79,112 research outputs found

    Considerations for believable emotional facial expression animation

    Get PDF
    Facial expressions can be used to communicate emotional states through the use of universal signifiers within key regions of the face. Psychology research has identified what these signifiers are and how different combinations and variations can be interpreted. Research into expressions has informed animation practice, but as yet very little is known about the movement within and between emotional expressions. A better understanding of sequence, timing, and duration could better inform the production of believable animation. This paper introduces the idea of expression choreography, and how tests of observer perception might enhance our understanding of moving emotional expressions

    Automatic emotional state detection using facial expression dynamic in videos

    Get PDF
    In this paper, an automatic emotion detection system is built for a computer or machine to detect the emotional state from facial expressions in human computer communication. Firstly, dynamic motion features are extracted from facial expression videos and then advanced machine learning methods for classification and regression are used to predict the emotional states. The system is evaluated on two publicly available datasets, i.e. GEMEP_FERA and AVEC2013, and satisfied performances are achieved in comparison with the baseline results provided. With this emotional state detection capability, a machine can read the facial expression of its user automatically. This technique can be integrated into applications such as smart robots, interactive games and smart surveillance systems

    Determining what people feel and think when interacting with humans and machines

    Get PDF
    Any interactive software program must interpret the users’ actions and come up with an appropriate response that is intelligable and meaningful to the user. In most situations, the options of the user are determined by the software and hardware and the actions that can be carried out are unambiguous. The machine knows what it should do when the user carries out an action. In most cases, the user knows what he has to do by relying on conventions which he may have learned by having had a look at the instruction manual, having them seen performed by somebody else, or which he learned by modifying a previously learned convention. Some, or most, of the times he just finds out by trial and error. In user-friendly interfaces, the user knows, without having to read extensive manuals, what is expected from him and how he can get the machine to do what he wants. An intelligent interface is so-called, because it does not assume the same kind of programming of the user by the machine, but the machine itself can figure out what the user wants and how he wants it without the user having to take all the trouble of telling it to the machine in the way the machine dictates but being able to do it in his own words. Or perhaps by not using any words at all, as the machine is able to read off the intentions of the user by observing his actions and expressions. Ideally, the machine should be able to determine what the user wants, what he expects, what he hopes will happen, and how he feels

    Time-delay neural network for continuous emotional dimension prediction from facial expression sequences

    Get PDF
    "(c) 2015 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other users, including reprinting/ republishing this material for advertising or promotional purposes, creating new collective works for resale or redistribution to servers or lists, or reuse of any copyrighted components of this work in other works."Automatic continuous affective state prediction from naturalistic facial expression is a very challenging research topic but very important in human-computer interaction. One of the main challenges is modeling the dynamics that characterize naturalistic expressions. In this paper, a novel two-stage automatic system is proposed to continuously predict affective dimension values from facial expression videos. In the first stage, traditional regression methods are used to classify each individual video frame, while in the second stage, a Time-Delay Neural Network (TDNN) is proposed to model the temporal relationships between consecutive predictions. The two-stage approach separates the emotional state dynamics modeling from an individual emotional state prediction step based on input features. In doing so, the temporal information used by the TDNN is not biased by the high variability between features of consecutive frames and allows the network to more easily exploit the slow changing dynamics between emotional states. The system was fully tested and evaluated on three different facial expression video datasets. Our experimental results demonstrate that the use of a two-stage approach combined with the TDNN to take into account previously classified frames significantly improves the overall performance of continuous emotional state estimation in naturalistic facial expressions. The proposed approach has won the affect recognition sub-challenge of the third international Audio/Visual Emotion Recognition Challenge (AVEC2013)1

    Emotions in context: examining pervasive affective sensing systems, applications, and analyses

    Get PDF
    Pervasive sensing has opened up new opportunities for measuring our feelings and understanding our behavior by monitoring our affective states while mobile. This review paper surveys pervasive affect sensing by examining and considering three major elements of affective pervasive systems, namely; “sensing”, “analysis”, and “application”. Sensing investigates the different sensing modalities that are used in existing real-time affective applications, Analysis explores different approaches to emotion recognition and visualization based on different types of collected data, and Application investigates different leading areas of affective applications. For each of the three aspects, the paper includes an extensive survey of the literature and finally outlines some of challenges and future research opportunities of affective sensing in the context of pervasive computing
    • 

    corecore