1,847 research outputs found

    Signal fingerprinting and machine learning framework for UAV detection and identification.

    Get PDF
    Advancement in technology has led to creative and innovative inventions. One such invention includes unmanned aerial vehicles (UAVs). UAVs (also known as drones) are now an intrinsic part of our society because their application is becoming ubiquitous in every industry ranging from transportation and logistics to environmental monitoring among others. With the numerous benign applications of UAVs, their emergence has added a new dimension to privacy and security issues. There are little or no strict regulations on the people that can purchase or own a UAV. For this reason, nefarious actors can take advantage of these aircraft to intrude into restricted or private areas. A UAV detection and identification system is one of the ways of detecting and identifying the presence of a UAV in an area. UAV detection and identification systems employ different sensing techniques such as radio frequency (RF) signals, video, sounds, and thermal imaging for detecting an intruding UAV. Because of the passive nature (stealth) of RF sensing techniques, the ability to exploit RF sensing for identification of UAV flight mode (i.e., flying, hovering, videoing, etc.), and the capability to detect a UAV at beyond visual line-of-sight (BVLOS) or marginal line-of-sight makes RF sensing techniques promising for UAV detection and identification. More so, there is constant communication between a UAV and its ground station (i.e., flight controller). The RF signals emitting from a UAV or UAV flight controller can be exploited for UAV detection and identification. Hence, in this work, an RF-based UAV detection and identification system is proposed and investigated. In RF signal fingerprinting research, the transient and steady state of the RF signals can be used to extract a unique signature. The first part of this work is to use two different wavelet analytic transforms (i.e., continuous wavelet transform and wavelet scattering transform) to investigate and analyze the characteristics or impacts of using either state for UAV detection and identification. Coefficient-based and image-based signatures are proposed for each of the wavelet analysis transforms to detect and identify a UAV. One of the challenges of using RF sensing is that a UAV\u27s communication links operate at the industrial, scientific, and medical (ISM) band. Several devices such as Bluetooth and WiFi operate at the ISM band as well, so discriminating UAVs from other ISM devices is not a trivial task. A semi-supervised anomaly detection approach is explored and proposed in this research to differentiate UAVs from Bluetooth and WiFi devices. Both time-frequency analytical approaches and unsupervised deep neural network techniques (i.e., denoising autoencoder) are used differently for feature extraction. Finally, a hierarchical classification framework for UAV identification is proposed for the identification of the type of unmanned aerial system signal (UAV or UAV controller signal), the UAV model, and the operational mode of the UAV. This is a shift from a flat classification approach. The hierarchical learning approach provides a level-by-level classification that can be useful for identifying an intruding UAV. The proposed frameworks described here can be extended to the detection of rogue RF devices in an environment

    Enhancing Road Infrastructure Monitoring: Integrating Drones for Weather-Aware Pothole Detection

    Get PDF
    The abstract outlines the research proposal focused on the utilization of Unmanned Aerial Vehicles (UAVs) for monitoring potholes in road infrastructure affected by various weather conditions. The study aims to investigate how different materials used to fill potholes, such as water, grass, sand, and snow-ice, are impacted by seasonal weather changes, ultimately affecting the performance of pavement structures. By integrating weather-aware monitoring techniques, the research seeks to enhance the rigidity and resilience of road surfaces, thereby contributing to more effective pavement management systems. The proposed methodology involves UAV image-based monitoring combined with advanced super-resolution algorithms to improve image refinement, particularly at high flight altitudes. Through case studies and experimental analysis, the study aims to assess the geometric precision of 3D models generated from aerial images, with a specific focus on road pavement distress monitoring. Overall, the research aims to address the challenges of traditional road failure detection methods by exploring cost-effective 3D detection techniques using UAV technology, thereby ensuring safer roadways for all users

    Audio-Based Drone Detection and Identification Using Deep Learning Techniques with Dataset Enhancement through Generative Adversarial Networks

    Get PDF
    Drones are becoming increasingly popular not only for recreational purposes but in day-to-day applications in engineering, medicine, logistics, security and others. In addition to their useful applications, an alarming concern in regard to the physical infrastructure security, safety and privacy has arisen due to the potential of their use in malicious activities. To address this problem, we propose a novel solution that automates the drone detection and identification processes using a drone’s acoustic features with different deep learning algorithms. However, the lack of acoustic drone datasets hinders the ability to implement an effective solution. In this paper, we aim to fill this gap by introducing a hybrid drone acoustic dataset composed of recorded drone audio clips and artificially generated drone audio samples using a state-of-the-art deep learning technique known as the Generative Adversarial Network. Furthermore, we examine the effectiveness of using drone audio with different deep learning algorithms, namely, the Convolutional Neural Network, the Recurrent Neural Network and the Convolutional Recurrent Neural Network in drone detection and identification. Moreover, we investigate the impact of our proposed hybrid dataset in drone detection. Our findings prove the advantage of using deep learning techniques for drone detection and identification while confirming our hypothesis on the benefits of using the Generative Adversarial Networks to generate real-like drone audio clips with an aim of enhancing the detection of new and unfamiliar drones

    Digital Interaction and Machine Intelligence

    Get PDF
    This book is open access, which means that you have free and unlimited access. This book presents the Proceedings of the 9th Machine Intelligence and Digital Interaction Conference. Significant progress in the development of artificial intelligence (AI) and its wider use in many interactive products are quickly transforming further areas of our life, which results in the emergence of various new social phenomena. Many countries have been making efforts to understand these phenomena and find answers on how to put the development of artificial intelligence on the right track to support the common good of people and societies. These attempts require interdisciplinary actions, covering not only science disciplines involved in the development of artificial intelligence and human-computer interaction but also close cooperation between researchers and practitioners. For this reason, the main goal of the MIDI conference held on 9-10.12.2021 as a virtual event is to integrate two, until recently, independent fields of research in computer science: broadly understood artificial intelligence and human-technology interaction
    corecore