5,178 research outputs found

    Automatic Emotion Recognition: Quantifying Dynamics and Structure in Human Behavior.

    Full text link
    Emotion is a central part of human interaction, one that has a huge influence on its overall tone and outcome. Today's human-centered interactive technology can greatly benefit from automatic emotion recognition, as the extracted affective information can be used to measure, transmit, and respond to user needs. However, developing such systems is challenging due to the complexity of emotional expressions and their dynamics in terms of the inherent multimodality between audio and visual expressions, as well as the mixed factors of modulation that arise when a person speaks. To overcome these challenges, this thesis presents data-driven approaches that can quantify the underlying dynamics in audio-visual affective behavior. The first set of studies lay the foundation and central motivation of this thesis. We discover that it is crucial to model complex non-linear interactions between audio and visual emotion expressions, and that dynamic emotion patterns can be used in emotion recognition. Next, the understanding of the complex characteristics of emotion from the first set of studies leads us to examine multiple sources of modulation in audio-visual affective behavior. Specifically, we focus on how speech modulates facial displays of emotion. We develop a framework that uses speech signals which alter the temporal dynamics of individual facial regions to temporally segment and classify facial displays of emotion. Finally, we present methods to discover regions of emotionally salient events in a given audio-visual data. We demonstrate that different modalities, such as the upper face, lower face, and speech, express emotion with different timings and time scales, varying for each emotion type. We further extend this idea into another aspect of human behavior: human action events in videos. We show how transition patterns between events can be used for automatically segmenting and classifying action events. Our experimental results on audio-visual datasets show that the proposed systems not only improve performance, but also provide descriptions of how affective behaviors change over time. We conclude this dissertation with the future directions that will innovate three main research topics: machine adaptation for personalized technology, human-human interaction assistant systems, and human-centered multimedia content analysis.PhDElectrical Engineering: SystemsUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/133459/1/yelinkim_1.pd

    Visual Acuity does not Moderate Effect Sizes of Higher-Level Cognitive Tasks.

    Get PDF
    Background/study contextDeclining visual capacities in older adults have been posited as a driving force behind adult age differences in higher-order cognitive functions (e.g., the "common cause" hypothesis of Lindenberger & Baltes, 1994, Psychology and Aging, 9, 339-355). McGowan, Patterson, and Jordan (2013, Experimental Aging Research, 39, 70-79) also found that a surprisingly large number of published cognitive aging studies failed to include adequate measures of visual acuity. However, a recent meta-analysis of three studies (La Fleur and Salthouse, 2014, Psychonomic Bulletin & Review, 21, 1202-1208) failed to find evidence that visual acuity moderated or mediated age differences in higher-level cognitive processes. In order to provide a more extensive test of whether visual acuity moderates age differences in higher-level cognitive processes, we conducted a more extensive meta-analysis of topic.MethodsUsing results from 456 studies, we calculated effect sizes for the main effect of age across four cognitive domains (attention, executive function, memory, and perception/language) separately for five levels of visual acuity criteria (no criteria, undisclosed criteria, self-reported acuity, 20/80-20/31, and 20/30 or better).ResultsAs expected, age had a significant effect on each cognitive domain. However, these age effects did not further differ as a function of visual acuity criteria.ConclusionThe current meta-analytic, cross-sectional results suggest that visual acuity is not significantly related to age group differences in higher-level cognitive performance-thereby replicating La Fleur and Salthouse (2014). Further efforts are needed to determine whether other measures of visual functioning (e.g., contrast sensitivity, luminance) affect age differences in cognitive functioning

    Semi-supervised Multi-modal Emotion Recognition with Cross-Modal Distribution Matching

    Full text link
    Automatic emotion recognition is an active research topic with wide range of applications. Due to the high manual annotation cost and inevitable label ambiguity, the development of emotion recognition dataset is limited in both scale and quality. Therefore, one of the key challenges is how to build effective models with limited data resource. Previous works have explored different approaches to tackle this challenge including data enhancement, transfer learning, and semi-supervised learning etc. However, the weakness of these existing approaches includes such as training instability, large performance loss during transfer, or marginal improvement. In this work, we propose a novel semi-supervised multi-modal emotion recognition model based on cross-modality distribution matching, which leverages abundant unlabeled data to enhance the model training under the assumption that the inner emotional status is consistent at the utterance level across modalities. We conduct extensive experiments to evaluate the proposed model on two benchmark datasets, IEMOCAP and MELD. The experiment results prove that the proposed semi-supervised learning model can effectively utilize unlabeled data and combine multi-modalities to boost the emotion recognition performance, which outperforms other state-of-the-art approaches under the same condition. The proposed model also achieves competitive capacity compared with existing approaches which take advantage of additional auxiliary information such as speaker and interaction context.Comment: 10 pages, 5 figures, to be published on ACM Multimedia 202

    Bag-of-words representations for computer audition

    Get PDF
    Computer audition is omnipresent in everyday life, in applications ranging from personalised virtual agents to health care. From a technical point of view, the goal is to robustly classify the content of an audio signal in terms of a defined set of labels, such as, e.g., the acoustic scene, a medical diagnosis, or, in the case of speech, what is said or how it is said. Typical approaches employ machine learning (ML), which means that task-specific models are trained by means of examples. Despite recent successes in neural network-based end-to-end learning, taking the raw audio signal as input, models relying on hand-crafted acoustic features are still superior in some domains, especially for tasks where data is scarce. One major issue is nevertheless that a sequence of acoustic low-level descriptors (LLDs) cannot be fed directly into many ML algorithms as they require a static and fixed-length input. Moreover, also for dynamic classifiers, compressing the information of the LLDs over a temporal block by summarising them can be beneficial. However, the type of instance-level representation has a fundamental impact on the performance of the model. In this thesis, the so-called bag-of-audio-words (BoAW) representation is investigated as an alternative to the standard approach of statistical functionals. BoAW is an unsupervised method of representation learning, inspired from the bag-of-words method in natural language processing, forming a histogram of the terms present in a document. The toolkit openXBOW is introduced, enabling systematic learning and optimisation of these feature representations, unified across arbitrary modalities of numeric or symbolic descriptors. A number of experiments on BoAW are presented and discussed, focussing on a large number of potential applications and corresponding databases, ranging from emotion recognition in speech to medical diagnosis. The evaluations include a comparison of different acoustic LLD sets and configurations of the BoAW generation process. The key findings are that BoAW features are a meaningful alternative to statistical functionals, offering certain benefits, while being able to preserve the advantages of functionals, such as data-independence. Furthermore, it is shown that both representations are complementary and their fusion improves the performance of a machine listening system.Maschinelles Hören ist im täglichen Leben allgegenwärtig, mit Anwendungen, die von personalisierten virtuellen Agenten bis hin zum Gesundheitswesen reichen. Aus technischer Sicht besteht das Ziel darin, den Inhalt eines Audiosignals hinsichtlich einer Auswahl definierter Labels robust zu klassifizieren. Die Labels beschreiben bspw. die akustische Umgebung der Aufnahme, eine medizinische Diagnose oder - im Falle von Sprache - was gesagt wird oder wie es gesagt wird. Übliche Ansätze hierzu verwenden maschinelles Lernen, d.h., es werden anwendungsspezifische Modelle anhand von Beispieldaten trainiert. Trotz jüngster Erfolge beim Ende-zu-Ende-Lernen mittels neuronaler Netze, in welchen das unverarbeitete Audiosignal als Eingabe benutzt wird, sind Modelle, die auf definierten akustischen Merkmalen basieren, in manchen Bereichen weiterhin überlegen. Dies gilt im Besonderen für Einsatzzwecke, für die nur wenige Daten vorhanden sind. Allerdings besteht dabei das Problem, dass Zeitfolgen von akustischen Deskriptoren in viele Algorithmen des maschinellen Lernens nicht direkt eingespeist werden können, da diese eine statische Eingabe fester Länge benötigen. Außerdem kann es auch für dynamische (zeitabhängige) Klassifikatoren vorteilhaft sein, die Deskriptoren über ein gewisses Zeitintervall zusammenzufassen. Jedoch hat die Art der Merkmalsdarstellung einen grundlegenden Einfluss auf die Leistungsfähigkeit des Modells. In der vorliegenden Dissertation wird der sogenannte Bag-of-Audio-Words-Ansatz (BoAW) als Alternative zum Standardansatz der statistischen Funktionale untersucht. BoAW ist eine Methode des unüberwachten Lernens von Merkmalsdarstellungen, die von der Bag-of-Words-Methode in der Computerlinguistik inspiriert wurde, bei der ein Textdokument als Histogramm der vorkommenden Wörter beschrieben wird. Das Toolkit openXBOW wird vorgestellt, welches systematisches Training und Optimierung dieser Merkmalsdarstellungen - vereinheitlicht für beliebige Modalitäten mit numerischen oder symbolischen Deskriptoren - erlaubt. Es werden einige Experimente zum BoAW-Ansatz durchgeführt und diskutiert, die sich auf eine große Zahl möglicher Anwendungen und entsprechende Datensätze beziehen, von der Emotionserkennung in gesprochener Sprache bis zur medizinischen Diagnostik. Die Auswertungen beinhalten einen Vergleich verschiedener akustischer Deskriptoren und Konfigurationen der BoAW-Methode. Die wichtigsten Erkenntnisse sind, dass BoAW-Merkmalsvektoren eine geeignete Alternative zu statistischen Funktionalen darstellen, gewisse Vorzüge bieten und gleichzeitig wichtige Eigenschaften der Funktionale, wie bspw. die Datenunabhängigkeit, erhalten können. Zudem wird gezeigt, dass beide Darstellungen komplementär sind und eine Fusionierung die Leistungsfähigkeit eines Systems des maschinellen Hörens verbessert

    Synthesizing Skeletal Motion and Physiological Signals as a Function of a Virtual Human's Actions and Emotions

    Full text link
    Round-the-clock monitoring of human behavior and emotions is required in many healthcare applications which is very expensive but can be automated using machine learning (ML) and sensor technologies. Unfortunately, the lack of infrastructure for collection and sharing of such data is a bottleneck for ML research applied to healthcare. Our goal is to circumvent this bottleneck by simulating a human body in virtual environment. This will allow generation of potentially infinite amounts of shareable data from an individual as a function of his actions, interactions and emotions in a care facility or at home, with no risk of confidentiality breach or privacy invasion. In this paper, we develop for the first time a system consisting of computational models for synchronously synthesizing skeletal motion, electrocardiogram, blood pressure, respiration, and skin conductance signals as a function of an open-ended set of actions and emotions. Our experimental evaluations, involving user studies, benchmark datasets and comparison to findings in the literature, show that our models can generate skeletal motion and physiological signals with high fidelity. The proposed framework is modular and allows the flexibility to experiment with different models. In addition to facilitating ML research for round-the-clock monitoring at a reduced cost, the proposed framework will allow reusability of code and data, and may be used as a training tool for ML practitioners and healthcare professionals

    The Use of Clinical Judgment in Differentiating Symptoms of Autism Spectrum Disorder from Those of Other Childhood Conditions: A Delphi Study

    Get PDF
    More and more, due to long waiting lists at diagnostic clinics and access barriers for certain segments of the population, schools are often the first environment in which children are evaluated for ASD (Sullivan, 2013). And while accurate identification of autism spectrum disorders (ASD) is essential for proper treatment and service provision, large percentages of school and community-based identifications of ASD are overturned when children are re-evaluated with strict clinical criteria (Wiggins et al., 2015). In part, challenges faced in accurately differentiating ASD from other conditions may be contributed to the diagnostic complexities of the condition itself. Clinical expertise is one of, if not the most important factors in accurate diagnostic decision-making during evaluations of ASD. However, there exists little insight into what comprises this expert judgment. Using the Delphi methodology, a panel of clinical and school psychology experts in ASD identification were surveyed until consensus was reached about their use of clinical judgment in differentiating ASD from other conditions. The results of these rounds of questioning were compiled into a decision-making guideline entitled Beyond Test Results: Developing Clinical Judgment to Differentiate Symptoms of Autism Spectrum Disorders from Those of Other Childhood Conditions. Implications of this guide include incorporation into school psychology training courses and guidance for school-based evaluation teams
    corecore