54 research outputs found

    Emergent Behaviors from A Cellular Automaton Model for Invasive Tumor Growth in Heterogeneous Microenvironments

    Get PDF
    Understanding tumor invasion and metastasis is of crucial importance for both fundamental cancer research and clinical practice. In vitro experiments have established that the invasive growth of malignant tumors is characterized by the dendritic invasive branches composed of chains of tumor cells emanating from the primary tumor mass. The preponderance of previous tumor simulations focused on non-invasive (or proliferative) growth. The formation of the invasive cell chains and their interactions with the primary tumor mass and host microenvironment are not well understood. Here, we present a novel cellular automaton (CA) model that enables one to efficiently simulate invasive tumor growth in a heterogeneous host microenvironment. By taking into account a variety of microscopic-scale tumor-host interactions, including the short-range mechanical interactions between tumor cells and tumor stroma, degradation of extracellular matrix by the invasive cells and oxygen/nutrient gradient driven cell motions, our CA model predicts a rich spectrum of growth dynamics and emergent behaviors of invasive tumors. Besides robustly reproducing the salient features of dendritic invasive growth, such as least resistance and intrabranch homotype attraction, we also predict nontrivial coupling of the growth dynamics of the primary tumor mass and the invasive cells. In addition, we show that the properties of the host microenvironment can significantly affect tumor morphology and growth dynamics, emphasizing the importance of understanding the tumor-host interaction. The capability of our CA model suggests that well-developed in silico tools could eventually be utilized in clinical situations to predict neoplastic progression and propose individualized optimal treatment strategies.Comment: 30 pages, 10 figures, 4 tables; to be appear in PLoS Comput. Bio

    Modeling Three-dimensional Invasive Solid Tumor Growth in Heterogeneous Microenvironment under Chemotherapy

    Full text link
    A systematic understanding of the evolution and growth dynamics of invasive solid tumors in response to different chemotherapy strategies is crucial for the development of individually optimized oncotherapy. Here, we develop a hybrid three-dimensional (3D) computational model that integrates pharmacokinetic model, continuum diffusion-reaction model and discrete cell automaton model to investigate 3D invasive solid tumor growth in heterogeneous microenvironment under chemotherapy. Specifically, we consider the effects of heterogeneous environment on drug diffusion, tumor growth, invasion and the drug-tumor interaction on individual cell level. We employ the hybrid model to investigate the evolution and growth dynamics of avascular invasive solid tumors under different chemotherapy strategies. Our simulations reproduce the well-established observation that constant dosing is generally more effective in suppressing primary tumor growth than periodic dosing, due to the resulting continuous high drug concentration. In highly heterogeneous microenvironment, the malignancy of the tumor is significantly enhanced, leading to inefficiency of chemotherapies. The effects of geometrically-confined microenvironment and non-uniform drug dosing are also investigated. Our computational model, when supplemented with sufficient clinical data, could eventually lead to the development of efficient in silico tools for prognosis and treatment strategy optimization.Comment: 41 pages, 8 figure

    A Cellular Automaton Model for Tumor Dormancy: Emergence of a Proliferative Switch

    Get PDF
    abstract: Malignant cancers that lead to fatal outcomes for patients may remain dormant for very long periods of time. Although individual mechanisms such as cellular dormancy, angiogenic dormancy and immunosurveillance have been proposed, a comprehensive understanding of cancer dormancy and the “switch” from a dormant to a proliferative state still needs to be strengthened from both a basic and clinical point of view. Computational modeling enables one to explore a variety of scenarios for possible but realistic microscopic dormancy mechanisms and their predicted outcomes. The aim of this paper is to devise such a predictive computational model of dormancy with an emergent “switch” behavior. Specifically, we generalize a previous cellular automaton (CA) model for proliferative growth of solid tumor that now incorporates a variety of cell-level tumor-host interactions and different mechanisms for tumor dormancy, for example the effects of the immune system. Our new CA rules induce a natural “competition” between the tumor and tumor suppression factors in the microenvironment. This competition either results in a “stalemate” for a period of time in which the tumor either eventually wins (spontaneously emerges) or is eradicated; or it leads to a situation in which the tumor is eradicated before such a “stalemate” could ever develop. We also predict that if the number of actively dividing cells within the proliferative rim of the tumor reaches a critical, yet low level, the dormant tumor has a high probability to resume rapid growth. Our findings may shed light on the fundamental understanding of cancer dormancy.The article is published at http://journals.plos.org/plosone/article?id=10.1371/journal.pone.010993

    Mechanical and Systems Biology of Cancer

    Get PDF
    Mechanics and biochemical signaling are both often deregulated in cancer, leading to cancer cell phenotypes that exhibit increased invasiveness, proliferation, and survival. The dynamics and interactions of cytoskeletal components control basic mechanical properties, such as cell tension, stiffness, and engagement with the extracellular environment, which can lead to extracellular matrix remodeling. Intracellular mechanics can alter signaling and transcription factors, impacting cell decision making. Additionally, signaling from soluble and mechanical factors in the extracellular environment, such as substrate stiffness and ligand density, can modulate cytoskeletal dynamics. Computational models closely integrated with experimental support, incorporating cancer-specific parameters, can provide quantitative assessments and serve as predictive tools toward dissecting the feedback between signaling and mechanics and across multiple scales and domains in tumor progression.Comment: 18 pages, 3 figure

    Taking aim at moving targets in computational cell migration

    Get PDF
    Cell migration is central to the development and maintenance of multicellular organisms. Fundamental understanding of cell migration can, for example, direct novel therapeutic strategies to control invasive tumor cells. However, the study of cell migration yields an overabundance of experimental data that require demanding processing and analysis for results extraction. Computational methods and tools have therefore become essential in the quantification and modeling of cell migration data. We review computational approaches for the key tasks in the quantification of in vitro cell migration: image pre-processing, motion estimation and feature extraction. Moreover, we summarize the current state-of-the-art for in silico modeling of cell migration. Finally, we provide a list of available software tools for cell migration to assist researchers in choosing the most appropriate solution for their needs
    corecore