89,599 research outputs found

    Fuel supply chain analysis of Turkey

    Get PDF
    In spite of its natural sources, Turkey depends on other countries in terms of energy production, and a transfer from conventional fossil sources to sustainable energy sources is strongly necessary. Among the sustainable energy sources, biomass is the subject of this study. The characteristics, logistic aspects, environmental aspects, economical, legal and technical aspects are investigated in order to show that the possible biomass co-firing is very important for the construction of economic, sustainable and environmentally friendly energy systems

    Enabling low-carbon living in new UK housing developments

    Get PDF
    Purpose: The purpose of this paper is to describe a tool (the Climate Challenge Tool) that allows house builders to calculate whole life carbon equivalent emissions and costs of various carbon and energy reduction options that can be incorporated into the design of new developments. Design/methodology/approach: The tool covers technical and soft (or lifestyle) measures for reducing carbon production and energy use. Energy used within the home, energy embodied in the building materials, and emissions generated through transport, food consumption and waste treatment are taken into account. The tool has been used to assess the potential and cost-effectiveness of various carbon reduction options for a proposed new housing development in Cambridgeshire. These are compared with carbon emissions from a typical UK household. Findings: The tool demonstrated that carbon emission reductions can be achieved at much lower costs through an approach which enables sustainable lifestyles than through an approach which focuses purely on reducing heat lost through the fabric of the building and from improving the heating and lighting systems. Practical implications: The tool will enable house builders to evaluate which are the most cost-effective measures that they can incorporate into the design of new developments in order to achieve the significant energy savings and reduction in carbon emissions necessary to meet UK Government targets and to avoid dangerous climate change. Originality/value: Current approaches to assessing carbon and energy reduction options for new housing developments concentrate on energy efficiency options such as reducing heat lost through the fabric of the building and improving the heating and lighting systems, alongside renewable energy systems. The Climate Challenge Tool expands the range of options that might be considered by developers to include those affecting lifestyle choices of future residents. © Emerald Group Publishing Limited

    Sustainability aspects of biobased applications : comparison of different crops and products from the sugar platform BO-12.05-002-008

    Get PDF
    In this study different uses of biomass are compared. In order to allow for a systematic comparison the study focuses on three different chemicals that can be produced from sugar. In this way it is also, in principle, possible to compare different crops for the production of the same product. The study focuses on the production of PLA (polylactic acid, a bioplastic), ethanol, and biopolyethylene (bio-PE, which is produced via ethanol). These three products can presently be produced from biomass and therefore form realistic cases. All three products are produced from sugars, and thus the systems can be decoupled at the sugar step. The sugar can be produced from different crops. In this study five different crops are compared: wheat, maize, sugar beet, sugar cane and Miscanthus. The sustainability aspects that we studied are non-renewable energy use (NREU), greenhouse gas (GHG) emission in the crop-product chain and direct land use for producing the bio-materials

    Sustainable use and production of energy in the 21st century

    Full text link
    It is foreseen that oil and gas will continue to be the key energy sources in the 21st century. Therefore, it is important that oil and gas be produced in a sustainable way during the next decades. This requires technology development to ensure that the environmental impact and pollution from these activities are minimal. The following aspects are being highlighted in this paper: • Development of projects with the minimum of impact on the environment and problems for local populations. • Sustainable drilling without the use of oil-based mud, and collection of all drilling waste during offshore drilling operations in the most environmentally sensitive areas. • Treatment of produced water, sand and minerals from the well stream to avoid pollution. • Limitation of flaring to be performed only when required for safety reasons. • Continuous checking of pipelines to ensure that gas pipelines are run within their actual pressure capacity and that oil pipelines are not leaking into rivers and lakes. • Provision of sufficient storage capacity for gas to ensure timely delivery of gas during high demand peaks. • Injection of CO2 into sealed underground formations where large quantities are produced, such as at LNG factories. • Optimization of production from existing fields to avoid huge amounts of oil and gas being left in place, following a ‘hit and run’ recovery plan. Furthermore, all primary energy sources need to be converted into end-user energy services known as mechanical work, electricity, heating and cooling. In the process of conversion, only a portion of the primary energy is transformed into the new form, while the rest remains unaltered and is lost. The various forms of energy services produced represent different values or qualities, e.g. heat holds an energy quality ranging from 0 and upwards, depending on the temperature difference which is utilized, as defined by the second law of thermodynamics. Energy efficiency in this context may also be defined as the ratio between energy quality output and input. Practically, all fossil fuels are converted into energy services via combustion and heat, i.e. the conversion efficiency is solely determined by temperatures, meaning that high-energy efficiency can only be obtained at large temperature differences, such as in power generation, while ordinary domestic heating will yield a very low efficiency. Given that some 30–40 % of all fossil fuels today are used for domestic heating, representing an end-user energy quality of (say) 1/10 of what is obtained in modern power generation, there is a large potential globally for energy efficiency improvements, not to mention the associated emission reductions. The obvious solution is to pay more attention to the second law of thermodynamics, i.e. to shift from direct combustion heating to thermodynamic principles, e.g. by the use of electrical-driven heat pumps and/or combined heat and power as another alternative. The objectives of this paper are to highlight how energy production could become more effective, thus leading to a reduction in pollution to land, sea and atmosphere and also to identify how energy production should be carried out to minimize the polluting effects. The goal is to provide a reminder that much can be gained with respect to the reduction of pollution by focusing on cleaner energy production

    Analysis of the economic feasibility and reduction of a building’s energy consumption and emissions when integrating hybrid solar thermal/PV/micro-CHP systems

    Get PDF
    The aim of this paper is to assess the performance of several designs of hybrid systems composed of solar thermal collectors, photovoltaic panels and natural gas internal combustion engines. The software TRNSYS 17 has been used to perform all the calculations and data processing, as well as an optimisation of the tank volumes through an add-in coupled with the GENOPT® software. The study is carried out by analysing the behaviour of the designed systems and the conventional case in five different locations of Spain with diverse climatic characteristics, evaluating the same building in all cases. Regulators, manufacturers and energy service engineers are the most interested in these results. Two major contributions in this paper are the calculations of primary energy consumption and emissions and the inclusion of a Life Cycle Cost analysis. A table which shows the order of preference regarding those criteria for each considered case study is also included. This was fulfilled in the interest of comparing between the different configurations and climatic zones so as to obtain conclusions on each of them. The study also illustrates a sensibility analysis regarding energy prices. Finally, the exhaustive literature review, the novel electricity consumption profile of the building and the illustration of the influence of the cogeneration engine working hours are also valuable outputs of this paper, developed in order to address the knowledge gap and the ongoing challenges in the field of distributed generation

    Thermodynamic, economic and environmental assessment of energy systems including the use of gas from manure fermentation in the context of the Spanish potential

    Get PDF
    One of the prospective technologies that can be used for energy generation in distributed systems is based on biogas production, usually involving fermentation of various types of biomass and waste. This article aims to bring novelty on the analysis of this type of systems, joining together thermodynamic, economic and environmental aspects for a cross-cutting evaluation of the proposed solutions. The analysis is made for Spain, for which such a solution is very promising due to availability of the feedstock. A detailed simulation model of the proposed system in two different cases was built in Aspen Plus software and Visual Basic for Applications. Case 1 involves production of biogas in manure fermentation process, its upgrading (cleaning and removal of CO2 from the gas) and injection to the grid. Case 2 assumes combustion of the biogas in gas engine to produce electricity and heat that can be used locally and/or sold to the grid. Thermodynamic assessment of these two cases was made to determine the most important parameters and evaluation indices. The results served as input values for the economic analysis and environmental evaluation through Life Cycle Assessment of the energy systems. The results show that the analysed technologies have potential to produce high-value products based on low-quality biomass. Economic evaluation determined the break-even price of biomethane (Case 1) and electricity (Case 2), which for the nominal assumptions reach the values of 16.77 €/GJ and 28.92 €/GJ, respectively. In terms of environmental assessment the system with the use of biogas in gas engine presents around three times better environmental profile than Case 1 in the two categories evaluated, i.e., carbon and energy footprint.This project has received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No 799439. Dr. Martín-Gamboa states that thanks are due to FCT/MCTES for the financial support to CESAM (UID/AMB/50017/2019), through national funds

    Micro-algae cultivation for biofuels: Cost, energy balance, environmental impacts and future prospects

    Get PDF
    AbstractMicro-algae have received considerable interest as a potential feedstock for producing sustainable transport fuels (biofuels). The perceived benefits provide the underpinning rationale for much of the public support directed towards micro-algae research. Here we examine three aspects of micro-algae production that will ultimately determine the future economic viability and environmental sustainability: the energy and carbon balance, environmental impacts and production cost. This analysis combines systematic review and meta-analysis with insights gained from expert workshops.We find that achieving a positive energy balance will require technological advances and highly optimised production systems. Aspects that will need to be addressed in a viable commercial system include: energy required for pumping, the embodied energy required for construction, the embodied energy in fertilizer, and the energy required for drying and de-watering. The conceptual and often incomplete nature of algae production systems investigated within the existing literature, together with limited sources of primary data for process and scale-up assumptions, highlights future uncertainties around micro-algae biofuel production. Environmental impacts from water management, carbon dioxide handling, and nutrient supply could constrain system design and implementation options. Cost estimates need to be improved and this will require empirical data on the performance of systems designed specifically to produce biofuels. Significant (>50%) cost reductions may be achieved if CO2, nutrients and water can be obtained at low cost. This is a very demanding requirement, however, and it could dramatically restrict the number of production locations available

    Case study of viability of bioenergy production from landfill gas (LFG)

    Get PDF
    The landfill gas (LFG) produced from the existing landfill site in Heraklion city, Crete island, Greece, is not currently exploited to its full potential. It could however be exploited for power generation and/or combined heat and power (CHP) production in near future by fully unlocking its energy production potential of the gas generated from the landfill site. This gas (LFG) could feed a 1.6 MWel power plant corresponding to the 0.42% of the annually consumed electricity in Crete. The LFG utilization for power generation and CHP production has been studied, and the economics of three energy production scenarios have been calculated. An initial capital investment of 2.4 to 3.2 M €, with payback times (PBT) of approximately 3.5 to 6 years and Net Present Values (NPV) ranging between 2 to 6 M € have been calculated. These values prove the profitability of the attempt of bioenergy production from the biogas produced from the existing landfill site in Heraklion city, Crete. Based on the current economic situation of the country, any similar initiative could positively contribute to strengthening the economy of local community and as a result the country, offering several other socioeconomic benefits like e.g. waste minimization, creation of new job positions etc. by increasing, at the same time, the Renewable Energy Sources (RES) share in energy production sector etc. Apart from the favorable economics of the proposed waste to energy production scheme, all the additional environmental and social benefits make the attempt of a near future exploitation of the landfill gas produced in Heraklion, an attractive short term alternative for waste to bio-energy production

    California Methanol Assessment; Volume II, Technical Report

    Get PDF
    A joint effort by the Jet Propulsion Laboratory and the California Institute of Technology Division of Chemistry and Chemical Engineering has brought together sponsors from both the public and private sectors for an analysis of the prospects for methanol use as a fuel in California, primarily for the transportation and stationary application sectors. Increasing optimism in 1982 for a slower rise in oil prices and a more realistic understanding of the costs of methanol production have had a negative effect on methanol viability in the near term (before the year 2000). Methanol was determined to have some promise in the transportation sector, but is not forecasted for large-scale use until beyond the year 2000. Similarly, while alternative use of methanol can have a positive effect on air quality (reducing NOx, SOx, and other emissions), a best case estimate is for less than 4% reduction in peak ozone by 2000 at realistic neat methanol vehicle adoption rates. Methanol is not likely to be a viable fuel in the stationary application sector because it cannot compete economically with conventional fuels except in very limited cases. On the production end, it was determined that methanol produced from natural gas will continue to dominate supply options through the year 2000, and the present and planned industry capacity is somewhat in excess of all projected needs. Nonsubsidized coal-based methanol cannot compete with conventional feedstocks using current technology, but coal-based methanol has promise in the long term (after the year 2000), providing that industry is willing to take the technical and market risks and that government agencies will help facilitate the environment for methanol. Given that the prospects for viable major markets (stationary applications and neat fuel in passenger cars) are unlikely in the 1980s and early 1990s, the next steps for methanol are in further experimentation and research of production and utilization technologies, expanded use as an octane enhancer, and selected fleet implementation. In the view of the study, it is not advantageous at this time to establish policies within California that attempt to expand methanol use rapidly as a neat fuel for passenger cars or to induce electric utility use of methanol on a widespread basis

    Assessing the sustainability of biomass supply chains for energy exploitation

    Get PDF
    Biomass use has increased significantly lately, partly due to conventional fuels price increase. This trend is more evident in rural areas with significant local biomass availability. Biomass may be used in various ways to generate heat. In this work, the focus is on comparing two different biomass energy exploitation supply chains that provide heat at a specific number of customers at a specific cost. The first system is pellets production from biomass and distribution of the pellets to the final customers for use in domestic pellet boilers. The second option is centralized energy co-generation, which entails simultaneous electricity and heat generation. In the latter case, heat is distributed to the customers via a district heating network whereas electricity is fed to the electricity grid. The biomass source examined is locally available agricultural residues and the model is applied to a case study region in Greece. The aim of this work is to determine how these two different biomass exploitation options perform in sustainability terms, including the economic, environmental and social dimensions of sustainability. The effect of trying to optimise separately the economic and environmental dimensions of sustainability on the system design is examined, while at the same time taking into account the social dimension. Furthermore, a bi-objective optimisation is employed, to overcome the limitations of the single-objective optimisation. Both the upstream and the downstream supply chains of the pelletizing/CHP units are modelled
    corecore