57,449 research outputs found

    Relaxation Penalties and Priors for Plausible Modeling of Nonidentified Bias Sources

    Full text link
    In designed experiments and surveys, known laws or design feat ures provide checks on the most relevant aspects of a model and identify the target parameters. In contrast, in most observational studies in the health and social sciences, the primary study data do not identify and may not even bound target parameters. Discrepancies between target and analogous identified parameters (biases) are then of paramount concern, which forces a major shift in modeling strategies. Conventional approaches are based on conditional testing of equality constraints, which correspond to implausible point-mass priors. When these constraints are not identified by available data, however, no such testing is possible. In response, implausible constraints can be relaxed into penalty functions derived from plausible prior distributions. The resulting models can be fit within familiar full or partial likelihood frameworks. The absence of identification renders all analyses part of a sensitivity analysis. In this view, results from single models are merely examples of what might be plausibly inferred. Nonetheless, just one plausible inference may suffice to demonstrate inherent limitations of the data. Points are illustrated with misclassified data from a study of sudden infant death syndrome. Extensions to confounding, selection bias and more complex data structures are outlined.Comment: Published in at http://dx.doi.org/10.1214/09-STS291 the Statistical Science (http://www.imstat.org/sts/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Monte Carlo likelihood inference for missing data models

    Full text link
    We describe a Monte Carlo method to approximate the maximum likelihood estimate (MLE), when there are missing data and the observed data likelihood is not available in closed form. This method uses simulated missing data that are independent and identically distributed and independent of the observed data. Our Monte Carlo approximation to the MLE is a consistent and asymptotically normal estimate of the minimizer θ\theta^* of the Kullback--Leibler information, as both Monte Carlo and observed data sample sizes go to infinity simultaneously. Plug-in estimates of the asymptotic variance are provided for constructing confidence regions for θ\theta^*. We give Logit--Normal generalized linear mixed model examples, calculated using an R package.Comment: Published at http://dx.doi.org/10.1214/009053606000001389 in the Annals of Statistics (http://www.imstat.org/aos/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Monte Carlo modified profile likelihood in models for clustered data

    Get PDF
    The main focus of the analysts who deal with clustered data is usually not on the clustering variables, and hence the group-specific parameters are treated as nuisance. If a fixed effects formulation is preferred and the total number of clusters is large relative to the single-group sizes, classical frequentist techniques relying on the profile likelihood are often misleading. The use of alternative tools, such as modifications to the profile likelihood or integrated likelihoods, for making accurate inference on a parameter of interest can be complicated by the presence of nonstandard modelling and/or sampling assumptions. We show here how to employ Monte Carlo simulation in order to approximate the modified profile likelihood in some of these unconventional frameworks. The proposed solution is widely applicable and is shown to retain the usual properties of the modified profile likelihood. The approach is examined in two instances particularly relevant in applications, i.e. missing-data models and survival models with unspecified censoring distribution. The effectiveness of the proposed solution is validated via simulation studies and two clinical trial applications

    Techniques of linear prediction, with application to oceanic and atmospheric fields in the tropical Pacific

    No full text
    The problem of constructing optimal linear prediction models by multivariance regression methods is reviewed. It is well known that as the number of predictors in a model is increased, the skill of the prediction grows, but the statistical significance generally decreases. For predictions using a large number of candidate predictors, strategies are therefore needed to determine optimal prediction models which properly balance the competing requirements of skill and significance. The popular methods of coefficient screening or stepwise regression represent a posteriori predictor selection methods and therefore cannot be used to recover statistically significant models by truncation if the complete model, including all predictors, is statistically insignificant. Higher significance can be achieved only by a priori reduction of the predictor set. To determine the maximum number of predictors which may be meaningfully incorporated in a model, a model hierarchy can be used in which a series of best fit prediction models is constructed for a (prior defined) nested sequence of predictor sets, the sequence being terminated when the significance level either falls below a prescribed limit or reaches a maximum value. The method requires a reliable assessment of model significance. This is characterized by a quadratic statistic which is defined independently of the model skill or artificial skill. As an example, the method is applied to the prediction of sea surface temperature anomalies at Christmas Island (representative of sea surface temperatures in the central equatorial Pacific) and variations of the central and east Pacific Hadley circulation (characterized by the second empirical orthogonal function (EOF) of the meridional component of the trade wind anomaly field) using a general multiple‐time‐lag prediction matrix. The ordering of the predictors is based on an EOF sequence, defined formally as orthogonal variables in the composite space of all (normalized) predictors, irrespective of their different physical dimensions, time lag, and geographic position. The choice of a large set of 20 predictors at 12 time lags yields significant predictability only for forecast periods of 3 to 5 months. However, a prior reduction of the predictor set to 4 predictors at 10 time lags leads to 95% significant predictions with skill values of the order of 0.4 to 0.7 up to 6 or 8 months. For infinitely long time series the construction of optimal prediction models reduces essentially to the problem of linear system identification. However, the model hierarchies normally considered for the simulation of general linear systems differ in structure from the model hierarchies which appear to be most suitable for constructing pure prediction models. Thus the truncation imposed by statistical significance requirements can result in rather different models for the two cases. The relation between optimal prediction models and linear dynamical models is illustrated by the prediction of east‐west sea level changes in the equatorial Pacific from wind field anomalies. It is shown that the optimal empirical prediction is statistically consistent in this case with both the first‐order relaxation and damped oscillator models recently proposed by McWilliams and Gent (but with somewhat different model parameters than suggested by the authors). Thus the data do not allow a distinction between the two physical models; the simplest acceptable model is the first‐order damped response. Finally, the problem of estimating forecast skill is discussed. It is usually stated that the forecast skill is smaller than the true skill, which in turn is smaller than the hindcast skill, by an amount which in both cases is approximately equal to the artificial skill. However, this result applies to the mean skills averaged over the ensemble of all possible hindcast data sets, given the true model. Under the more appropriate side condition of a given hindcast data set and an unknown true model, the estimation of the forecast skill represents a problem of statistical inference and is dependent on the assumed prior probability distribution of true models. The Bayesian hypothesis of a uniform prior distribution yields an average forecast skill equal to the hindcast skill, but other (equally acceptable) assumptions yield lower forecast skills more compatible with the usual hindcast‐averaged expressio

    Likelihood Inference for Models with Unobservables: Another View

    Full text link
    There have been controversies among statisticians on (i) what to model and (ii) how to make inferences from models with unobservables. One such controversy concerns the difference between estimation methods for the marginal means not necessarily having a probabilistic basis and statistical models having unobservables with a probabilistic basis. Another concerns likelihood-based inference for statistical models with unobservables. This needs an extended-likelihood framework, and we show how one such extension, hierarchical likelihood, allows this to be done. Modeling of unobservables leads to rich classes of new probabilistic models from which likelihood-type inferences can be made naturally with hierarchical likelihood.Comment: This paper discussed in: [arXiv:1010.0804], [arXiv:1010.0807], [arXiv:1010.0810]. Rejoinder at [arXiv:1010.0814]. Published in at http://dx.doi.org/10.1214/09-STS277 the Statistical Science (http://www.imstat.org/sts/) by the Institute of Mathematical Statistics (http://www.imstat.org
    corecore