indicator variable. Figure 5.2 shows the confidence interval for the

difference of quantiles. The confidence intervals of the difference of quantiles are above x-

axis. Thus, the quantiles of the spam observation in 24th attribute are clearly different from

the non-spam observation when p > 0.6.

5.5 Discussion

Motivated by the challenge and importance of the difference of quantiles, we develop

smoothed jackknife empirical likelihood inference methods. JEL includes jackknife pseudo-

sample procedure and reduces the number of variables in optimization. It makes the com-

Table 5.2 Average length of 95% confidence interval for the difference of quantiles with two
samples at p.

m n p (A) (B) (C)
50 50 0.2 0.5121 0.4303 0.3513
100 100 0.2 0.3679 0.3072 0.2484
200 150 0.2 0.2872 0.2429 0.1958
50 50 0.6 0.4483 0.7543 0.8796
100 100 0.6 0.3285 0.5311 0.6389
200 150 0.6 0.2577 0.3957 0.4943
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Figure 5.2 95% point-wise jackknife empirical likelihood confidence interval for the difference
of quantiles from spam data, where JEL Upper indicates the upper bound of jackknife
empirical likelihood confidence interval, JEL Lower indicates the lower bound of jackknife
empirical likelihood confidence interval and SEE means smoothed empirical estimator.
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putation less intensive tremendously. Our simulation studies show this intuitive argument

without sacrificing the accuracy in terms of coverage probability. It is close to the nominal

level. We develop a smoothed estimation equation for the difference of quantiles and imple-

ment the jackknife empirical likelihood studies. We prove the Wilk’s theorem and verify the

conclusion with extensive simulation studies.

5.5.1 Missing data

Moreover, we can combine the incomplete data mechanism into our setup, such as

missing completely at random (MCAR). Following the proof of Lemma A.1 in Yang and

Zhao (2012), we can derive a generalization of Wilk’s theorem for the difference of two

quantiles with two populations. Denote P1 and P2 be response rates of two populations. We

similarly prove the theorem as below.

lMCAR(p, θ)
D→ c(P1, P2)χ

2
1,

where c(P1, P2) = σ2
MCAR/σ

2 and

σ2
MCAR = (1− P1 + P−1

1 )
1 + r

r
(1− p)p+ (1− P2 + P−1

2 )(1 + r)(1− p)pD
′
(θ, p)2.

Furthermore, for one sample case, it is straightforward to extend JEL with missing data.

Table 5.3 Coverage probability of 95% confidence interval for inter-quartile range with one
sample at s = 0.25 and t = 0.75.

n s t (D) (E) (F)
50 0.25 0.75 0.947 0.946 0.900
80 0.25 0.75 0.956 0.956 0.920
100 0.25 0.75 0.947 0.948 0.925
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5.5.2 Dependence

Independent two distributions are a special case of a two dimensional joint distribution.

Hence, to extend our conclusions, we can construct jackknife empirical likelihood for the

difference of two quantiles based on a joint distribution with a well-defined copula. Wilks’

theorem should be valid even if we have not checked it in details. Furthermore, we can

consider the covariates into the difference of two quantiles while the dependency of two

distributions is associated with the covariates.

5.5.3 Quantile ratio and low income proportion

Moreover, it is straightforward to consider another useful statistics, the ratio of quan-

tiles, i.e., θr = F−1
1 (p)/F−1

2 (p) for two samples or ηr = F−1(s)/F−1(t) for one sample case.

Motivated by the JEL for the ROC curve by Gong et al. (2010) and one sample difference

of two quantiles in Section 5.3, we can derive the Wilk’s theorem, i.e., two negative log

likelihood ratio converges to χ2
1.

Furthermore, the income distribution FI is strongly concerned in welfare economics and

a key index, low income proportion, ξ(α, β) = FI(αF
−1
I (β)), has been investigated by many

statisticians and econometricians, such as Zheng (2001) and Yang et al. (2011). The index

is a simple transformation from quantile ratio in analytical sense. Without changing the

estimation equation, the JEL for quantile ratio can be applied to the inference for the low

income proportion.

More specifically, we provide the estimation equation for the ratio of quantiles and low

Table 5.4 Average length of 95% confidence interval for inter-quartile range with one sample
at s = 0.25 and t = 0.75.

n s t (D) (E) (F)
50 0.25 0.75 0.7139 1.7805 0.3646
80 0.25 0.75 0.5800 1.3937 0.2965
100 0.25 0.75 0.5293 1.2621 0.2712
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income proportion based on the smoothing method. Under the same kernel function K(·),

we have the simple estimation equation as follows

Ψ(s, t, ηr) =
1

m

n∑
i=1

K

(
t− Fm(Xj − ηr)

h

)
− s.

Following the jackknife pseudo sample, it is not difficult to construct log empirical likelihood

ratio and prove the Wilks’s theorem as before.
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CHAPTER 6

NEW EMPIRICAL LIKELIHOOD INFERENCE FOR LINEAR

TRANSFORMATION MODELS

6.1 Introduction

The well-known proportional hazards model was introduced by Cox (1972). Later, An-

dersen and Gill (1982) explored the Cox model using martingale theory. The Cox model is

the most popular method utilized broadly in survival analysis. An alternative method in

survival analysis is the proportional odds model (Pettitt, 1982; Bennett 1983). The trans-

formation model is a natural generalization of those two models and provides many other

potential choices. Cheng, Wei and Ying (1995) derived a limiting theory of the transforma-

tion model using martingale theory. Based on new estimation equations, Chen, Jin and Ying

(2002) develop the inference procedure for the linear transformation model. Let T be the

failure time; Z, a corresponding p-dimensional covariate; Sz(·) is the survival function of T

conditioned on covariate Z. Then, the semiparametric transformation model is (see Cheng

et al., 1995)

g{Sz(t)} = h(t) + ZTβ, (6.1)

where h(·) is a strictly increasing unspecified function and g(·) is a given decreasing function.

An alternative expression of (6.1) is (see Cheng et al., 1995)

h(T ) = −ZTβ + ε, (6.2)

where ε is a random variable indepedent of covariate Z with the distribution function F (x) =

1− g−1(x). Fine et al. (1998) considered the truncated t0 to place a finite limit on survival

time and guaranteed the uniform convergence of Gaussian processes on interval [0, t0]. Other
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related studies about the transformation model include Cai et al. (2000) and Cai et al.

(2005). Recently, Kong et al. (2006) investigated the case-cohort problems using semi-

parameteric linear transformation models.

6.1.1 Empirical likelihood

Recently, empirical likelihood method has been extended to some diverging number of

dimensionality, such as Hjort et al. (2009), Chen et al. (2009). Moreover, Zhao (2010)

demonstrated that the empirical likelihood method for transformation models can outper-

form traditional methods in small samples. However, the methodology of Zhao (2010) sacri-

ficed the tremendous computational resource on estimating the covariance matrix. Motivated

by Yu et al. (2011), we can construct new empirical likelihood for the transformation model

which avoids estimating the complicated matrix.

The rest of the chapter is organized as follows. In Section 6.2, we develop the new

empirical likelihood method for the linear transformation model. Then, we report results of

simulation studies in terms of coverage probability in Section 6.3. A discussion about JEL

method is given in Section 6.4. The proofs are provided in the Appendix.

6.2 Inference Procedure

6.2.1 Preliminaries

Throughout the chapter, we use same notations as Fine et al. (1998). Let Ti be the

failure time which might not be observed fully. The censoring variables Ci with distribution

function G(t) are independent of failure time Ti. Define bivariate vector (Xi, δi), i = 1, ..., n,

where Xi = min(Ti, Ci) and δi = I(Ti ≤ Ci). Let {Zi}ni=1 be the corresponding covariate

vectors, where Zi ∈ Rp. We denote Zij = Zi −Zj, i = 1, ..., n, j = 1, ..., n. Fine et al. (1998)

introduced a known constant t0, where Pr{min(T,C) > t0} > 0. Denote the h0 and α0 as

true values of h(·) and α = h(t0). Define θ = (α, βT )T and true θ0 = (α0, β
T
0 )

T and

ηij(θ0) = η(ZT
ijβ0)− Pr(Ti ≥ Tj ≥ t0|Zi, Zj) (6.3)
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where η(ZT
ijβ0) = Pr(εi − εj ≥ ZT

ijβ0). Let Ĝ(·) be the Kaplan-Meier estimator of G.

Combining the positive weight function wij(·), Fine et al. (1998) proposed the following

estimating equation Uw(θ),

Uw(θ) =
n∑

i=1

n∑
j=1,i ̸=j

wij(θ)η̇ij(θ)

{
δjI{min(Xi, t0) ≥ Xj}

Ĝ2(Xj)
− ηij(θ)

}
, (6.4)

where

η̇ij(θ) = (1, ZT
j )

T
∫ α

−∞{1− F (t+ ZT
i β)} df(t+ ZT

j β)

−(1, ZT
i )

T
∫ α

−∞{1− f(t+ ZT
i β)} dF (t+ ZT

j β), (6.5)

and f(t) = dF (t)/dt. Cheng et al. (1995) and Fine et al. (1998) proposed the following

notations.

eij(θ) = wij(θ)η̇ij(θ)[
δjI(min(Xi,t0)≥Xj)

G2(Xj)
− ηij(θ)],

π(t) = lim
n→∞

1

n

n∑
i=1

I(Xi ≥ t),

q(θ, t) = lim
n→∞

1

n(n− 1)

n∑
i=1

n∑
j=1,j ̸=i

wij(θ)η̇ij(θ)
δjI(min(Xi, t0) ≥ Xj)

G2(Xj)
I(Xj ≥ t).

6.2.2 Methodology

We will develop new empirical likelihood method in this section. Denote notations like

Fine et el. (1998)

di(θ) = 2

∫ t0

0

q(θ, t)

π(t)
dMi(t), (6.6)

where

dMi(t) = I(Xi ≤ t, δi = 0)−
∫ t

0
I(Xi ≥ u)dΛG(u), (6.7)
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with ΛG(u) is the cumulative hazard function of censoring time Ci. Denote as Fine et el.

(1998)

q̂(θ, t) =
1

n(n− 1)

n∑
i=1

n∑
j=1,j ̸=i

wij(θ)η̇ij(θ)
δjI{min(Xi, t0) ≥ Xj}

Ĝ2(Xj)
I(Xj ≥ t), (6.8)

π̂(t) =
1

n

n∑
i=1

I(Xi ≥ t),

d̂i(θ) = 2

∫ t0

0

q̂(θ, t)

π̂(t)
dM̂i(t),

where

M̂i(t) = I(Xi ≤ t, δi = 0)−
∫ t

0

I(Xi ≥ u)dΛ̂G(u),

and Λ̂G(t) is the Nelson-Aalon estimator of ΛG(u). Denote Ui = (ZT
i , Xi, Ci). We define the

symmetric kernel of U-statistics like Zhao (2010)

b(Ui, Uj; θ) = {eij(θ) + di(θ) + eji(θ) + dj(θ)}

for given G(·) and

b̂(Ui, Uj; θ) = {êij(θ) + d̂i(θ) + êji(θ) + d̂j(θ)}

where

êij(θ) = wij(θ)η̇ij(θ){
δjI(min(Xi, t0) ≥ Xj)

Ĝ2(Xj)
− ηij(θ)}.

We denote

Wi(θ) =
1

n− 1

n∑
j=1,j ̸=i

{b(Ui, Uj; θ)},

and

Ŵi(θ) =
1

n− 1

n∑
j=1,j ̸=i

{b̂(Ui, Uj; θ)}.
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Then, we have p+ 1 dimensional multivariate U-statistics

V (θ) =
1

n

n∑
i=1

Wi(θ),

and

V̂ (θ) =
1

n

n∑
i=1

Ŵi(θ).

One can define empirical likelihood L(θ) as follows,

L(θ) = sup

{
n∏

i=1

pi :
n∑

i=1

pi = 1,
n∑

i=1

piŴi(θ) = 0, pi ≥ 0

}
. (6.9)

By using the Lagrange multiplier method (Owen, 1988, 1990), we have

l(θ) = −2 log{nnL(θ)} = 2
n∑

i=1

log{1 + λ(θ)T Ŵi(θ)}, (6.10)

where λ(θ) is a p+1 dimensional Lagrange multiplier θ which satisfies the following equation

1

n

n∑
i=1

Ŵi(θ)

1 + λ(θ)T Ŵi(θ)
= 0. (6.11)

Here and throughout this chapter, we assume the following regularity conditions (see

Fine et al., 1998 and Kong et al., 2005):

Assumption 1. Zi ∈ Rp, i = 1, ..., n are bounded.

Assumption 2. For any i = 1, ..., n, ∂F (t − ZT
i β)/∂t and ∂f(t − ZT

i β)/∂t and ∂2f(t −

ZT
i β)/∂t

2 exist on t ∈ [0, α0] and they are uniformly continuous on a compact set Θ of θ.

Assumption 3. For any i = 1, ..., n and j = 1, ..., n, wij(θ) > 0 and ∂wij(θ)/∂θ exist on

Θ and they are uniformly continuous on Θ.

Assumption 4. The functions w(·) and η(·) are first derivative continuous.

Assumption 5. The D(θ0) and Γ(θ0) are positive definite matrices, where D(θ0) and
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Γ(θ0) are given in Fine et al. (1998).

Theorem 6.1. Under Assumptions 1-5 consider the null hypothesis θ = θ0, as n −→ ∞

1

4
l(θ0)

D−→ χ2
p+1, (6.12)

where χ2
p+1 is a standard chi-squared random variable with p+ 1 degrees of freedom.

Thus, an asymptotic 100(1 − α)% empirical likelihood confidence region for θ can be

established as

Rα =

{
θ :

1

4
l(θ) ≤ χ2

p+1(α)

}
,

where χ2
p+1(α) is the upper α-quantile of distribution of χ2

p+1.

Next, we construct the empirical likelihood confidence region for θ1, a sub-vector of θ.

Define θ0 = (θT10, θ
T
20)

T , The hypothesis is H0 : θ1 = θ10, where θ1 ∈ Rq and θ2 ∈ Rp+1−q.

Based on the above proposed method, the profile empirical likelihood ratio is defined as

l∗(θ1) = inf
θ2

l(θ1, θ2).

Following Qin and Lawless (1994), we have Theorem 2.2 for the profile log-empirical likeli-

hood ratio l∗(θ1),

Theorem 6.2. Under Assumptions 1-5, consider the null hypothesis H0 : θ1 = θ10, as

n −→ ∞,

1

4
l∗(θ10)

D−→ χ2
q. (6.13)

Thus, we can construct the empirical likelihood confidence region for θ10 with 100(1−

α)% level. Define the EL confidence region

R∗
α =

{
θ1 :

1

4
l∗(θ1) ≤ χ2

q(α)

}
.
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We establish the theorem with four chi-squared distribution which avoids estimating the

complicated matrix in Zhao (2010).

6.3 Numerical Studies

We conduct several simulation studies to verify our theorems. We compare the coverage

probability of the new empirical likelihood confidence region for relatively small samples

with normal approximation (NA) confidence region proposed by Fine et al. (1998). The link

function h is the natural logarithm function. The ϵ is generated from a standard extreme

value function, which specifies the transformation model as the proportional hazards model.

The survival time is obtained from above settings. Let wij(·) = 1. t0 is corresponding to

20% upper quantile of censoring data. The censoring time follows uniform distribution from

0 to c, where c is the parameter used to adjust the censoring rate, such as 0.1, 0.2, 0.3 and

0.4. In the first data setting (A), β = (−0.5, 0.5). Z1 follows uniform distribution between

0 and 1, and Z2 follows Bernoulli distribution with a parameter of 0.2. For the second

data setting (B), we let β1 = 1 and β2 = 0. Z1 follows uniform distribution [0, 1], and Z2

follows Bernoulli distribution with 0.2. We choose the sample sizes 60 and 100. With 1000

repetitions, coverage probabilities of 95% empirical likelihood and normal approximation

confidence regions for θ are reported in Table 6.1. For the sample size 60, the new empirical

likelihood has better performance than normal approximation does. When the sample size

increases to 100, the estimated coverage probabilities for both methods are close to 95%

nominal level.

6.4 Discussion

In this chapter, we proposed the empirical likelihood procedure for the semiparametric

transformation model. After adjusting each term of the estimating equations, we derived

the limiting distribution of log-empirical likelihood ratio. In the proof, we combined the

properties of U-statistics and martingale techniques. Moreover, we conducted a simulation

study in terms of coverage probability and observed that empirical likelihood method has
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an empirical advantage in small sample settings.

In recent years, high dimensional data analysis has dominated in statistical community.

The diverging number of dimensions p should be considered into the transformation model in

the future. However, problems of the uniform convergence in high dimensional data analysis

will be an extremely challenging topic for statistical researchers. On the other hand, the

simulation algorithm needs to be optimized appropriately because the computational burden

would be extremely heavy in the high dimensional situation.

We propose a jackknife EL for the transformations model in order to improve the effi-

ciency. We use the jackknife procedure for our current estimation equation V̂ (θ) and obtain

the pseudo-sample to establish the empirical likelihood. The following estimator from partial

samples without lth observation is as follows.

V̂−l(θ) =
1

n(n− 1)

n∑
i=1,i ̸=l

n∑
j=1,j ̸=i,j ̸=l

{b̂(Ui, Uj; θ)}.

Thus, we define jackknife pseudo samples.

Q̂l(θ) = nV̂(θ)− (n− 1)V̂−l(θ), l = 1, ..., n.

As Jing et al. (2009) showed, we propose the jackknife empirical likelihood procedure. The

Table 6.1 Coverage probability of 95% empirical likelihood confidence region for β.

n censoring rate EL (A) NA (A) EL (B) NA (B)
60 10% 0.951 0.909 0.924 0.906
60 20% 0.940 0.927 0.955 0.926
60 30% 0.958 0.926 0.969 0.943
60 40% 0.942 0.914 0.956 0.929
100 10% 0.939 0.939 0.948 0.956
100 20% 0.951 0.925 0.952 0.955
100 30% 0.949 0.944 0.958 0.951
100 40% 0.955 0.938 0.960 0.934
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empirical likelihood ratio is

lJ(θ) =
sup

{∏n
i=1 pi :

∑n
i=1 pi = 1,

∑n
i=1 piQ̂i(θ) = 0, pi ≥ 0

}
sup {

∏n
i=1 pi :

∑n
i=1 pi = 1, pi ≥ 0}

. (6.14)

Using the Lagrange multiplier method (Owen, 1988, 1990), we have

lJ(θ) = −2 log{nnLJ(θ)} = 2
n∑

i=1

log{1 + λ(θ)T Q̂i(θ)}, (6.15)

where θ satisfies the following equation

1

n

n∑
i=1

Q̂i(θ)

1 + λ(θ)T Q̂i(θ)
= 0. (6.16)

Thus, the asymptotical theory about jackknife empirical likelihood for the transformation

model is shown as

Theorem 6.3. Under regulation conditions, consider the null hypothesis θ = θ0, as n −→ ∞

lJ(θ0)
D−→ χ2

p+1, (6.17)

where χ2
p+1 is a standard chi-squared random variable with p+ 1 degrees of freedom.

For the proof of Theorem 6.3, using the consequence about jackknife empirical likelihood

method for U-statistics proposed by Jing et al. (2009) and the scheme of proofs of Zhang and

Zhao (2012), we can prove the Wilks’ theorem and obtain the jackknife empirical likelihood

confidence interval for β.
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CHAPTER 7

CONCLUSIONS

In the first part of this dissertation, we apply smoothed jackknife empirical likelihood

(JEL) method to construct confidence intervals for the receiver operating characteristic

(ROC) curve with missing data. After using hot deck imputation, we generate pseudo-

jackknife sample to develop jackknife empirical likelihood. Comparing to traditional empir-

ical likelihood method, the smoothed JEL has a great advantage in saving computational

cost. The smoothed jackknife empirical likelihood ratio converges to a scaled chi-squared

distribution. Furthermore, simulation studies support our conclusion.

Next, the difference of two correlated receiver operating characteristic (ROC) curves is

used to identify diagnostic tests with stronger discriminant ability. We employ JEL method

to construct confidence intervals for the difference of two correlated continuous-scale ROC

curves. Under mild conditions, we prove that the smoothed jackknife empirical log likelihood

ratio is asymptotically chi-squared distribution. We carry out an extensive simulation study

to demonstrate the goo d performance. A real data set is used to illustrate our method.

Partial AUC is a practical and useful measurement for assessing the diagnostic test.

We proposed the JEL method for the inference of the partial AUC and the difference of

two pAUC’s. We prove that the Wilks’ theorem for JEL method still holds. Using the

jackknife pseudo-sample, we can avoid estimating several nuisance variables which have

to be estimated in existing methods. Furthermore, we conduct the simulation studies to

demenstrate the good performance with a moderate computational cost.

Quantile is a well-known robust statistics measure. Some derivatives, such as the differ-

ence of two quantiles, are natural measure to compare two populations and check the pattern

of its distribution, such as inter-quartile range and tail-behavior. We propose a smoothed

nonparametric estimation equation for the difference of two quantiles with one sample or
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two samples. Using the jackknife pseudo-sample technique for the estimation equation, we

construct the empirical likelihood (EL) ratio and study its asymptotical properties. Due to

avoiding estimating link variables, the simulation studies demonstrate that jackknife empir-

ical likelihood method has computational efficiency compared with traditional EL methods.

Coverage probability and average length of confidence intervals support our methods. Fur-

thermore, we can apply the JEL to make inference for the low income proportion, ratio of

quantiles, etc.

The transformation model plays an important role in survival analysis. We study the

linear transformation model based on new empirical likelihood. Motivated by Fine et al.

(1998) and Yu et al. (2011), we introduce the truncated survival time t0 and adjust each

term of estimating equations to improve the accuracy of coverage probability. We prove

that the log-likelihood ratio has the asymptotic distribution 4χ2
p+1. The new empirical

likelihood method avoids estimating the complicated covariance matrix in contrast to normal

approximation method and empirical likelihood method developed by Zhao (2010). In the

simulation study, compared to the normal approximation method, our method demonstrates

better performance in the small samples. The JEL can be used to make inference for the

transformation model in order to improve the efficiency of the existing EL methods.
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APPENDICES

Appendix A

Proof of theorems for Chapter 2

Lemma A.1. Under conditions in Theorem 2.1, as n −→ ∞, we have

√
m+ n

{
R̂m,n(p)−R(p)

}
D−→ N(0, σ2

1(p)),

where σ2
1(p) is defined in Theorems 2.1 and R(p) is the true ROC curve at point p ∈ (a, b).

Proof. Since R
′′
is continuous at p ∈ (a, b), R

′
and R

′′
are bounded in (a, b). Denote

σ − algebra Br1 = {σ(xi, δxi, i ∈ Sr1)} and Bm = {σ(xi, δxi, i = 1, ...,m)}. Because x∗
i

are only dependent on Br1 , from Qin and Zhang (2008), we have

E(I(x∗
i ≤ x)|Br1) = E(I(x∗

i ≤ x)|Bm) =
1

r1

∑
i∈Sr1

I(xi ≤ x).

and

√
m{Fm(x)− F (x)} =

√
m

√
r1

1
√
r1

∑
i∈Sr1

{I(xi ≤ x)− F (x)}

+

√
m1√
m

1
√
m1

∑
i∈Sm1

{I(x∗
i ≤ x)− E(I(x∗

i ≤ x)|Br1)} .

Denote the first term as Vm(x) and the second term as Um(x). The response rate P1 > 0

assures the r1 → ∞ and m1 → ∞ when m → ∞. We define the empirical distribu-

tion Fr1(x) = 1/r1
∑

i∈Sr1
I(xi ≤ x) of x1, ... , xm and x∗

i , i ∈ Sm1 with the distri-

bution function Fr1(x). Denote Fr1,m1(x) = 1/m1

∑
i∈Sm1

{I(x∗
i ≤ x)}. Fr1,m1(x) is the
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empirical distribution of x∗
1, ..., x∗

m1
and the bootstrapped version of Fr1(x) with weight-

ing mechanism Mm1 which is independent of Br1 since we can rewrite that Fr1,m1(x) =

1/m1

∑
i∈Sr1

{
M∗

m1,i
I(xi ≤ x)

}
from the equation (4.4) in Wellner (1992), where the weight,

Mm1 = {M∗
m1,1

, ...,M∗
m1,m1

}, follows multinomial distribution. By Theorem 4.1 of Bickel

and Freedman (1981), we have
√
m1{Fr1,m1(x) − Fr1(x)} =⇒ B(F (x)), where B(·) is the

Brownian bridge on [0, 1]. Hence, E(Um(s)Um(t))
P−→ (1 − P1){F (min(s, t)) − F (s)F (t)}

and E(Um(x)|Br1) = 0. By Donsker’s theorem and multivariate central limit theorem from

Theorem 19.3 of van der Vaart (1998),
√
r1 {Fr1(x)− F (x)} =⇒ B(F (x)) and B(F (x)) is

tight. E(Vm(s)Vm(t))
P−→ P−1

1 {F (min(s, t))−F (s)F (t)}, where B(·) is the Brownian bridge

on [0, 1]. Then, we consider

(Vm(x), Um(x)) =

(√
m

√
r1

√
r1 {Fr1(x)− F (x)} ,

√
m1√
m

√
m1{Fr1,m1(x)− Fr1(x)}

)
.

We know that Brownian bridge B(F (x)) is tight and Vm(x) and Um(x) marginally con-

verge to Brownian bridge, i.e., Vm(x) =⇒
√
1− P1B(F (x)) and Um(x) =⇒

√
P−1
1 B(F (x)),

respectively. From the equation (3.2) in Giné and Zinn (1990), we know that Um(x)
P 
W√

P−1
1 B(F (x)), where weak convergence

P 
W

is defined as follows by Kosorok (2008),

sup
h∈BL1(F)

∥E.|Br1
h{Um(x)} − Eh{

√
P−1
1 B(F (x))}∥ → 0.

Note Mm1 is measurable conditional on Br1 . Vm(s) and Um(s) are uncorrelated since

E(Vm(s)Um(s)) = E(Vm(s)E(Um(s)|Br1))) = 0.

By p.180 in van der Vaart and Wellner (1996) and Theorem 2.2 in Kosorok (2008),

(Vm(x), Um(x)) =⇒
(√

P−1
1 B̃1(F (x)),

√
1− P1B̃2(F (x))

)
,

where B̃1(F (x)) and B̃2(F (x)) are independent copies of B(F (x)). The sequence converges
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jointly in distribution to two independent Brownian bridges, which implies that

W1(x) =
√
m{Fm(x)− F (x)} = Vm(x) + Um(x) =⇒

√
1− P1 + P−1

1 B(F (x)). (A.1)

Similarly, we have W2(y) =
√
n{Gn(x)−G(x)} =⇒

√
1− P2 + P−1

2 B(G(x)).

Then, we consider the uniform convergence of empirical distribution function after hot

deck imputation. Mojirsheibani (2001) derived the Glivenko-Cantelli Theorem with com-

pletely randomly missing data.

sup
x∈R

|Fm(x)− F (x)| −→ 0 a.s. and sup
y∈R

|Gn(y)−G(y)| −→ 0 a.s. (A.2)

We write

1− 1

m

m∑
j=1

K

(
1− p−G(xI,j)

h

)
−R(p)

= F (G−1(1− p))−
∫ ∞

−∞
K

(
1− p−G(x)

h

)
dFm(x)

= F (G−1(1− p))−K

(
1− p−G(x)

h

)
Fm(x)|∞−∞ +

∫ ∞

−∞
Fm(x)dK

(
1− p−G(x)

h

)
= F{G−1(1− p)} −K

(
−p

h

)
−
∫ ∞

−∞
Fm(x)w

(
1− p−G(x)

h

)
h−1dG(x)

= F{G−1(1− p)} −K

(
−p

h

)
−
∫ 1

−1

Fm{G−1(1− p− xh)}w(x)dx

= F{G−1(1− p)} − Fm(G
−1(1− p))−

∫ 1

−1

[
Fm{G−1(1− p− xh)} − Fm{G−1(1− p)}

]
w(x)dx

= F{G−1(1− p)} − Fm{G−1(1− p)} −
∫ 1

−1

[
F{G−1(1− p− xh)} − F{G−1(1− p)}

]
w(x)dx

−
∫ 1

−1

([Fm{G−1(1− p− xh)} − F{G−1(1− p− xh)}]

−
[
Fm{G−1(1− p)} − F{G−1(1− p)}

]
)w(x)dx.

Because −p/h is beyond the support of kernel function K as h → 0, K(−p/h) = 0 when



77

p ∈ (a, b).

∫ ∞

−∞
[F{G−1(1− p− xh)} − F{G−1(1− p)}]w(x)dx

= −
∫ (1−p)/h

−p/h

R
′
(p)xhw(x)dx− 1

2

∫ (1−p)/h

−p/h

R
′′
(p∗)(xh)2w(x)dx

= −1

2

∫ 1

−1

R
′′
(p∗)(xh)2w(x)dx

= O(h2), (A.3)

where p∗ is between p and p + xh. Because p ∈ (a, b), we have Fm{G−1(1 − p − xh)} −

F{G−1(1 − p − xh)} − m−1/2
√

1− P2 + P−1
2 B[F{G−1(1 − p − xh)}] = op(m

−1/2), for any

x ∈ [−1, 1]. Using the conditions on h and the continuity of BF (x),

∫ (1−p)/h

−p/h

(Fm{G−1(1− p− xh)} − F{G−1(1− p− xh)} − [Fm{G−1(1− p)}

− F{G−1(1− p)}])w(x)dx

=

∫ 1

−1

Fm{G−1(1− p− xh)} − F{G−1(1− p− xh)}

−m−1/2

√
1− P2 + P−1

2 B[F{G−1(1− p− xh)}]w(x)dx

−
∫ 1

−1

{
Fm{G−1(1− p)} − F{G−1(1− p)} −m−1/2

√
1− P2 + P−1

2 B[F{G−1(1− p)}]
}
w(x)dx

+

√
1− P2 + P−1

2

∫ 1

−1

{
m−1/2B[F{G−1(1− p− xh)}]−m−1/2B[F{G−1(1− p)}]

}
w(x)dx

= op(m
−1/2). (A.4)
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Hence, by (A.1), (A.2), (A.3) and (A.4), we have

√
m

[
1− 1

m

m∑
j=1

K

{
1− p−G(xI,j)

h

}
−R(p)

]

=
√
m[F{G−1(1− p)} − Fm{G−1(1− p)}] + op(m

−1/2m1/2) +O(m1/2h2)

D−→ N(0, (1− P1 + P−1
1 )F{G−1(1− p)}{1− F [G−1(1− p)]})

= N(0, (1− P1 + P−1
1 )R(p){1−R(p)}). (A.5)

Write

√
n

m

m∑
j=1

K

(
1− p−Gn(xI,j)

h

)
−

√
n

m

m∑
j=1

K

(
1− p−G(xI,j)

h

)
=

∫ ∞

−∞
K

(
1− p−Gn(x)

h

)
d
√
nFm(x)−

∫ ∞

−∞
K

(
1− p−G(x)

h

)
d
√
nFm(x).

(A.6)

Notice that

∫ ∞

−∞
K

(
1− p−Gn(x)

h

)
d
√
m{Fm(x)− F(x)} −

∫ ∞

−∞
K

(
1− p−G(x)

h

)
d
√
m{Fm(x)− F(x)}

= K

(
1− p−Gn(x)

h

)√
m{Fm(x)− F(x)} |∞−∞ −K

(
1− p−G(x)

h

)√
m{Fm(x)− F(x)} |∞−∞

−
∫ ∞

−∞
W1(x)dK

(
1− p−Gn(x)

h

)
+

∫ ∞

−∞
W1(x)dK

(
1− p−G(x)

h

)
=

1

h

∫ ∞

−∞
W1(x)w

(
1− p−G(x)

h

)
dG(x)− 1

h

∫ ∞

−∞
W1(x)w

(
1− p−Gn(x)

h

)
dGn(x)

=

∫ 1

−1

W1{G−1(1− p− hu)}w(x)du−
∫ 1

−1

W1{G−1
n (1− p− hu)}w(x)du

=

√
1− P2 + P−1

2

∫ 1

−1

B[F{G−1(1− p− hu)}]−B[F{G−1
n (1− p− hu)}]w(x)du+ op(1)

= op(1),

because of the continuity of B(F (x)) and the proof in P. 1525 of Gong et al. (2010). Thus,
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we can adjust the (A.6) as follows

∫ ∞

−∞
K

(
1− p−Gn(x)

h

)
d
√
nFm(x)−

∫ ∞

−∞
K

(
1− p−G(x)

h

)
d
√
nFm(x)

=
√
n

∫ ∞

−∞
K

(
1− p−Gn(x)

h

)
−K

(
1− p−G(x)

h

)
dF(x)

=
√
n

∫ ∞

−∞

(
G(x)−Gn(x)

h

)
w

(
1− p−G(x)

h

)
dF(x)

+
√
n

∫ ∞

−∞

1

2

(
G(x)−Gn(x)

h

)2

w
′
(
1− p−G(x) + ξx

h

)
dF(x). (A.7)

Denote R
′
(p) as the first derivative of R(p). The Brownian bridge B1(G(x)) and

B2(G(x)) are uniformly bounded for x ∈ (a, b). Also, we have the continuities of Brow-

nian bridge B(·) and R
′
(p). Thus, B(x) is uniformly bounded. We have

√
n

∫ ∞

−∞

1

2

(
G(x)−Gn(x)

h

)2

w
′
(
1− p−G(x) + ξx

h

)
dF(x)

=
1

2
√
nh2

∫ ∞

−∞

{√
n(G(x)−Gn(x))

}2
w

′
(
1− p−G(x) + ξx

h

)
dF(x)

=
1

2
√
nh2

∫ 1

−1

[
W2{G−1(1− p− uh+ ξx)}

]2
w

′
(u)dF{G−1(1− p− uh+ ξx)}

=
1

2
√
nh

∫ 1

−1

[
W2{G−1(1− p− uh+ ξx)}

]2
w

′
(u)R

′
(p+ uh+ ξx)du

=

√
1− P2 + P−1

2

2
√
nh

∫ 1

−1

{
B[G{G−1(1− p− uh+ ξx)}]

}2
w

′
(u)R

′
(p+ uh+ ξx)du+ op(1)

=

√
1− P2 + P−1

2

2
√
nh

∫ 1

−1

{B(1− p− uh+ ξx)}2 w
′
(u)R

′
(p+ uh+ ξx)du+ op(1)

=

√
1− P2 + P−1

2

2
√
nh

∫ 1

−1

{B(1− p)}2w′
(u)R

′
(p)du+ op(1)

=op(1). (A.8)



80

Recall that

√
n

∫ ∞

−∞

(
G(x)−Gn(x)

h

)
w

(
1− p−G(x)

h

)
dF(x)

=

∫ 1

−1

W2{G−1(1− p− hu)}w(u)h−1dF (G−1(1− p− hu))

=

∫ 1

−1

√
1− P2 + P−1

2 B[G{G−1(1− p− hu)}]w(u)(R′
(p+ uh))du+ op(1)

=

√
1− P2 + P−1

2 R
′
(p)B(1− p)

∫ 1

−1

w(u)du+ op(1)

D−→ N(0, (1− P2 + P−1
2 )p(1− p)R

′2(p)). (A.9)

Then, we have

√
m+ n{R̂m,n(p)−R(p)}

=

√
m+ n√

n

√
n

{
1

m

m∑
j=1

K

(
1− p−G(xI,j)

h

)
− 1

m

m∑
j=1

K

(
1− p−Gn(xI,j)

h

)}

+

√
m+ n√
m

√
m

{
1− 1

m

m∑
j=1

K

(
1− p−G(xI,j)

h

)
−R(p)

}
.

Combining (A.6), (A.7), (A.8) and (A.9) and the independence of first term and second

term, we can obtain the conclusion as follows,

√
m+ n{R̂m,n(p)−R(p)} D−→ N(0, σ2

1(p)).

Lemma A.2. Under conditions in Theorem 2.1, for p ∈ (a, b), as n −→ ∞, we have

√
m+ n

{
1

m+ n

m+n∑
i=1

V̂i(p)−R(p)

}
D−→ N(0, σ2

1(p)),
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where σ2
1(p) is defined in Lemma A.1.

Proof. From the definition of V̂i(p), we have

1

m+ n

m+n∑
i=1

V̂i(p)

=
1

m+ n

m+n∑
i=1

{(m+ n)R̂m,n(p)− (m+ n− 1)R̂m,n,i(p)}

=
1

m+ n

m∑
i=1

[(m+ n)

{
1− 1

m

m∑
j=1

K

(
1− p−Gn(xI,j)

h

)}

− (m+ n− 1)

{
1− 1

m− 1

m∑
j=1,j ̸=i

K

(
1− p−Gn(xI,j)

h

)}
]

+
1

m+ n

m+n∑
i=m+1

[(m+ n)

{
1− 1

m

m∑
j=1

K

(
1− p−Gn(xI,j)

h

)}

− (m+ n− 1)

{
1− 1

m

m∑
j=1

K

(
1− p−Gn,m−i(xI,j)

h

)}
]
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=
1

m+ n

m∑
i=1

1− m+ n

m

{
m∑
j=1

K

(
1− p−Gn(xI,j)

h

)
−

m∑
j=1,j ̸=i

K

(
1− p−Gn(xI,j)

h

)}

+

(
m+ n− 1

m− 1
− m+ n

m

) m∑
j=1,j ̸=i

K

(
1− p−Gn(xI,j)

h

)

+
1

m+ n

n∑
i=1

[1 +
m+ n− 1

m
{

m∑
j=1

K

(
1− p−Gn,−i(xI,j)

h

)

−
m∑
j=1

K

(
1− p−Gn(xI,j)

h

)
}+

(
m+ n− 1

m
− m+ n

m

) m∑
j=1

K

(
1− p−Gn(xI,j)

h

)
]

=
1

m+ n
(m+ n− m+ n

m

m∑
j=1

K

(
1− p−Gn(xI,j)

h

)

+
m+ n− 1

m

n∑
i=1

m∑
j=1

{
K

(
1− p−Gn,−i(xI,j)

h

)
−K

(
1− p−Gn(xI,j)

h

)}
)

+
1

m+ n
{
(
m+ n− 1

m− 1
− m+ n

m

)
(m− 1)

+

(
m+ n− 1

m
− m+ n

m

)
n}

m∑
j=1

K

(
1− p−Gn(xI,j)

h

)

=
1

m+ n
(m+ n− m+ n

m

m∑
j=1

K

(
1− p−Gn(xI,j)

h

)

+
m+ n− 1

m

n∑
i=1

m∑
j=1

{
K

(
1− p−Gn,−i(xI,j)

h

)
−K

(
1− p−Gn(xI,j)

h

)}
). (A.10)

Write

n∑
i=1

m∑
j=1

{
K

(
1− p−Gn,−i(xI,j)

h

)
−K

(
1− p−Gn(xI,j)

h

)}

=
m∑
j=1

{
n∑

i=1

Gn,−i(xI,j)−Gn(xI,j)

h

}
w

(
1− p−Gn(xI,j)

h

)

+
n∑

i=1

m∑
j=1

1

2

{
Gn,−i(xI,j)−Gn(xI,j)

h

}2

w
′
(
1− p− ξn,i,j

h

)

=
n∑

i=1

m∑
j=1

1

2

{
Gn,−i(xI,j)−Gn(xI,j)

h

}2

w
′
(
1− p− ξn,i,j

h

)
, (A.11)
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where ξn,i,j is between the Gn(xI,j) and Gn,−i(xI,j),

Gn(xI,j)−Gn,−i(xI,j) =
1

n− 1
{Gn(xI,j)− I(YI,i ≤ xI,j)} = Op

(
1

n− 1

)
, (A.12)

and
n∑

i=1

{Gn,−i(xI,j)−Gn(xI,j)} = 0,

because

Gn(xI,j)−Gn,−i(xI,j)

=
1

n

n∑
k=1

I(yI,i ≤ xI,j)−
1

n− 1

n∑
i=k,k ̸=i

I(yI,i ≤ xI,j)

=

(
1

n
− 1

n− 1

) n∑
k=1

I(yI,i ≤ xI,j)−
1

n− 1
{

n∑
k=1

I(yI,i ≤ xI,j)−
n∑

i=k,k ̸=i

I(yI,i ≤ xI,j)}

=
1

n− 1
{Gn(xI,j)− I(yI,i ≤ xI,j)}.

By similar steps in (A.11) and (A.12), we have

n∑
i=1

m∑
j=1

{
K

(
1− p−Gn,−i(xI,j)

h

)
−K

(
1− p−Gn(xI,j)

h

)}
= Op

(
mn

(n− 1)2h

)
.

(A.13)

Combining (A.10), (A.13) and Lemma A.1, we have

√
m+ n

{
1

m+ n

m+n∑
i=1

V̂i(p)−R(p)

}

=
√
m+ n

{
1− 1

m

m∑
j=1

K

(
1− p−Gn(xI,j)

h

)
+Op

(
m+ n− 1

(m+ n)m

mn

h(n− 1)2

)
−R(p)

}

=
√
m+ n

{
R̂m,n(p)−R(p) +Op

(
(m+ n− 1)n

(m+ n)(n− 1)2h

)}
D−→ N(0, σ2

1(p)).
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Lemma A.3. Under conditions in Theorem 2.1, for p ∈ (a, b), as n −→ ∞, we have

1

m+ n

m+n∑
i=1

{
V̂i(p)−R(p)

}2 D−→ σ2
2(p),

where σ2
2(p) is defined in Theorem 2.2.

Proof. For 1 ≤ i ≤ m,

V̂i(p) = 1− m+ n

m

m∑
j=1

K

(
1− p−Gn(xI,j)

h

)
+

m+ n− 1

m− 1

m∑
j=1,j ̸=i

K

(
1− p−Gn(xI,j)

h

)

= 1 +

(
m+ n− 1

m− 1
− m+ n

m

) m∑
j=1

K

(
1− p−Gn(xI,j)

h

)

− m+ n− 1

m− 1

{
m∑
j=1

K

(
1− p−Gn(xI,j)

h

)
−

m∑
j=1,j ̸=i

K

(
1− p−Gn(xI,j)

h

)}

= 1 +
n

(m− 1)m

m∑
j=1

K

(
1− p−Gn(xI,j)

h

)
− m+ n− 1

m− 1
K

(
1− p−Gn(xI,i)

h

)
,

and

V̂ 2
i (p) =

{
1− m+ n− 1

m− 1
K

(
1− p−Gn(xI,i)

h

)}2

+

{
n

(m− 1)m

m∑
j=1

K

(
1− p−Gn(xI,j)

h

)}2

+ 2

[
1− m+ n− 1

m− 1
K

(
1− p−Gn(xI,i)

h

){
n

(m− 1)m

m∑
j=1

K

(
1− p−Gn(xI,j)

h

)}]
,
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which implies that

m∑
i=1

V̂ 2
i (p) = m+

(m+ n− 1)2

(m− 1)2

m∑
i=1

K2

(
1− p−Gn(xI,i)

h

)
− 2(m+ n− 1)

m− 1

m∑
j=1

K

(
1− p−Gn(xI,i)

h

)
+m

{
n

(m− 1)m
Σm

i=1K

(
1− p−Gn(xI,j)

h

)}2

+
2n

(m− 1)m

{
m− m+ n− 1

m− 1

m∑
j=1

K

(
1− p−Gn(xI,i)

h

)}{ m∑
j=1

K

(
1− p−Gn(xI,j)

h

)}
.

(A.14)

Since K2 is a distribution function, from Gong et al. (2010) and (A.5), we have that

1

m

m∑
i=1

K2

(
1− p−Gn(xI,i)

h

)
P−→ F{G−1(1− p)}.

Hence, by (A.14) and Lemma A.1,

1

m+ n

m∑
i=1

V̂ 2
i (p) =

m

m+ n
+

(m+ n− 1)2

(m+ n)(m− 1)2

m∑
i=1

K2

(
1− p−Gn(xI,i)

h

)
− 2(m+ n− 1)

(m− 1)(m+ n)

m∑
i=1

K

(
1− p−Gn(xI,i)

h

)

+
n2

(m− 1)2m(m+ n)

{
m∑
j=1

K

(
1− p−Gn(xI,j)

h

)}2

+
2n

(m+ n)(m− 1)m

{
m− m+ n− 1

m− 1

m∑
i=1

K

(
1− p−Gn(xI,i)

h

)}
{

m∑
j=1

K

(
1− p−Gn(xI,j)

h

)}
D−→ r

r + 1
− 2F{G−1(1− p)}+ r + 1

r
F{G−1(1− p)}+ 1

r(r + 1)
[F{G−1(1− p)}]2

+
2

r + 1
F{G−1(1− p)}[1− r + 1

r
F{G−1(1− p)}]

=
r + 1

r
R(p)− 2r + 1

r(r + 1)
R2(p). (A.15)
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Next, for m+ 1 ≤ i ≤ m+ n, we can write that

V̂i(p) = 1− 1

m

m∑
j=1

K

(
1− p−Gn(xI,j)

h

)

+
m+ n− 1

m

m∑
j=1

{
K

(
1− p−Gn,m−i(xI,j)

h

)
−K

(
1− p−Gn(xI,j)

h

)}
,

and

V̂ 2
i (p) =

{
1− 1

m

m∑
j=1

K

(
1− p−Gn(xI,j)

h

)}2

+

[
m+ n− 1

m

m∑
j=1

{
K

(
1− p−Gn,m−i(xI,j)

h

)
−K

(
1− p−Gn(xI,j)

h

)}]2

+ 2

{
1− 1

m

m∑
j=1

K

(
1− p−Gn(xI,j)

h

)}
[
m+ n− 1

m

m∑
j=1

{
K

(
1− p−Gn,m−i(xI,j)

h

)
−K

(
1− p−Gn(xI,j)

h

)}]

= Ii(p) + IIi(p) + IIIi(p), (A.16)

By (A.13), we have

1

m+ n

m+n∑
i=m+1

IIIi(p) = Op((nh)
−1). (A.17)
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Define Ai =
[∑m

j=1

{
K
(

1−p−Gn,−i(xI,j)

h

)
−K

(
1−p−Gn(xI,j)

h

)}]2
. By (A.13), we have

Ai =

[
m∑
j=1

{
K

(
1− p−Gn,−i(xI,j)

h

)
−K

(
1− p−Gn(xI,j)

h

)}]2

=

{∫ ∞

−∞
mK

(
1− p−Gn,−i(x)

h

)
dFm(x)−

∫ ∞

−∞
mK

(
1− p−Gn(x)

h

)
dFm(x)

}2

= {m
∫ ∞

−∞

(
Gn,−i(x)−Gn(x)

h

)
w

(
1− p−Gn(x)

h

)
dFm(x)

+m

∫ ∞

−∞

1

2

(
Gn,−i(x)−Gn(x)

h

)2

w
′
(
1− p−Gn(x) + ξ

h

)
dFm(x)}2 + op(1)

=

{∫ ∞

−∞
m

(
Gn,−i(x)−Gn(x)

h

)
w

(
1− p−Gn(x)

h

)
dFm(x)

}2

+ op(1).

By (A.1), (A.2), the continuity of R
′
, and Assumptions A.4 and A.5

1

m+ n

n∑
i=1

Ai =
m2

m+ n

n∑
i=1

{
∫ ∞

−∞

∫ ∞

−∞

(
Gn,−i(x1)−Gn(x1)

h

)(
Gn,−i(x2)−Gn(x2)

h

)
w

(
1− p−Gn(x1)

h

)
w

(
1− p−Gn(x2)

h

)
dFm(x1)dFm(x2)}+ op(1)
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=
m2

(m+ n)(n− 1)2h2

n∑
i=1

[

∫ ∞

−∞

∫ ∞

−∞
{Gn(x1)− I(YI,i ≤ x1)}{Gn(x2)− I(YI,i ≤ x2)}

w

(
1− p−Gn(x1)

h

)
w

(
1− p−Gn(x2)

h

)
dFm(x1)dFm(x2)] + op(1)

=
m2

(m+ n)(n− 1)2h2

∫ ∞

−∞

∫ ∞

−∞
{

n∑
i=1

{Gn(x1)Gn(x2) + I(YI,i ≤ x1)I(YI,i ≤ x2)

− I(YI,i ≤ x1)Gn(x2)−Gn(x1)I(YI,i ≤ x2)}

w

(
1− p−Gn(x1)

h

)
w

(
1− p−Gn(x2)

h

)
dFm(x1)dFm(x2)}+ op(1)

=
nm2

(m+ n)(n− 1)2h2

∫ ∞

−∞

∫ ∞

−∞
[{Gn(x1 ∧ x2)−Gn(x1)Gn(x2)}

w

(
1− p−Gn(x1)

h

)
w

(
1− p−Gn(x2)

h

)
dFm(x1)dFm(x2)] + op(1)

=
nm2

(m+ n)(n− 1)2h2

∫ 1

−1

∫ 1

−1

[Gn{F−1
m (v1) ∧ F−1

m (v2)} −Gn{F−1
m (v1)}Gn{F−1

m (v2)}]

w

(
1− p−Gn(F

−1
m (v1))

h

)
w

(
1− p−Gn(F

−1
m (v2))

h

)
dv1dv2 + op(1).

From the proof of Lemma A.1 of Gong et al. (2010), the above equation is

=
nm2

(m+ n)(n− 1)2h2

∫ 1

−1

∫ 1

−1

[G{F−1(v1) ∧ F−1(v2)} −G{F−1(v1)}G{F−1(v2)}]

w

(
1− p−G{F−1(v1)}

h

)
w

(
1− p−G{F−1(v2)}

h

)
dv1dv2 + op(1)

=
nm2

(m+ n)(n− 1)2

∫ 1

−1

∫ 1

−1

[G{G−1(1− p− hu1) ∧G−1(1− p− hu2)} −G(G−1(1− p− hu2))

Gn{G−1(1− p− hu2)}]w(u1)w(u2)dF{G−1(1− p− hu2)}dF{G−1(1− p− hu1)}+ op(1)

=
nm2

(m+ n)(n− 1)2

∫ 1

−1

∫ 1

−1

[G{G−1(1− p− hu1) ∧G−1(1− p− hu2)}

−G{G−1(1− p− u2)}Gn{G−1(1− p− u2)}] w(u1)w(u2)R
′
(p+ hu2)R

′
(p+ hu1)d(u2)d(u1) + op(1)

=
nm2

(m+ n)(n− 1)2

∫ 1

−1

∫ 1

−1

[{(1− p− hu1) ∧ (1− p− hu2)− (1− p− hu1)(1− p− hu2)}

w(u1)w(u2)R
′(p)R

′
(p)]d(u2)d(u1) + op(1)

=
nm2

(m+ n)(n− 1)2
{(1− p) ∧ (1− p)− (1− p)2}R′2(p)

∫ 1

−1

w(u1)d(u1)

∫ 1

−1

w(u2)d(u2) + op(1)
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=
nm2

(m+ n)(n− 1)2
{(1− p)− (1− p)2}R′2(p) + op(1)

P−→ r2

(1 + r)
p(1− p)R

′2(p). (A.18)

By (A.16), (A.17), (A.18) and Lemma A.1, we have

1

m+ n

m+n∑
i=m+1

V̂ 2
i (p)

P−→ 1

1 + r
R2(p) + (r + 1)p(1− p)R

′2(p). (A.19)

Hence, it follows from (A.15), (A.19) and Lemma A.2 that

1

m+ n

m+n∑
i=1

{V̂i(p)−R(p)}2

=
1

m+ n

m+n∑
i=1

V̂ 2
i (p) +R2(p)− 2

m+ n
R(p)

m+n∑
i=1

V̂i(p)

P−→ 1 + r

r
R(p)− 2r + 1

r(r + 1)
R2(p) +

1

1 + r
R2(p) + (r + 1)p(1− p)R

′2(p)− 2R2(p) +R2(p)

=

(
1 +

1

r

)
R(p){1−R(p)}+ (r + 1)p(1− p)R

′2(p)

= σ2
2(p).

Proof of Theorem 2.1 It follows directly from Lemmas A.2 and A.3. �

Proof of Theorem 2.2 Throughout let θ = R(p). Recall 1/(m+n)
∑m+n

i=1 (V̂i(p)−

θ)/{1 + λ(V̂i(p)− θ)} = 0. Define γi = λ{V̂i(p)− θ}. Following similar steps as Gong et al.

(2010), we have

|λ| = Op((m+ n)−1/2), (A.20)

and

max
1≤i≤m+n

|γi| = op(1). (A.21)
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Using (A.20) and (A.21), we have

0 =
1

m+ n

m+n∑
i=1

V̂i(p)− θ

1 + γi
=

1

m+ n

m+n∑
i=1

{V̂i(p)− θ} − Sm+nλ+Op((m+ n)−1),

which implies that

λ = S−1
m+n

1

m+ n

m+n∑
i=1

{V̂i(p)− θ}+Op((m+ n)−1), (A.22)

where Sm+n = 1/(m+n)
∑m+n

i=1 {V̂i(p)−θ}2. Using Taylor expansion, (A.20), (A.22), Lemma

A.1 and Lemma A.2, we have

l(R(p), p) = 2
m+n∑
i=1

log(1 + γi)

=
(
√
m+ n[ 1

m+n

∑m+n
i=1 {V̂i(p)− θ}])2

1
m+n

∑m+n
i=1 {V̂i(p)− θ}2

+ op(1)

D−→ σ2
1(p)χ

2
1

σ2
2(p)

. �
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Appendix B

Proof of Theorems for Chapter 3

Lemma B.1. Under the same assumptions as Theorem 3.1, for p ∈ (a, b), we have

√
m+ n{∆̂m,n(p)−∆(p)} D−→ N(0, σ2(p)), (B.1)

where σ2(p) is defined in Theorem 3.1.

Proof. Denote the empirical processes, Wx1(x) =
√
m{Fm,1(x) − F1(x)}, Wx2(x) =

√
m{Fm,2(x)−F2(x)}, Wy1(y) =

√
n{Gn,1(y)−G1(y)} and Wy2(y) =

√
n{Gn,2(y)−G2(y)}.

By Donsker’s theorem and the multivariate central limit theorem from p. 266 of Van

der Vaart (2000), we have

Cov {Wx1(s),Wx1(t)}
P−→ F1{min(s, t)} − F1(s)F1(t),

Cov {Wx2(s),Wx2(t)}
P−→ F2{min(s, t)} − F2(s)F2(t),

Cov {Wy1(s),Wy1(t)}
P−→ G1{min(s, t)} −G1(s)G1(t),

Cov {Wy2(s),Wy2(t)}
P−→ G2{min(s, t)} −G2(s)G2(t).

From the Glivenko-Cantelli theorem, we have

sup
x∈R

|Fm,1(x)− F1(x)| −→ 0 a.s.,

sup
x∈R

|Fm,2(x)− F2(x)| −→ 0 a.s.,

sup
y∈R

|Gn,1(y)−G1(y)| −→ 0 a.s.,

sup
y∈R

|Gn,2(y)−G2(y)| −→ 0 a.s.
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and

sup
x1,x2∈R

|Fm(x1, x2)− F (x1, x2)| −→ 0 a.s.,

sup
y1,y2∈R

|Gn(y1, y2)−G(y1, y2)| −→ 0 a.s.,

which are the generalization of the Glivenko-Cantelli theorem from the Corollary of Dehardt

(1971) in p. 2055. Also, we have the Glivenko-Cantelli theorem for quantile process by the

Corollary 1.4.1 of Csörgo (1987),

sup
x∈[0,1]

|F−1
m,1(x)− F−1

1 (x)| −→ 0 a.s.,

sup
x∈[0,1]

|F−1
m,2(x)− F−1

2 (x)| −→ 0 a.s.,

sup
y∈[0,1]

|G−1
n,1(y)−G−1

1 (y)| −→ 0 a.s.,

sup
y∈[0,1]

|G−1
n,2(y)−G−1

2 (y)| −→ 0 a.s.

Thus, supp∈[0,1] |1− Fm,1{G−1
n,1(1− p)} − R(p)| = supp∈[0,1] |Fm,1{G−1

n,1(1− p)} − F1{G−1
1 (1−

p)}| −→ 0 a.s. Then, we split the difference of two ROC curves into the following compo-

nents,

∆̂m,n(p)−∆(p) = {R̂m,n,1(p)−R1(p)} − {R̂m,n,2(p)−R2(p)}. (B.2)

For the ROC curve,

R̂m,n,1(p)−R1(p) =
1

m

m∑
j=1

K

(
1− p−G1(X1,j)

h

)
− 1

m

m∑
j=1

K

(
1− p−Gn,1(X1,j)

h

)

+ 1− 1

m

m∑
j=1

K

(
1− p−G1(X1,j)

h

)
−R1(p). (B.3)
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By Lemma 1 of Gong et al. (2010), we can obtain

1− 1

m

m∑
j=1

K

(
1− p−G1(X1,j)

h

)
−R1(p)

= F1{G−1
1 (1− p)} − Fm,1{G−1

1 (1− p)}+ op(m
−1/2)−K

(
−p

h

)
+O(h2)

= F1{G−1
1 (1− p)} − Fm,1{G−1

1 (1− p)}+ op(m
−1/2). (B.4)

By Gong et al. (2010), we have

√
n

{
1

m

m∑
j=1

K

(
1− p−Gn,1(X1,j)

h

)
− 1

m

m∑
j=1

K

(
1− p−G1(X1,j)

h

)}

=

∫ ∞

−∞
K

(
1− p−Gn,1(x)

h

)
d
√
nFm,1(x)−

∫ ∞

−∞
K

(
1− p−G1(x)

h

)
d
√
nFm,1(x). (B.5)

Notice that

√
n√
m

∫ ∞

−∞

{
K

(
1− p−Gn,1(x)

h

)
−K

(
1− p−G1(x)

h

)}
d
√
m{Fm,1(x)− F1(x)}

=

√
n√
m

{
K

(
1− p−Gn,1(x)

h

)
−K

(
1− p−G1(x)

h

)}√
m{Fm,1(x)− F1(x)} |∞−∞

−
√
n√
m

∫ ∞

−∞
Wx1(x)dK

(
1− p−Gn,1(x)

h

)
+

√
n√
m

∫ ∞

−∞
Wx1(x)dK

(
1− p−G1(x)

h

)
=

√
n

h
√
m

∫ ∞

−∞
Wx1(x)w

(
1− p−G1(x)

h

)
dG1(x)−

√
n

h
√
m

∫ ∞

−∞
Wx1(x)w

(
1− p−Gn,1(x)

h

)
dGn,1(x)

=

√
n√
m

∫ 1

−1

Wx1{G−1
1 (1− p− hu)}w(u)du−

√
n√
m

∫ 1

−1

Wx1{G−1
n,1(1− p− hu)}w(u)du

=

√
n√
m

∫ 1

−1

B[F1{G−1
1 (1− p− hu)}]−B[F1{G−1

n,1(1− p− hu)}]w(u)du+ op(1)

= op(1),

because of the continuity of B(F1(x)) and the proof in p. 1525, Gong et al. (2010). Thus,
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we can adjust the (B.5) as follows

∫ ∞

−∞
K

(
1− p−Gn,1(x)

h

)
d
√
nFm,1(x)−

∫ ∞

−∞
K

(
1− p−G1(x)

h

)
d
√
nFm,1(x)

=
√
n

∫ ∞

−∞
K

(
1− p−Gn,1(x)

h

)
−K

(
1− p−G1(x)

h

)
dF1(x)

=
√
n

∫ ∞

−∞

(
G1(x)−Gn,1(x)

h

)
w

(
1− p−Gn,1(x)

h

)
dF1(x)

+
√
n

∫ ∞

−∞

1

2

(
G1(x)−Gn,1(x)

h

)2

w
′
(
1− p−G1(x) + ξx

h

)
dF1(x)

= I + II, (B.6)

where ξx is between G1(x) and G1,n(x). Recall that

I =
√
n

∫ ∞

−∞

1

2

(
G1(x)−Gn,1(x)

h

)2

w
′
(
1− p−G1(x) + ξx

h

)
dF1(x)

=
1

2
√
nh2

∫ ∞

−∞

[√
n{G1(x)−Gn,1(x)}

]2
w

′
(
1− p−G1(x) + ξx

h

)
dF1(x)

=
1

2
√
nh2

∫ 1

−1

[
Wy1{G−1

1 (1− p− uh+ ξx)}
]2
w

′
(u)dF1{G−1

1 (1− p− uh+ ξx)}

=
1

2
√
nh

∫ 1

−1

[
Wy1{G−1

1 (1− p− uh+ ξx)}
]2
w

′
(u){−R

′

1(p+ uh+ ξx)}du

=
1

2
√
nh

∫ 1

−1

{
B(G1(G

−1
1 (1− p− uh+ ξx)))

}2
w

′
(u){−R

′

1(p+ uh+ ξx)}du+ op(1)

=
1

2
√
nh

∫ 1

−1

{B(1− p− uh+ ξx)}2w
′
(u){−R

′

1(p+ uh+ ξx)}du+ op(1)

=op(1),
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because of the continuity and boundness of w
′
(x) and R

′
(x). From (B.6), we have

I + II =

∫ ∞

−∞
Wy1(x1)h

−1w

(
1− p−G1(x1)

h

)
dF1(x1) + op(1)

=

∫ 1

−1

Wy1{G−1
1 (1− p− u1h)}h−1w(u1)dF1{G−1

1 (1− p− u1h)}+ op(1)

=

∫ 1

−1

Wy1{G−1
1 (1− p− u1h)}w(u1)R

′

1(p+ u1h)du1 ++op(1)

=

∫ 1

−1

Wy1{G−1
n,1(1− p)}w(u1)R

′

1(p)du1 + op(1)

=
√
n{G1(G

−1
n,1(1− p))− (1− p)}R′

1(p) + op(1). (B.7)

Hence, from (B.3)-(B.7), we have

√
n+m

{
R̂m,n,1(p)−R1(p)

}
=

√
n+m√
m

√
m
[
F1{G−1

1 (1− p)} − Fm,1{G−1
1 (1− p)}

]
+

√
n+m√

n

√
n
(
[(1− p)−G1{G−1

n,1(1− p)}]R′

1(p)
)
+ op(1). (B.8)

Similarly,

√
n+m

{
R̂m,n,2(p)−R2(p)

}
=

√
n+m√
m

√
m
[
F2{G−1

2 (1− p)} − Fm,2{G−1
2 (1− p)}

]
+

√
n+m√

n

√
n[(1− p)−G2{G−1

n,2(1− p)}]R′

2(p) + op(1). (B.9)

Finally, (B.2) re-expressed as follows

√
m+ n{∆̂m,n(p)−∆(p)}

=
√
m+ n[Fm,2{G−1

2 (1− p)} − F2{G−1
2 (1− p)}]−

√
m+ n[Fm,1{G−1

1 (1− p)} − F1{G−1
1 (1− p)}]

+
√
m+ nR

′

2(p)[G2{G−1
n,2(1− p)} − (1− p)]−

√
m+ n[G1{G−1

n,1(1− p)} − (1− p)]R
′

1(p)

+ op(1). (B.10)

Wieand et al. (1989) presented the asymptotic normality of nonparametric estimation for
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the difference of two ROC curves in the area or at one point. By the proof of Theorem 3.1

in Wieand et al. (1989) and Shorack et al. (1986), the variance of (B.10) can be obtained

as σ2(p). Thus, we have

√
m+ n{∆̂m,n(p)−∆(p)} D−→ N(0, σ2(p)).

Lemma B.2. Under conditions in Theorem 3.1, for any p ∈ (a, b), we have

√
m+ n

{
1

m+ n

m+n∑
i=1

V̂i(p)−∆(p)

}
D−→ N(0, σ2(p)),

where σ2(p) is defined in Theorem 3.1.

Proof. By the definition

V̂i(p) = (m+ n)∆̂m,n(p)− (m+ n− 1)∆̂m,n,i(p), i = 1, . . . ,m+ n,

∆̂m,n(p) = R̂m,n,1(p)− R̂m,n,2(p),

∆̂m,n,i(p) = R̂m,n,1,i(p)− R̂m,n,2,i(p), i = 1, . . . ,m+ n,

where

R̂m,n,k,i(p) =
1

m− 1

∑
1≤j≤m,j ̸=i

K

(
1− p−Gn,k(Xk,j)

h

)
, 1 ≤ i ≤ m,

and

R̂m,n,k,i(p) =
1

m− 1

m∑
j=1

K

(
1− p−Gn,m−i,k(Xk,j)

h

)
,m+ 1 ≤ i ≤ m+ n, k = 1, 2.

Define that

V̂1,i(p) = (m+ n)R̂m,n,1(p)− (m+ n− 1)R̂m,n,1,i(p) i = 1, . . . ,m+ n,

V̂2,i(p) = (m+ n)R̂m,n,2(p)− (m+ n− 1)R̂m,n,2,i(p) i = 1, . . . ,m+ n.
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Thus, we obtain

V̂i(p) = V̂1,i(p)− V̂2,i(p).

By the proof of Lemma 2 in Gong et al. (2010), we have

1

m+ n

m+n∑
j=1

V̂1,j(p)−R1(p) = 1− 1

m

m∑
j=1

K

(
1− p−Gn,1(X1,j)

h

)
−R1(p)+Op

(
n(m+ n− 1)

(m+ n)(n− 1)2h

)
.

Along with Lemma B.1, we establish Lemma B.2 as follows

√
m+ n

{
1

m+ n

m+n∑
i=1

V̂i(p)−∆(p)

}

=
√
m+ n

{
1

m+ n

m+n∑
j=1

V̂1,j(p)−R1(p)−

(
1

m+ n

m+n∑
j=1

V̂2,j(p)−R2(p)

)}

=
√
m+ n

[
1− 1

m

m∑
j=1

K

(
1− p−Gn,1(x1,j)

h

)
−R1(p)

]

−
√
m+ n

[{
1− 1

m

m∑
j=1

K

(
1− p−Gn,2(x2,j)

h

)
−R2(p)

}
+Op(n

−1)

]

=
√
m+ n

{
∆̂m,n(p)−∆(p)

}
+ op(1)

D−→ N(0, σ2(p)).

Lemma B.3. Under conditions in Theorem 3.1, for any p ∈ (a, b), we have

1

m+ n

m+n∑
i=1

{
V̂i(p)−∆(p)

}2 P−→ σ2(p),

where σ2(p) is defined in Theorem 3.1.
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Proof. For 1 ≤ i ≤ m, k = 1, 2, we make similar arguments as Gong et al. (2010),

V̂k,i(p)

= 1− m+ n

m

m∑
j=1

K

(
1− p−Gn,k(Xk,j)

h

)
+

m+ n− 1

m− 1

m∑
j=1,j ̸=i

K

(
1− p−Gn,k(Xk,j)

h

)

= 1 +

(
m+ n− 1

m− 1
− m+ n

m

) m∑
j=1

K

(
1− p−Gn,k(Xk,j)

h

)

− m+ n− 1

m− 1

{
m∑
j=1

K

(
1− p−Gn,k(Xk,j)

h

)
−

m∑
j=1,j ̸=i

K

(
1− p−Gn,k(Xk,j)

h

)}

= 1 +
n

(m− 1)m

m∑
j=1

K

(
1− p−Gn,k(Xk,j)

h

)
− m+ n− 1

m− 1
K

(
1− p−Gn,k(Xk,i)

h

)
,

and

V̂1,i(p)V̂2,i(p)

=

{
1− m+ n− 1

m− 1
K

(
1− p−Gn,1(X1,i)

h

)}{
1− m+ n− 1

m− 1
K

(
1− p−Gn,2(X2,i)

h

)}
+

n

(m− 1)m

m∑
j=1

K

(
1− p−Gn,1(X1,j)

h

)
n

(m− 1)m

m∑
j=1

K

(
1− p−Gn,2(X2,j)

h

)

+
n

(m− 1)m

m∑
j=1

K

(
1− p−Gn,2(X2,i)

h

){
1− m+ n− 1

m− 1
K

(
1− p−Gn,1(X1,i)

h

)}

+
n

(m− 1)m

m∑
j=1

K

(
1− p−Gn,1(X1,i)

h

){
1− m+ n− 1

m− 1
K

(
1− p−Gn,2(X2,i)

h

)}
.
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Then, we have

1

m+ n

m∑
i=1

V̂1,i(p)V̂2,i(p)

=
m

m+ n
+

(m+ n− 1)2

(m− 1)2(m+ n)

m∑
i=1

K

(
1− p−Gn,1(X1,i)

h

)
K

(
1− p−Gn,2(X2,i)

h

)
− m+ n− 1

m− 1

m∑
i=1

K

(
1− p−Gn,1(X1,i)

h

)
− m+ n− 1

m− 1

m∑
i=1

K

(
1− p−Gn,2(X2,i)

h

)
+

n2

(m− 1)2m(m+ n)

m∑
j=1

K

(
1− p−Gn,1(X1,j)

h

) m∑
j=1

K

(
1− p−Gn,2(X2,j)

h

)

+
n

(m− 1)m(m+ n)

m∑
j=1

K

(
1− p−Gn,2(X2,j)

h

)
{
m− m+ n− 1

m− 1

m∑
i=1

K

(
1− p−Gn,1(X1,i)

h

)}

+
n

(m− 1)m(m+ n)

m∑
j=1

K

(
1− p−Gn,1(X1,j)

h

)
{
m− m+ n− 1

m− 1

m∑
i=1

K

(
1− p−Gn,2(X2,i)

h

)}
. (B.11)

By the uniform convergence of Fm(x1, x2) and G−1
m,1(y1) and G−1

m,2(y2), we have that

|Fm{G−1
n,1(1− p), G−1

n,2(1− p)} − F{G−1
1 (1− p), G−1

2 (1− p)}|

≤ |Fm{G−1
n,1(1− p), G−1

n,2(1− p)} − F{G−1
n,1(1− p), G−1

n,2(1− p)}|

+ |F{G−1
n,1(1− p), G−1

n,2(1− p)} − F{G−1
1 (1− p), G−1

2 (1− p)}|.

Based on the generalization of the Glivenko-Cantelli theorem by Dehardt (1971), we know

the first term, supp∈[0,1] |Fm{G−1
n,1(1 − p), G−1

n,2(1 − p)} − F{G−1
n,1(1 − p), G−1

n,2(1 − p)}| P−→ 0.



100

By the Glivenko-Cantelli theorem of quantile process for G−1
1 and G−1

2 , we have

sup
x∈[0,1]

|G−1
m,1(x)−G−1

1 (x)| −→ 0 a.s.

sup
x∈[0,1]

|G−1
m,2(x)−G−1

2 (x)| −→ 0 a.s.

Since the F (x1, x2) is continuous for x1 and x2, for any p ∈ (0, 1), we have |F{G−1
n,1(1 −

p), G−1
n,2(1− p)} − F{G−1

1 (1− p), G−1
2 (1− p)}| P−→ 0. Thus, for any p ∈ (0, 1),

|Fm{G−1
n,1(1− p), G−1

n,2(1− p)} − F{G−1
1 (1− p), G−1

2 (1− p)}| P−→ 0.

Similarly, for any p ∈ (0, 1), we have

|Gm{G−1
n,1(1− p), G−1

n,2(1− p)} −G{G−1
1 (1− p), G−1

2 (1− p)}| P−→ 0.

Consider

1

m

m∑
j=1

K

(
1− p−Gn,1(X1,j)

h

)
K

(
1− p−Gn,2(X2,j)

h

)
=

∫ ∞

−∞

∫ ∞

−∞
K

(
1− p−Gn,1(x1)

h

)
K

(
1− p−Gn,2(x2)

h

)
dFm(x1, x2)



101

= K

(
1− p−Gn,1(x1)

h

)
K

(
1− p−Gn,2(x2)

h

)
Fm(x1, x2)|∞−∞|∞−∞

−
∫ ∞

−∞

∫ ∞

−∞
Fm(x1, x2)dK

(
1− p−Gn,1(x1)

h

)
K

(
1− p−Gn,2(x2)

h

)
=

∫ 1

−1

∫ 1

−1

Fm{G−1
n,1(1− p− hu1), G

−1
n,2(1− p− hu2)}dK(u1)dK(u2)

=

∫ 1

−1

∫ 1

−1

[Fm(G
−1
n,1(1− p), G−1

n,2(1− p))− h
∂Fm{G−1

n,1(u1), G
−1
n,2(1− p)}

∂u1

h
∂Fm{G−1

n,1(u2), G
−1
n,2(1− p)}

∂u2

]w(u1)w(u2)du1du2 + op(h
2)

= Fm{G−1
n,1(1− p), G−1

n,2(1− p)}+
∫ 1

−1

∫ 1

−1

w(u1)w(u2)du1du2 + op(1)

= F{G−1
1 (1− p), G−1

2 (1− p)}+ op(1). (B.12)

Based on (B.11) and (B.12) and Lemma 1 of Gong et al. (2010), we can conclude that

1

m+ n

m∑
i=1

V̂1,i(p)V̂2,i(p)

P−→ r

1 + r
+

1 + r

r
F{G−1

1 (1− p), G−1
2 (1− p)} − {1−R1(p) + 1−R2(p)}

+ {1−R1(p)}{1−R2(p)}
1

r(1 + r)
+

1

1 + r

[
1− 1 + r

r
{1−R1(p)}

]
{1−R2(p)}

+
1

1 + r

[
1− 1 + r

r
{1−R2(p)}

]
{1−R1(p)}

=
1 + r

r
F{G−1

1 (1− p), G−1
2 (1− p)} − 1 + r

r
{1−R1(p)}{1−R2(p)}+

r

1 + r
R1(p)R2(p).

(B.13)

On the other hand, for m < i ≤ m+ n, k = 1, 2,

V̂k,i(p) = 1− 1

m

m∑
j=1

K

(
1− p−Gn,k(Xk,j)

h

)
+

m+ n− 1

m

m∑
j=1

{
K

(
1− p−Gn,m−i,k(Xk,j)

h

)
−K

(
1− p−Gn,k(Xk,j)

h

)}
. (B.14)
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From (B.14), we have

V̂1,i(p)V̂2,i(p)

=

{
1− 1

m

m∑
j=1

K

(
1− p−Gn,1(X1,j)

h

)}{
1− 1

m

m∑
j=1

K

(
1− p−Gn,2(X2,j)

h

)}

+
(m+ n− 1)2

m2

m∑
j=1

{
K

(
1− p−Gn,m−i,1(X1,j)

h

)
−K

(
1− p−Gn,1(X1,j)

h

)}
m∑
j=1

{
K

(
1− p−Gn,m−i,2(X2,j)

h

)
−K

(
1− p−Gn,2(X2,j)

h

)}

+
m+ n− 1

m

{
1− 1

m

m∑
j=1

K

(
1− p−Gn,1(X1,j)

h

)}
m∑
j=1

{
K

(
1− p−Gn,m−i,2(X2,j)

h

)
−K

(
1− p−Gn,2(X2,j)

h

)}

+
m+ n− 1

m

{
1− 1

m

m∑
j=1

K

(
1− p−Gn,2(X2,j)

h

)}
m∑
j=1

{
K

(
1− p−Gn,m−i,1(X1,j)

h

)
−K

(
1− p−Gn,1(X1,j)

h

)}
m < i ≤ m+ n. (B.15)

We know

Gn,k(Xk,j)−Gn,−i,k(Xk,j)

=
1

n

n∑
l=1

I(Yk,l ≤ Xk,j)−
1

n− 1

n∑
l=1,l ̸=i

I(Yk,l ≤ Xk,j)

=

(
1

n
− 1

n− 1

) n∑
l=1

I(Yk,l ≤ Xk,j)−
1

n− 1

{
n∑

l=1

I(Yk,l ≤ Xk,j)−
n∑

l=1,l ̸=i

I(Yk,l ≤ Xk,j)

}

=
1

n− 1
{Gn(Xk,j)− I(Yk,i ≤ Xk,j)}, k = 1, 2, 1 ≤ i ≤ n, (B.16)

where

Gn,k(Xk,j)−Gn,−i,k(Xk,j) =
1

n− 1
{Gn(Xk,j)− I(Yk,j ≤ Xk,j)} = Op

(
1

n− 1

)
, k = 1, 2, 1 ≤ i ≤ n.

(B.17)
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and

n∑
j=1

Gn,k(Xk,j)−Gn,−i,k(Xk,j) = 0 k = 1, 2, 1 ≤ i ≤ n. (B.18)

Define that

Ai =
m∑
j=1

{
K

(
1− p−Gn,−i,1(X1,j)

h

)
−K

(
1− p−Gn,1(X1,j)

h

)}
m∑
j=1

{
K

(
1− p−Gn,−i,2(X2,j)

h

)
−K

(
1− p−Gn,2(X2,j)

h

)}
, 1 ≤ i ≤ n.

Then, by Taylor’s expansion, we have

Ai = {
m∑
j=1

(Gn,1(X1,j)−Gn,−i,1(X1,j))

h
w

(
1− p−Gn,1(X1,j)

h

)

+
1

2m

m∑
j=1

(
Gn,1(X1,j)−Gn,−i,1(X1,j)

h

)2

w
′
(
1− p−Gn,1(X1,j) + ξn,j

h

)
}

{
m∑
j=1

(Gn,2(X2,j)−Gn,−i,2(X2,j))

h
w

(
1− p−Gn,2(X2,j)

h

)

+
1

2m

m∑
j=1

(
Gn,2(X2,j)−Gn,−i,2(X2,j)

h

)2

w
′
(
1− p−Gn,2(X2,j) + ξn,j

h

)
}+ op(1)

=
1

h2

m∑
j=1

{Gn,1(X1,j)−Gn,−i,1(X1,j)}w
(
1− p−Gn,1(X1,j)

h

)
m∑
j=1

{Gn,2(X2,j)−Gn,−i,2(X2,j)}w
(
1− p−Gn,2(X2,j)

h

)
+O(h−1n−1), 1 ≤ i ≤ n.

(B.19)
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Based on (B.15), (B.16), we consider

1

m+ n

n∑
i=1

Ai =
1

m+ n

n∑
i=1

m∑
j=1

m∑
l=1

{
K

(
1− p−Gn,1(X1,j)

h

)
−K

(
1− p−Gn,−i,1(X1,j)

h

)}
{
K

(
1− p−Gn,2(X2,l)

h

)
−K

(
1− p−Gn,−i,2(X2,l)

h

)}
=

1

m+ n

n∑
i=1

m∑
j=1

m∑
l=1

{Gn,1(X1,j)−Gn,−i,1(X1,j)}{Gn,2(X2,l)−Gn,−i,2(X2,l)}

w

(
1− p−Gn,1(X1,j)

h

)
w

(
1− p−Gn,2(X2,l)

h

)
+ op(1)

=
1

(m+ n)h2(n− 1)2

n∑
i=1

m∑
j=1

m∑
l=1

{Gn(X1,j)Gn(X2,l)−Gn(X1,j)I(Y2,i ≤ X2,l)

−Gn(X2,l)I(Y1,i ≤ X1,j) + I(Y1,i ≤ X1,j)I(Y2,i ≤ X2,l)}

w

(
1− p−Gn,1(X1,j)

h

)
w

(
1− p−Gn,2(X2,l)

h

)
+ op(1)

=
1

(m+ n)h2(n− 1)2

m∑
j=1

m∑
l=1

{nGn,1(X1,j)Gn,2(X2,l)− 2nGn,1(X1,j)Gn,2(X2,l)}

w

(
1− p−Gn,1(X1,j)

h

)
w

(
1− p−Gn,2(X2,l)

h

)
+

m2

(m+ n)h2(n− 1)2

n∑
i=1

∫ ∞

−∞

∫ ∞

−∞
I(Y1,i ≤ x1)I(Y2,i ≤ x2)

w

(
1− p−Gn,1(X1,j)

h

)
w

(
1− p−Gn,2(X2,l)

h

)
dFm,1(x1)dFm,2(x2) + op(1)

=
−nm2

(m+ n)h2(n− 1)2

∫ ∞

−∞

∫ ∞

−∞
Gn,1(x1)Gn,2(x2)w

(
1− p−Gn,1(x1)

h

)
w

(
1− p−Gn,2(x2)

h

)
dFm,1(x1)dFm,2(x2) +

m2

(m+ n)h2(n− 1)2

n∑
i=1

∫ 1

−1

∫ 1

−1

I{Y1,i ≤ G−1
n,1(1− p− hu1)}I{Y2,i ≤ G−1

n,2(1− p− hu2)}

w(u1)w(u2)dFm,1{G−1
n,1(1− p− hu1)}dFm,2{G−1

n,2(1− p− hu2)}+ op(n
−1/2)

=
−nm2

h2(m+ n)(n− 1)2

∫ 1

−1

∫ 1

−1

Gn,1{G−1
n,1(1− p− hu1)}Gn,2{G−1

n,2(1− p− hu2)}

w(u1)w(u2)dFm,1{G−1
n,1(1− p− hu1)}dFm,2{G−1

n,2(1− p− hu2)}

+
nm2

h2(m+ n)(n− 1)2

∫ 1

−1

∫ 1

−1

Gn{G−1
n,1(1− p− hu1), G

−1
n,2(1− p− hu2)}

w(u1)w(u2)dFm,1{G−1
n,1(1− p− hu1)}dFm,2{G−1

n,2(1− p− hu2)}+ op(1).
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Recall that empirical estimators of ROC curves uniformly converge to true ROC curves,

i.e., supx∈[−h,−h] |Fm,1(G
−1
n,1(x))− F1(G

−1
1 (x))| = op(1). The above equality is,

=
−nm2

(m+ n)(n− 1)2

∫ h

−h

∫ h

h

Gn,1{G−1
n,1(1− p− v1)}Gn,2{G−1

n,2(1− p− v2)}

R
′

1(p)R
′

2(p)w
(v1
h

)
w
(v2
h

)
dv1dv1

+
m2

(m+ n)(n− 1)2

∫ h

−h

∫ h

−h

Gn{G−1
n,1(1− p− v1), G

−1
n,2(1− p− v2)}

w
(v1
h

)
w
(v2
h

)
R

′

1(p)R
′

2(p)dv1dv1 + op(1)

=
−nm2

(m+ n)(n− 1)2
(1− p)2R

′

1(p)R
′

2(p)

+
m2

(m+ n)(n− 1)2
R

′

1(p)R
′

2(p)Gn{G−1
n,1(1− p), G−1

n,2(1− p)}+ op(1)

=
nm2

(m+ n)(n− 1)2
R

′

1(p)R
′

2(p)
{
Gn(G

−1
n,1(1− p), G−1

n,2(1− p))− (1− p)2
}
+ op(1)

P−→ r2

1 + r
R

′

1(p)R
′

2(p)[G{G−1
1 (1− p), G−1

2 (1− p)} − (1− p)2]. (B.20)

Combining the Taylor’s expansion, (B.15), (B.19) and (B.20), we have

1

m+ n

m+n∑
i=m+1

V̂1,i(p)V̂2,i(p)

P−→ (1 + r)2

r2
r2

1 + r
R

′

1(p)R
′

2(p)[G{G−1
1 (1− p), G−1

2 (1− p)} − (1− p)2] +
1

1 + r
R1(p)R2(p)

= (1 + r)R
′

1(p)R
′

2(p)[G{G−1
1 (1− p), G−1

2 (1− p)} − (1− p)2] +
1

1 + r
R1(p)R2(p).
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Thus, we have

1

m+ n

m+n∑
i=1

V̂1,i(p)V̂2,i(p)

P−→ (1 + r)R
′

1(p)R
′

2(p)[G{G−1
1 (1− p), G−1

2 }(1− p)− (1− p)2] +
1

1 + r
R1(p)R2(p)

+
1 + r

r
F{G−1

1 (1− p), G−1
2 (1− p)} − 1 + r

r
{1−R1(p)}{1−R2(p)}+

r

1 + r
R1(p)R2(p)

= (1 + r)R
′

1(p)R
′

2(p)[G{G−1
1 (1− p), G−1

2 (1− p)} − (1− p)2]

+
1 + r

r
F{G−1

1 (1− p), G−1
2 (1− p)} − 1 + r

r
{1−R1(p)}{1−R2(p)}+R1(p)R2(p).

Finally, we have

1

m+ n

m+n∑
i=1

{
V̂i(p)−∆(p)

}2

=
1

m+ n

m+n∑
i=1

{
V̂1,i(p)−R1(p)

}2

+
1

m+ n

m+n∑
i=1

{
V̂2,i(p)−R2(p)

}2

+
2

m+ n

m+n∑
i=1

{
V̂1,i(p)V̂2,i(p)− V̂1,i(p)R2(p)− V̂2,i(p)R1(p) +R1(p)R2(p)

}
P−→ σ2

1(p) + σ2
2(p) + 2σ2

12(p)

= σ2(p).

Proof of Theorem 3.1 It follows directly from Lemmas B.2 and B.3. �

Proof of Theorem 3.2 From Lemmas B.1 and B.2, we follow the similar argu-

ments as Gong et al. (2010) and prove Theorem 3.2. �
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Appendix C

Proof of Theorems for Chapter 5

Proof of Theorem 5.1

Proof. We can decompose Πm,n(p, θ) as

Πm,n(p, θ) =
1

m

m∑
j=1

K

{
p− Fn,2(xj − θ)

h

}
− p− Πm(p, θ) + Πm(p, θ), (C.1)

where Πm(p, θ) =
1
m

∑m
j=1K

{
p−F2(xj−θ)

h

}
− p.

Πm(p, θ) =
1

m

m∑
j=1

K

{
p− F2(xj − θ)

h

}
− p

=

∫ ∞

−∞
K

{
p− F2(x− θ)

h

}
dFm,1(x)− p

=K

{
p− F2(x− θ)

h

}
Fm,1(x)|∞−∞ −

∫ ∞

−∞
Fm,1(x)dK

{
p− F2(x− θ)

h

}
− p

=
1

h

∫ ∞

−∞
Fm,1(x)w

{
p− F2(x− θ)

h

}
dF2(x− θ)− p

=

∫ 1

−1

Fm,1{F−1
2 (p+ uh) + θ}w (u) du− p

=

∫ 1

−1

[Fm,1{F−1
2 (p+ uh) + θ} − F1{F−1

2 (p+ uh) + θ}

+F1{F−1
2 (p+ uh) + θ} − F1{F−1

2 (p) + θ}]w (u) du

=op(1). (C.2)

The above equation is obtained by the Glivenko-Cantelli Theorem of F1 and the bounded

derivative of D(θ, p) = F1(F
−1
2 (p)+θ). By the equations (10) and (11) in Gong et al. (2010),

we can easily extend their result in our case, i.e., Πm(p, θ) − Πm,n(p, θ) = op(1). Hence, we
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finish the proof

Πm,n(p, θ)
P→ 0. (C.3)

Lemma C.1. Under the same assumptions as Theorem 5.1,

√
m+ nΠm,n(p, θ)

D−→ N(0, σ2(p)), (C.4)

where σ2(p) is defined in Theorem 5.2.

Proof.

√
m+ nΠm,n(p, θ) =

√
m+ n√
m

√
m{Πm(p, θ)}+

√
m+ n√

n

√
n{Πm,n(p, θ)− Πm(p, θ)} (C.5)

For the first term of (C.5), we have

√
m{Πm(p, θ)}

=

∫ 1

−1

√
m[Fm,1{F−1

2 (p+ uh) + θ} − F1{F−1
2 (p+ uh) + θ}]w (u) du

+
√
m

∫ 1

−1

F1{F−1
2 (p+ uh) + θ} − F1{F−1

2 (p) + θ}]w (u) du

=

∫ 1

−1

Wx1{F−1
2 (p+ uh) + θ}w (u) du+

√
m

∫ 1

−1

D
′
(θ, p)uhw (u) du+Op(

√
mh2) (C.6)

=I + II +Op(
√
mh2), (C.7)

where Wx1(t) =
√
m{Fm,1(t)−F1(t)}. Because of the symmetric property of kernel function,

the second term of (C.6) is equal to zero. Due to the Donsker theorem and similar proofs for

equation (9) in Gong et al. (2010), I
D−→ BF1{F−1

2 (p) + θ} and BF (·) is a Brownian bridge
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for distribution F . Hence, we have that

√
m{Πm(p, θ)}

D−→ BF1{F−1
1 (p)}. (C.8)

For the second term of (C.5), we propose the procedure similar to Gong et al. (2010),

√
n{Πm,n(p, θ)− Πm(p, θ)}

=−
∫ ∞

−∞
WF2(x)w

{
p− F2(x− θ)

h

}
dF1(x) +Op(n

−1/2h−1)

=

∫ 1

−1

WF2{F−1
2 (p)}w(u)D′

(p, θ)du+Op(n
−1/2h−1)

D−→BF2{F−1
2 (p)}D′

(p, θ). (C.9)

Combining (C.5), (C.8), (C.9) and the independence of BF1(·) and BF2(·), we have

√
m+ nΠm,n(p, θ)

D−→ N(0, σ2(p)). (C.10)

Proof of Theorem 5.2

Proof. First, we introduce some properties of Fn,2,−i as follows:

Fn,2(xj)− Fn,2,−i(xj) =
1

n− 1
{Fn,2(xj)− I(Yi ≤ xj)} = Op

(
1

n− 1

)
, i = 1, ..., n (C.11)

and

n∑
i=1

{Fn,2,−i(xj)− Fn,2(xj)} = 0, (C.12)
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because

Fn,2(xj)− Fn,2,−i(xj)

=
1

n

n∑
k=1

I(yi ≤ xj)−
1

n− 1

n∑
i=k,k ̸=i

I(yi ≤ xj)

=

(
1

n
− 1

n− 1

) n∑
k=1

I(yi ≤ xj)−
1

n− 1

{
n∑

k=1

I(yi ≤ xj)−
n∑

i=k,k ̸=i

I(yi ≤ xj)

}

=
1

n− 1
{Fn,2(xj)− I(yi ≤ xj)}. (C.13)

For the pseudo sample, based on (C.16) in Gong et al. (2010), we have

{
1

m+ n

m+n∑
i=1

V̂i(p, θ)

}

=
1

m+ n

[
m∑
i=1

{
m+ n

m

m∑
j=1

K

{
p− Fn,2(xj − θ)

h

}
− m+ n− 1

m− 1

m∑
j=1,j ̸=i

K

{
p− Fn,2(xj − θ)

h

}}]
− p

+
1

m+ n

[
m+n∑

i=m+1

{
m+ n

m

m∑
j=1

K

{
p− Fn,2(xj − θ)

h

}
− m+ n− 1

m

m∑
j=1

K

{
p− Fn,2,m−i(xj − θ)

h

}}]

=
1

m+ n

[
m∑
j=1

K

{
p− Fn,2(xj − θ)

h

}
+

n

m

m∑
j=1

K

{
p− Fn,2(xj − θ)

h

}]

+
m+ n− 1

(m+ n)m

m+n∑
i=m+1

m∑
j=1

[
K

{
p− Fn,2(xj − θ)

h

}
−K

{
p− Fn,2,m−i(xj − θ)

h

}]
− p

=
1

m

m∑
j=1

K

{
p− Fn,2(xj − θ)

h

}
− p+Op

{
mn

(m+ n)(n− 1)2h

}
.

Using (C.11) and (C.12), we have that

√
m+ n

{
1

m+ n

m+n∑
i=1

V̂i(p, θ)

}
=
√
m+ nΠm,n(p, θ) + op(1)

D−→N(0, σ2(p)). (C.14)
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Proof of Theorem 5.3

Proof. For 1 ≤ i ≤ m,

V̂i(p, θ) =
m+ n

m

m∑
j=1

K

{
p− Fn,2(xj − θ)

h

}
− m+ n− 1

m− 1

m∑
j=1,j ̸=i

K

{
p− Fn,2(xj − θ)

h

}
− p

=
m+ n− 1

m− 1
K

{
p− Fn,2(xi − θ)

h

}
− n

m(m− 1)

m∑
j=1

K

{
p− Fn,2(xj − θ)

h

}
− p

and

V̂ 2
i (p, θ) =

[
m+ n− 1

m− 1
K

{
p− Fn,2(xi − θ)

h

}]2
+

[
n

m(m− 1)

m∑
j=1

K

{
p− Fn,2(xj − θ)

h

}]2

−2(m+ n− 1)n

m(m− 1)2
K

{
p− Fn,2(xi − θ)

h

} m∑
j=1

K

{
p− Fn,2(xj − θ)

h

}
+ p2

−2p

[
m+ n− 1

m− 1
K

{
p− Fn,2(xi − θ)

h

}
− n

m(m− 1)

m∑
j=1

K

{
p− Fn,2(xj − θ)

h

}]
.

After tedious computation, we have

1

m+ n

m∑
j=1

V̂ 2
i (p, θ)

P−→m+ n

m
p+

(n−m− 2n)(m+ n)

m(m+ n)
p2 (C.15)

=
m+ n

m
p(1− p).

For m+ 1 ≤ i ≤ m+ n, we have

V̂i(p, θ) =
m+ n

m

m∑
j=1

K

{
p− Fn,2(xj − θ)

h

}
− m+ n− 1

m

m∑
j=1

K

{
p− Fn,2,m−i(xj − θ)

h

}
− p

=
m+ n− 1

m

m∑
j=1

[
K

{
p− Fn,2(xj − θ)

h

}
−K

{
p− Fn,2,m−i(xj − θ)

h

}]

+
1

m

m∑
j=1

K

{
p− Fn,2(xj − θ)

h

}
− p,
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and

V̂ 2
i (p, θ) =

{
m+ n− 1

m

}2
[

m∑
j=1

K

{
p− Fn,2(xj − θ)

h

}
−K

{
p− Fn,2,m−i(xj − θ)

h

}]2
+ op(1)

=

{
m+ n− 1

m

}2
[

m∑
j=1

w

{
p− Fn,2(xj − θ)

h

}
Fn,2(xj − θ)− Fn,2,m−i(xj − θ)

h

]2
+ op(1).

We follow the argument which is similar to Gong et al. (2010),

1

m+ n

m+n∑
j=m+1

V̂ 2
i (p, θ)

=
m+ n

nh2

n∑
i=1

m∑
j=1

m∑
l=1

{Fn,2(xj)Fn,2(xl)− Fn,2(xj)I(yi ≤ xl)

− Fn,2(xl)I(yi ≤ xj) + I(yi ≤ xj)I(yi ≤ xl)}w
(
p− Fn,1(xj − θ)

h

)
w

(
p− Fn,2(xl − θ)

h

)
+ op(1)

=
m+ n

nh2

∫ ∞

−∞

∫ ∞

−∞
{Fn,2(x1 ∧ x2)− Fn,2(x1)Fn,2(x2)}

w

(
p− Fn,1(xj − θ)

h

)
w

(
p− Fn,2(xl − θ)

h

)
dFm,1(x1)dFm,2(x2) + op(1)

=
m+ n

nh2

∫ 1

−1

∫ 1

−1

{F2{F−1
2 (p− u1h) ∧ F−1

2 (p− u2h)} − F2{F−1
2 (p− u1h)}F2{F−1

2 (p− u2h)}}

w (u1)w (u2) dF1{F−1
2 (p− u1h) + θ}dF1{F−1

2 (p− u2h) + θ}+ op(1)

=
m+ n

n

∫ 1

−1

∫ 1

−1

p(1− p){D′
(p, θ)}2w(u1)w(u2)du1du2

=
m+ n

n
p(1− p){D′

(p, θ)}2 + op(1). (C.16)

Hence,

1

m+ n

m+n∑
j=1

V̂ 2
i (p, θ)

P−→ σ2(p).

Proof of Theorem 5.4 From Theorem 5.2 and Theorem 5.3, we follow the standard

arguments in Owen (1990) and prove Theorem 5.4. �
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Proof of Theorem 5.5

Proof. We can decompose Φm(s, t, η) as follows

Φm,m(s, t, η) =
1

m

m∑
j=1

K

{
p− Fm(xj − η)

h

}
− p− Φm,1(s, t, η) + Φm,1(s, t, η), (C.17)

where Φm,1(s, t, η) =
1
m

∑m
j=1K

{
p−F(xj−η)

h

}
− t.

Φm,1(s, t, η) =
1

m

m∑
j=1

K

{
s− F(xj − η)

h

}
− t

=

∫ ∞

−∞
K

{
s− F(x− η)

h

}
dFm(x)− t

=K

{
s− F(x− η)

h

}
Fm(x)|∞−∞ −

∫ ∞

−∞
Fm(x)dK

{
s− F(x− η)

h

}
− t

=
1

h

∫ ∞

−∞
Fm(x)w

{
s− F(x− η)

h

}
dF(x− η)− t

=−
∫ 1

−1

Fm{F−1(s− uh) + η}w (u) du− t

=−
∫ 1

−1

[Fm{F−1(s− uh) + η} − F{F−1(s− uh) + η}

+F{F−1(s− uh) + η} − F{F−1(s) + η}]w (u) du

=op(1). (C.18)

The above equation is obtained by the Glivenko-Cantelli Theorem of F and the bounded

derivative of Q(s, t, η) = F (F−1(s) + η) − t. By the equations (10) and (11) in Gong et al.

(2010), we can easily extend their result in our case, i.e.,

Φm,1(s, t, η)− Φm(s, t, η) = op(1). (C.19)
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Hence, we finish the proof

Φm(s, t, η)
P→ 0. (C.20)

Proof of Theorem 5.6

Proof.

√
mΦm(s, t, η) =

√
m{Φm,1(s, t, η)}+

√
m{Φm(s, t, η)− Φm,1(s, t, η)}. (C.21)

For the first term of (C.5), we have

√
m{Φm,1(s, t, η)}

=

∫ 1

−1

√
m[Fm{F−1(s− uh) + η} − F{F−1(s− uh) + η}]w (u) du

+
√
m

∫ 1

−1

F{F−1(s− uh) + η} − F{F−1(p) + η}]w (u) du

=

∫ 1

−1

Wx1{F−1(s− uh) + η}w (u) du+
√
m

∫ 1

−1

Q
′
(s, t, η)uhw (u) du+Op(

√
mh2)

=I + II +Op(
√
mh2), (C.22)

where Wx1(t) =
√
m{Fm(t)− F(t)}. Because of the symmetric property of kernel function,

the second term of (C.6) is equal to zero. For the second term of (C.5), we propose the

procedure similar to Gong et al. (2010),

√
n{Φm(s, t, η)− Φm,1(s, t, η)}

=−
∫ ∞

−∞
WF (x− η)w

{
s− F(x− η)

h

}
dF(x) +Op(n

−1/2h−1)

=

∫ 1

−1

WF{F−1(s)}w(u)Q′
(s, t, η)du+Op(n

−1/2h−1)
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Due to the Donsker theorem,

√
mΦm(s, t, η) =WF{F−1(s)}Q′

(s, t, η) +WF{F−1(t)}+Op(
√
mh2) +Op(n

−1/2h−1)

D−→N(0, σ2
1) (C.23)

and BF (·) is Brownian bridge for distribution F .

Proof of Theorem 5.7

Proof. First, we introduce some property of Fm,−i as follows:

Fm(xj)− Fm,−i(xj) =
1

n− 1
{Fm(xj)− I(xi ≤ xj)} = Op

(
1

n− 1

)
, i = 1, ..., n (C.24)

and

n∑
i=1

{Fm,−i(xj)− Fm(xj)} = 0, (C.25)

because

Fm(xj)− Fm,−i(xj)

=
1

n

n∑
k=1

I(xi ≤ xj)−
1

n− 1

n∑
i=k,k ̸=i

I(xi ≤ xj)

=

(
1

n
− 1

n− 1

) n∑
k=1

I(xi ≤ xj)−
1

n− 1

{
n∑

k=1

I(xi ≤ xj)−
n∑

i=k,k ̸=i

I(xi ≤ xj)

}

=
1

n− 1
{Fm(xj)− I(xi ≤ xj)}. (C.26)
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For the pseudo sample, based on (16) in Gong et al. (2010), we have

{
1

m

m+n∑
i=1

Ûi(s, t, η)

}

=mΦm(s, t, η)−
m− 1

n

m∑
i=1

Φm,m,−i(s, t, η)− t

=
m∑
i=1

K

{
s− Fm(xi − η)

h

}
− 1

m

m∑
i=1

m∑
j=1,j ̸=i

K

{
s− Fm(xj − η)

h

}

+
1

m

m∑
i=1

m∑
j=1,j ̸=i

[
K

{
s− Fm(xj − η)

h

}
−K

{
s− Fm,−i(xj − η)

h

}]
− t

=
1

m

m∑
j=1

K

{
s− Fm(xj − η)

h

}
− t+Op

{
mn

(m+ n)(n− 1)2h

}
. (C.27)

Using (C.10) and (C.11), we have

√
m

{
1

m+ n

m+n∑
i=1

Ûi(s, t, η)

}
=
√
mΦm(s, t, η) + op(1)

D−→N(0, σ2
1). (C.28)

Proof of Theorem 5.8

Proof. For 1 ≤ i ≤ m,

Ûi(s, t, η) =
m∑
j=1

[
K

{
s− Fm(xj − η)

h

}
−K

{
s− Fm,−i(xj − η)

h

}]
+K

{
s− Fm,−i(xi − η)

h

}
− t
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and

Û2
i (s, t, η) =

{
m∑
j=1

[
K

{
s− Fm(xj − η)

h

}
−K

{
s− Fm,−i(xj − η)

h

}]}2

+

[
K

{
s− Fm,−i(xi − η)

h

}
− t

]2
+2

{
m∑
j=1

[
K

{
s− Fm(xj − η)

h

}
−K

{
s− Fm,−i(xj − η)

h

}][
K

{
s− Fm,−i(xi − η)

h

}
− t

]}

Hence,

1

m

m∑
i=1

Û2
i (s, t, η)

=
1

m

m∑
i=1

{
m∑
j=1

[
K

{
s− Fm(xj − η)

h

}
−K

{
s− Fm,−i(xj − η)

h

}]}2

+
1

m

m∑
i=1

K2

{
s− Fm,−i(xi − η)

h

}
+ t2 − 2t

m

m∑
i=1

K

{
s− Fm,−i(xi − η)

h

}

+
2

m

m∑
i=1

{
m∑
j=1

[
K

{
s− Fm(xj − η)

h

}
−K

{
s− Fm,−i(xj − η)

h

}][
K

{
s− Fm,−i(xi − η)

h

}
− t

]}
(C.29)

After tedious computation as proof of Theorem 5.4, we have

1

m

m∑
i=1

{
m∑
j=1

[
K

{
s− Fm(xj − η)

h

}
−K

{
s− Fm,−i(xj − η)

h

}]}2

P−→ s(1− s)Q
′
(s, t, η)2.

(C.30)

Following equation (18) of Gong (2010), we know

1

m

m∑
i=1

K2

{
s− Fm,−i(xi − η)

h

}
+ t2 − 2t

m

m∑
i=1

K

{
s− Fm,−i(xi − η)

h

}
P−→ t(1− t). (C.31)
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Moreover, based on (C.9),

2

m

m∑
i=1

{
m∑
j=1

[
K

{
s− Fm(xj − η)

h

}
−K

{
s− Fm,−i(xj − η)

h

}][
K

{
s− Fm,−i(xi − η)

h

}
− t

]}

=
2

m

m∑
i=1

m∑
j=1

[
K

{
s− Fm(xj − η)

h

}
−K

{
s− Fm,−i(xj − η)

h

}]2
+ op(1)

=
2

m

m∑
i=1

m∑
j=1

{
Fm(xj − η)− Fm,−i(xj − η)

h

}2

w2

{
s− Fm,−i(xj − η)

h

}
+ op(1)

=
2

m(m− 1)2h2

m∑
i=1

m∑
j=1

{
F 2
m(xj − η)− 2Fm(xj − η)I(xi < xj − η) + I(xi < xj − η)

}
w2

{
s− Fm(xj − η)

h

}
+ op(1)

=
2m

(m− 1)2h2

∫ ∞

−∞

{
Fm(x− η)− F 2

m(x− η)
}
w2

{
s− Fm(xj − η)

h

}
dFm(x)

P−→ 2s(1− s)Q
′
(s, t, η) (C.32)

Hence,

1

m

m∑
j=1

Û2
i (s, t, η)

P−→ σ2
1.

Proof of Theorem 5.9 From Theorem 5.7 and Theorem 5.8, we follow the standard

arguments in Owen (1990) and prove Theorem 5.9. �
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Appendix D

Proof of Theorems for Chapter 6

Lemma D.1. Under Assumptions 1-5, as n → ∞

√
nV̂ (θ0)

D−→ N(0, 4Γ(θ0)). (D.1)

Proof. By the definition of d̂i(θ0), we can rewrite

d̂i(θ) = 2

{
q̂(θ,Xi)(1− δi)

π̂(Xi)
−

n∑
j=1

q̂(θ,Xj)I(Xi ≥ Xj)(1− δj)

nπ̂(Xj)π̂(Xj)

}
.

Hence, we have
∑n

i=1 d̂i(θ0) = 0. By the asymptotic normality of Uw(θ0) (see Fine et al.,

1998),

√
nV̂ (θ0) =

1√
n(n− 1)

n∑
i=1

n∑
j=1,j ̸=i

{b̂(Ui, Uj, θ0)}

=
1√

n(n− 1)

[
n∑

i=1

n∑
j=1,i̸=j

{êij(θ0) + d̂i(θ0) + êji(θ0) + d̂j(θ0)}

]

=
1√

n(n− 1)

n∑
i=1

n∑
j=1,i ̸=j

{êij(θ0) + êji(θ0)}

=
2n

n− 1
n−3/2Uw(θ0)

D−→ N(0, 4Γ(θ0)).

Lemma D.2. Under Assumptions 1-5, Let Γn(θ0) = 1/n
∑n

i=1Wi(θ0)W
T
i (θ0), Γ̂n(θ0) =
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1/n
∑n

i=1 Ŵi(θ0)Ŵ
T
i (θ0). We have

(i) Γn(θ0)
P−→ Γ(θ0), (D.2)

(ii) Γ̂n(θ0)
P−→ Γ(θ0). (D.3)

Proof. For (i), the proof is similar to Lemma D.2 in Zhao (2010). By Cheng et al. (1995)

and Fine et al. (1998), we have

var(V (θ0)) =
4Γ(θ0)

n
+ op(n

−1) a.s. (D.4)

Applying the Strong Law of Large Number for U-statistics, we have

V (θ0) = O(n−1/2). (D.5)

Combining arguments by Lee (1990) and Zhao (2010), we can finish (i).

Note that

|Wi(θ0)− Ŵi(θ0)| ≤
1

n− 1

n∑
j=1,j ̸=i

{
|b̂(Ui, Uj; θ0)− b(Ui, Uj; θ0)|

}
≤ 1

n− 1

n∑
j=1,j ̸=i

{|eij(θ0)− êij(θ0)|

+|eji(θ0)− êji(θ0)|+ |di(θ0)− d̂i(θ0)|+ |dj(θ0)− d̂j(θ0)|}. (D.6)

From Gill (1980), we have

K1 = sup
0≤x≤Xn

∣∣∣∣∣G(x)− Ĝ(x)

G(x)

∣∣∣∣∣ = op(1). (D.7)

Define

ϕij(θ0) = wij(θ0)η̇ij(θ0)δjI(min(Xi, t0) ≥ Xj).
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Furthermore, under Assumptions 1, 2 and 3, wij(θ) and η̇ij(θ) are bounded on compact set

Θ. By Zhao (2010), we have that

|eij(θ0)− êij(θ0)| = wij(θ0)η̇ij(θ0)δjI{min(Xi, t0) ≥ Xj}

{
1

G2(Xj)
− 1

Ĝ2(Xj)

}
≤ |wij(θ0)η̇ij(θ0)δj{min(Xi, t0) ≥ Xj}|(3K2

1 + 2K1)

= op(1). (D.8)

Then,

|di(θ0)− d̂i(θ0)| = 2

∣∣∣∣∫ t0

0

q(θ0, t)

π(t)
dMi(t)−

∫ t0

0

q̂(θ0, t)

π̂(t)
dM̂i(t)

∣∣∣∣
≤ 2

∣∣∣∣∫ t0

0

q(θ0, t)

π(t)
− q̂(θ0, t)

π̂(t)
dMi(t)

∣∣∣∣+ 2

∣∣∣∣∫ t0

0

q̂(θ0, t)

π̂(t)
d(Mi(t)− M̂i(t))

∣∣∣∣ .
(D.9)

Define

qn(θ, t) =
1

n(n− 1)

n∑
i=1

n∑
j=1,j ̸=i

wij(θ)η̇ij(θ)
δj{min(Xi, t0) ≥ Xj}

G2(Xj)
I(Xj ≥ t).

We have

sup
0≤t≤t0

∣∣∣∣q(θ0, t)π(t)
− q̂(θ0, t)

π̂(t)

∣∣∣∣ ≤ sup
0≤t≤t0

∣∣∣∣q(θ0, t)π(t)
− qn(θ0, t)

π̂(t)

∣∣∣∣+ sup
0≤t≤t0

∣∣∣∣qn(θ0, t)π̂(t)
− q̂(θ0, t)

π̂(t)

∣∣∣∣ .
(D.10)

By the Gilvenko-Cantelli Theorem, π̂(t) converges to π(t) uniformly on [0, t0]. By the

Strong Law of Large Number for U-statistics, qn(t) converges to q(t) uniformly on [0, t0].

Hence, by the boundness of π(t) and q(t),

sup
0≤t≤t0

∣∣∣∣q(θ0, t)π(t)
− qn(θ0, t)

π̂(t)

∣∣∣∣ P−→ 0. (D.11)
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By Zhao (2010) and Gill (1980) and the boundness of η̇ij(θ) and wij(θ),

sup
0≤t≤t0

|qn(θ0, t)− q̂(θ0, t)|

= sup
0≤t≤t0

∣∣∣∣∣ 1

n(n− 1)

n∑
i=1

n∑
j=1,j ̸=i

wij(θ)η̇ij(θ)δj{min(Xi, t0) ≥ Xj}I(Xj ≥ t)

{
1

G2(Xj)
− 1

Ĝ2(Xj)

}∣∣∣∣∣
≤ sup

0≤t≤t0

∣∣∣∣∣ 1

n(n− 1)

n∑
i=1

n∑
j=1,j ̸=i

wij(θ)η̇ij(θ)δj{min(Xi, t0) ≥ Xj}I(Xj ≥ t)

∣∣∣∣∣ (3K2
1 + 2K1)

= op(1).

By the uniform boundness of π̂(t)

sup
0≤t≤t0

∣∣∣∣qn(θ0, t)π̂(t)
− q̂(θ0, t)

π̂(t)

∣∣∣∣ P−→ 0. (D.12)

From (D.11) and (D.12), we have

sup
0≤t≤t0

∣∣∣∣q(θ0, t)π(t)
− q̂(θ0, t)

π̂(t)

∣∣∣∣ P−→ 0. (D.13)

We knowMi(t) = Ni(t)−Λi(t), whereNi(t) is one jump counting process, i.e., Ni(t) = I(Xi ≤

t, δi = 0) and Λi(t) is the corresponding compensator, i.e., Λi(t) =
∫ t

0
I(Xi ≥ u)dΛG(u),

which are uniformly bounded on [0, t0]. Hence,

∣∣∣∣∫ t0

0

{
q(θ0, t)

π(t)
− q̂(θ0, t)

π̂(t)

}
dMi(t)

∣∣∣∣
≤
∣∣∣∣∫ t0

0

{
q(θ0, t)

π(t)
− q̂(θ0, t)

π̂(t)

}
dNi(t)

∣∣∣∣+ ∣∣∣∣∫ t0

0

{
q(θ0, t)

π(t)
− q̂(θ0, t)

π̂(t)

}
I(Xi ≥ t) dΛG(t)

∣∣∣∣
≤ sup

0≤t≤t0

∣∣∣∣q(θ0, t)π(t)
− q̂(θ0, t)

π̂(t)

∣∣∣∣+ sup
0≤t≤t0

∣∣∣∣q(θ0, t)π(t)
− q̂(θ0, t)

π̂(t)

∣∣∣∣ ∣∣∣∣∫ t0

0

dΛG(t)

∣∣∣∣
P−→0. (D.14)
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Then, we consider

d
{
Mi(t)− M̂i(t)

}
= d

{
I(Xi ≤ t, δi = 0)−

∫ t

0

I(Xi ≥ u)dΛG(u)− I(Xi ≤ t, δi = 0) +

∫ t

0

I(Xi ≥ u)dΛ̂G(u)

}
= I(Xi ≥ t)d{Λ̂G(t)− ΛG(t)}.

From the Martingale Central Limit Theorem,
√
n{Λ̂G(t) − ΛG(t)} converges weakly to a

zero-mean Gaussian process on t ∈ [0, t0]. Hence, sup0≤t≤t0

∣∣∣Λ̂G(t)− ΛG(t)
∣∣∣ P−→ 0. By the

uniform boundness of q̂(θ0, t), π̂(t) and the rule of integration by parts,

∣∣∣∣∫ t0

0

q̂(θ0, t)

π̂(t)
d(Mi(t)− M̂i(t))

∣∣∣∣ = ∣∣∣∣∫ t0

0

q̂(θ0, t)

π̂(t)
I(Xi ≥ t)d(Λ̂G(u)− ΛG(u))

∣∣∣∣ (D.15)

P−→ 0.

Thus, combining (D.9), (D.14) and (D.15), we know that

|di(θ0)− d̂i(θ0)|
P−→ 0. (D.16)

From (D.6), (D.8) and (D.16), we obtain that

|b(Ui, Uj, θ0)− b̂(Ui, Uj, θ0)|
P−→ 0 (D.17)

and

|Wi(θ0)− Ŵi(θ0)|
P−→ 0. (D.18)
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For any a ∈ Rp, we have,

aT

{
1/n

n∑
i=1

Wi(θ0)W
T
i (θ0)− 1/n

n∑
i=1

Ŵi(θ0)Ŵ
T
i (θ0)

}
a

=
1

n

n∑
i=1

[
aT{Wi(θ0)− Ŵi(θ0)}

]2
+

2

n

n∑
i=1

aT{Wi(θ0)}
[
aT{Wi(θ0)− Ŵi(θ0)}

]
= op(1). (D.19)

Finally, we prove (ii).

Lemma D.3. Under Assumptions 1-5, λ(θ0) = Op(n
−1/2).

Proof. Write λ(θ0) = ρυ, where υ is a unit vector. By the Lemma 3 and Corollary 2 of

Jing et al. (2008), for the components of U-statistics |Wi(θ0)|, we have maxi=1,...,n |Wi(θ0)| =

o(n1/2), a.s. From (D.8), we know

|eij(θ0)− êij(θ0) + eji(θ0)− êji(θ0)|

≤|wij(θ0)η̇ij(θ0)δjI{min(Xi, t0) ≥ Xj}+ wji(θ0)η̇ji(θ0)δiI{min(Xi, t0) ≥ Xj}|(3K2
1 + 2K1)

=|ϕij(θ) + ϕji(θ)|(3K2
1 + 2K1).

Define h(Ui, Uj, θ0) = |eij(θ0)− êij(θ0)+eji(θ0)− êji(θ0)|. By Corollary 2 of Jing et al. (2008),

maxi=1,...,n |1/(n− 1)
∑n

j=1,j ̸=i h(Ui, Uj, θ0)| = o(n1/2). From (D.9),

max
i=1,...,n

|di(θ0)− d̂i(θ0)|

≤2 max
i=1,...,n

∣∣∣∣∫ t0

0

q(θ0, t)

π(t)
− q̂(θ0, t)

π̂(t)
dMi(t)

∣∣∣∣+ 2 max
i=1,...,n

∣∣∣∣∫ t0

0

q̂(θ0, t)

π̂(t)
d(Mi(t)− M̂i(t))

∣∣∣∣ .
Denote yn(t) = q(θ0, t)/π(t)− q̂(θ0, t)/π̂(t). We know Mi(t) = Ni(t)− Λi(t), where Ni(t) =

I(Xi ≤ t, δi = 0) is a counting process and Λi(t) =
∫ t

0
I(Xi ≥ u)dΛG(u) is an increasing

function of t with uniformly bound on [0, t0]. Then, we will show

max
i=1,...,n

∣∣∣∣∫ t0

0

yn(t) dNi(t)

∣∣∣∣ = op(1),
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i.e., for any ε0 > 0 δ0 > 0, exists Nε0 ,

Pr

{
max

i=1,...,n

∣∣∣∣∫ t0

0

yn(t) dNi(t)

∣∣∣∣ ≥ ε0

}
≤ δ0.

By (D.13), for any ε1 > 0 δ1 > 0, exists Nε1 ,

Pr {|yn(t)| ≥ ε1} ≤ δ1.

Recall that Ni(t0) has a uniform upper bound 1. Thus, for any δ0 > 0 and ε0, ∃Nε0 = Nε1+1,

we can find δ1 = δ0 and ε1 = 1/2ε0 and obtain that

Pr

{
max

i=1,...,n

∣∣∣∣∫ t0

0

yn(t) dNi(t)

∣∣∣∣ ≥ ε0

}
≤Pr

{
max

i=1,...,n

∫ t0

0

|yn(t)| dNi(t) ≥ ε0

}
≤Pr

{
max

i=1,...,n

∫ t0

0

|yn(t)| dNi(t) ≥ ε0, |yn(t)| ≥ ε1

}
+Pr

{
max

i=1,...,n

∫ t0

0

|yn(t)| dNi(t) ≥ ε0, |yn(t)| < ε1

}
≤δ1 + Pr

{
ε1 max

i=1,...,n

∫ t0

0

dNi(t) ≥ ε0

}
≤δ1 + Pr

{
ε1 max

i=1,...,n
Ni(t0) ≥ ε0

}
=δ0.

Hence, we obtain ∣∣∣∣ max
i=1,...,n

∫ t0

0

yn(t) dNi(t)

∣∣∣∣ = op(1).
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From (D.13) and uniform bounded ΛG(t), we have
∫ t0
0

|yn(t)| dΛG(t) = op(1).

max
i=1,...,n

∣∣∣∣∫ t0

0

yn(t) dMi(t)

∣∣∣∣ = max
i=1,...,n

∣∣∣∣∫ t0

0

yn(t) dNi(t)

∣∣∣∣+ max
i=1,...,n

∣∣∣∣∫ t0

0

−yn(t) dΛi(t)

∣∣∣∣
≤ max

i=1,...,n

{∫ t0

0

|yn(t)| dNi(t)

}
+ max

i=1,...,n

∫ t0

0

|−yn(t)I(Xi ≥ u)| dΛG(t)

≤ max
i=1,...,n

{∫ t0

0

|yn(t)| dNi(t)

}
+

∫ t0

0

|yn(t)| dΛG(t)

=op(1).

We have that d(Mi(t) − M̂i(t)) = I(Xi ≥ t)d{Λ̂G(t) − ΛG(t)}. By the equation (3.23) of

Aalen et al. (2008), Λ̂G(t) − ΛG(t) =
∫ t0
0

1/Y (t) dM(t), where Y (t) =
∑n

j=1 I(Xj ≥ t) and

M(t) is a martingale, such that M(t) = N(t) − Λ(t), where N(t) =
∑n

t=1 I(Xi ≤ t, δi = 0)

is a counting process and Λ(t) =
∫ t

0
Y (u)dΛG(u) is a compensator. By the Strong Law of

Large Number, Y (t)/n
P−→ P (Xi ≥ t). Because P (Xi ≥ t) > 0, for any t ∈ [0, t0], we have

sup
t∈[0,t0]

{
n

Y (t)

}
=

n

Y (t0)

P−→ 1

P (Xi ≥ t0)
.
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Then, we have

max
i=1,...,n

∣∣∣∣∫ t0

0

q̂(θ0, t)

π̂(t)
d(Mi(t)− M̂i(t))

∣∣∣∣
= max

i=1,...,n

∣∣∣∣∫ t0

0

q̂(θ0, t)

π̂(t)
I(Xi ≥ t)d(Λ̂G(t)− ΛG(t))

∣∣∣∣
= max

i=1,...,n

∣∣∣∣∫ t0

0

q̂(θ0, t)I(Xi ≥ t)

π̂(t)Y (t)
dM(t)

∣∣∣∣
= max

i=1,...,n

∣∣∣∣∫ t0

0

q̂(θ0, t)I(Xi ≥ t)

π̂(t)Y (t)
dN(t)

∣∣∣∣+ max
i=1,...,n

∣∣∣∣∫ t0

0

− q̂(θ0, t)I(Xi ≥ t)

π̂(t)Y (t)
dΛ(t)

∣∣∣∣
=

∫ t0

0

max
i=1,...,n

∣∣∣∣ q̂(θ0, t)I(Xi ≥ t)

π̂(t)Y (t)

∣∣∣∣ dN(t) +

∫ t0

0

max
i=1,...,n

∣∣∣∣ q̂(θ0, t)I(Xi ≥ t)

π̂(t)Y (t)

∣∣∣∣ dΛ(t)
=

∫ t0

0

∣∣∣∣ q̂(θ0, t)π̂(t)Y (t)

∣∣∣∣ dN(t) +

∫ t0

0

∣∣∣∣ q̂(θ0, t)π̂(t)Y (t)

∣∣∣∣ dΛ(t)
≤ n

Y (t0)

∫ t0

0

∣∣∣∣ q̂(θ0, t)π̂(t)

∣∣∣∣ d(N(t)

n

)
+

∫ t0

0

∣∣∣∣ q̂(θ0, t)π̂(t)

∣∣∣∣ dΛG(t)

=
n

Y (t0)

1

n

n∑
i=1,Xi<t0

∣∣∣∣ q̂(θ0, Xi)I(δi = 0)

π̂(Xi)

∣∣∣∣+ ∫ t0

0

∣∣∣∣ q̂(θ0, t)π̂(t)

∣∣∣∣ dΛG(t)

≤ n

Y (t0)
sup

i=1,...,n

∣∣∣∣ q̂(θ0, Xi)

π̂(Xi)

∣∣∣∣+ ∫ t0

0

∣∣∣∣ q̂(θ0, t)π̂(t)

∣∣∣∣ dΛG(t)

≤ n

Y (t0)

{
sup

i=1,...,n

∣∣∣∣q(θ0, Xi)

π(Xi)

∣∣∣∣+ C

}
+

∫ t0

0

∣∣∣∣ q̂(θ0, t)π̂(t)

∣∣∣∣ dΛG(t),

where C is a constant. Because |q(θ0, t)/π(t)| and ΛG(t) are uniformly bounded and N(t)/n

is bounded by 1, we know

max
i=1,...,n

∣∣∣∣∫ t0

0

q̂(θ0, t)

π̂(t)
d{Mi(t)− M̂i(t)}

∣∣∣∣ = Op(1) = op(
√
n).

Because π̂(t), q̂(θ0, t) and ΛG(t) are uniformly bounded and N(t)/n is bounded by 1.

We have

max
i=1,...,n

∣∣∣∣∫ t0

0

q̂(θ0, t)

π̂(t)
d{Mi(t)− M̂i(t)}

∣∣∣∣ = op(
√
n),

and

max
i=1,...,n

|di(θ0)− d̂i(θ0)| = op(
√
n).
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Hence,

max
i=1,...,n

|Ŵi(θ0)−Wi(θ0)|

≤ max
i=1,...,n

∣∣∣∣∣ 1

n− 1

n∑
j=1,j ̸=i

h(Ui, Uj, θ0)

∣∣∣∣∣+ max
i=1,...,n

|di(θ0)− d̂i(θ0)|+ max
i=1,...,n

1

n− 1

n∑
j=1,j ̸=i

|dj(θ0)− d̂j(θ0)|

≤ max
i=1,...,n

∣∣∣∣∣ 1

n− 1

n∑
j=1,j ̸=i

h(Ui, Uj, θ0)

∣∣∣∣∣+ 2 max
i=1,...,n

|di(θ0)− d̂i(θ0)|

=op(n
1/2).

Combining above equations, we have

max
i=1,...,n

|Ŵi(θ0)| ≤ max
i=1,...,n

|Ŵi(θ0)−Wi(θ0)|+ max
i=1,...,n

|Wi(θ0)| = op(n
1/2). (D.20)

By Owen (2001, p. 220),

ρ

[
υT Γ̂n(θ0)υ −

{
max

i=1,...,n
Ŵi(θ0)

}{
n−1

n∑
i=1

υT Ŵi(θ0)

}]
≤ n−1

n∑
i=1

υT Ŵi(θ0). (D.21)

By Lemma D.2, we have

υT Γ̂n(θ0)υ ≤ υT{Γ̂n(θ0)− Γ}υ + υTΓυ = Op(1). (D.22)

By Lemma D.1, we have

n−1

n∑
i=1

Ŵi(θ0) = Op(n
−1/2). (D.23)

So, by (D.20-23), we have

0 < ρ{Op(1) + op(1)} ≤ Op(n
−1/2),
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and

λ(θ0) = ρυ = op(1)υ = Op(n
−1/2). (D.24)

Proof of Theorem 6.1 By Owen (2001),

λ(θ0) =

{
n∑

i=1

Ŵi(θ0)Ŵ
T
i (θ0)

}−1{ n∑
i=1

Ŵi(θ0)

}
+ op(n

−1/2). (D.25)

By the Taylor expansion for (D.10), we have

l(θ0) =
n∑

i=1

λ(θ0)
T Ŵi(θ0) + op(1). (D.26)

Combining (D.25) and (D.26), we have

l(θ0) =

{
1√
n

n∑
i=1

Ŵi(θ0)

}T {
1

n

n∑
i=1

Ŵi(θ0)Ŵ
T
i (θ0)

}−1{
1√
n

n∑
i=1

Ŵi(θ0)

}
+ op(1)

D−→ 4χ2
p.

�

Proof of Theorem 6.2 The proof is along the lines of Proposition 3 of Yu et al.

(2011). Note that θ0 = (θT10, θ
T
20)

T and the corresponding (ZT
1 , Z

T
2 )

T . η̃ij(θ0) is the partial

derivative of ηij(θ0) with respect to θ2, where

η̃ij(θ0) = Z2j

∫ α0

−∞
{1− F (t+ ZT

i β0)} df(t+ ZT
j β0)− Z2i

∫ α0

−∞
{1− f(t+ ZT

i β0)} dF (t+ ZT
j β0).

(D.27)

and D̃(θ0) = lim
n→∞

n−2

n∑
i=1

n∑
j=1,j ̸=i

wij(θ0)η̃ij(θ0)η̃
T
ij(θ0), where η̃ij(θ) is a p+ 1− q dimensional

vector. Denote θ̂2 = arg infθ2 l(θ10, θ2). Let Φ̃(θ0) = D̃(θ0)
−1Γ(θ0)D̃(θ0)

−1. By similar argu-
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ments in Qin and Lawless (1994) and Fine et al. (1998), we can obtain

√
n(β̂2 − β20) = −Φ̃−1(θ0)D̃(θ0)

TΓ(θ0)
−1 1√

n

n∑
i=1

Ŵi(θ0) + op(1),

and the Lagrange multiplier λ2 satisfies that

√
nλ2 =

{
I − Γ−1(θ0)D̃(θ0)Φ̃

−1(θ0)D̃(θ0)
T
}
Γ(θ0)

−1 1√
n

n∑
i=1

Ŵi(θ0) + op(1).

Thus,

1

4
l∗(θ10)

=

{
1

2
√
n

n∑
i=1

Ŵi(θ0)

}T {
Γ−1(θ0)− Γ−1(θ0)D̃(θ0)Φ̃

−1(θ0)D̃(θ0)
TΓ−1(θ0)

}{ 1

2
√
n

n∑
i=1

Ŵi(θ0)

}
+ op(1)

=

{
Γ−1/2(θ0)

1

2
√
n

n∑
i=1

Ŵi(θ0)

}T {
I − Γ−1/2(θ0)D̃(θ0)Φ̃

−1(θ0)D̃(θ0)
TΓ−1/2(θ0)

}
{
Γ−1/2(θ0)

1

2
√
n

n∑
i=1

Ŵi(θ0)

}
+ op(1).

Define S = I − Γ−1/2(θ0)D̃(θ0)Φ̃
−1(θ0)D̃(θ0)

TΓ−1/2(θ0). Note that trace(S) = q. We have

1

4
l∗(θ10)

D−→ χ2
q. �
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