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Abstract

Malignant cancers that lead to fatal outcomes for patients may remain dormant for very long periods of time. Although
individual mechanisms such as cellular dormancy, angiogenic dormancy and immunosurveillance have been proposed, a
comprehensive understanding of cancer dormancy and the ‘‘switch’’ from a dormant to a proliferative state still needs to be
strengthened from both a basic and clinical point of view. Computational modeling enables one to explore a variety of
scenarios for possible but realistic microscopic dormancy mechanisms and their predicted outcomes. The aim of this paper
is to devise such a predictive computational model of dormancy with an emergent ‘‘switch’’ behavior. Specifically, we
generalize a previous cellular automaton (CA) model for proliferative growth of solid tumor that now incorporates a variety
of cell-level tumor-host interactions and different mechanisms for tumor dormancy, for example the effects of the immune
system. Our new CA rules induce a natural ‘‘competition’’ between the tumor and tumor suppression factors in the
microenvironment. This competition either results in a ‘‘stalemate’’ for a period of time in which the tumor either eventually
wins (spontaneously emerges) or is eradicated; or it leads to a situation in which the tumor is eradicated before such a
‘‘stalemate’’ could ever develop. We also predict that if the number of actively dividing cells within the proliferative rim of
the tumor reaches a critical, yet low level, the dormant tumor has a high probability to resume rapid growth. Our findings
may shed light on the fundamental understanding of cancer dormancy.
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Introduction

Cancer dormancy, the phenomena that the tumor’s volume or

the number of tumor cells stays at a very low level for a certain

period of time before the tumor begins to grow rapidly, has been

an outstanding issue in cancer research for many years [1,2].

Currently, the mechanisms responsible for the ‘‘switch’’ from a

dormant state to a rapid growth state for different tumors are not

well understood, although it is well known that such a ‘‘switch’’ in

secondary metastatic tumors can be triggered by the removal of

the primary tumor. This could eventually lead to failure of tumor

treatment and fatal outcomes for the patient. Therefore, a

comprehensive understanding of the ‘‘switch’’ from a dormant

to a proliferative state is crucial to our fundamental understanding

of cancer progression and recurrence and might lead to the

development of novel treatments for cancer.

Dormancy has been observed in many types of cancer. This

includes tumor dormancy before any metastases take place and the

latency of cancer recurrence after therapy. In some cases of

pancreatic cancer, the tumor can remain in a benign dormant

state for about 20 years [3]. During this time, it is undetectable by

conventional clinical methods, and it is only afterwards that the

tumor becomes highly malignant and grows aggressively with

highly fatal outcomes after about a year. In the cases of breast and

prostate cancer, it is reported that 20%–45% of patients will

relapse years or decades later after the resection of the primary

tumor [4–6]. In addition, recurrence has been observed in brain

tumors, which indicates the existence of a large number of

micrometastases that are dormant in the presence of the primary

tumor [7,8].

Extensive studies over years have revealed three major cancer

dormancy mechanisms: cellular dormancy, angiogenic dormancy

and immunosurveillance [1,2]. On the cellular level, a tumor cell

could be arrested at a certain stage of the cell cycle and unable to

complete the cell division process successfully, resulting in a

dormant solitary cell [9–11]. On the cell population level, when

the population does not gain enough ability to recruit blood vessels

and promote neovascularization, the tumor cannot obtain

sufficient nutrients necessary for its proliferation and as a result,

angiogenic dormancy occurs [12,13]. On other hand, immuno-

surveillance operates when the immune system suppresses the

proliferation of tumor cell population and leads to the dormancy

of the tumor [14–18]. Figure 1(a) shows an image of tumor tissue
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surrounded by immune cells. Figure 1(b) compares the morphol-

ogy and vascular structure of dormant and fast-growing tumors.

A comprehensive understanding of cancer dormancy and the

‘‘switch’’ from a dormant to a proliferative state still needs to be

strengthened. This is mainly due to the fact that efficient and

accurate experimental or clinical approaches to track the states of

individual cells in a dormant tumor in vivo throughout the entire

dormancy period are still under development [19–21].

Given the current need for further understanding of dormancy,

computational modeling provides a powerful means to probe

various scenarios for the underlying mechanisms. Specifically,

modeling enables one to probe a variety of different dormancy

scenarios by examining different combinations of mechanisms in

order to see which ones provide possible explanations for

experimental and clinical observations. Over the past few decades,

computational modeling has played an important role in the study

of the progression of solid tumors [22]; a variety of models based

on different mathematical schemes have been developed, includ-

ing continuum models [23–26], discrete cell models [27,28] and

hybrid models [29,30]. Various models have been used to

investigate cancer dormancy caused by cancer-immune interac-

tions and other mechanisms, including ordinary differential

equation-based models [31,32], stochastic differential equation-

based models [33], models based on kinetic theory for active

particles [34–36], and cellular automaton models [37]. However,

the aforementioned studies neither explicitly demonstrated how

the dynamic process of active proliferation after a certain period of

dormancy emerges from various microscopic mechanisms nor

showed the associated growth dynamics of the ‘‘switch’’ phenom-

enon. Therefore, predictive computational models that incorpo-

rate cellular-level microscopic mechanisms are needed to address

these important issues.

In this paper, we generalize a two-dimensional (2D) cellular

automaton (CA) model that we have devised to study proliferative

growth of avascular solid tumors [38–42] in order to investigate

tumor dormancy. Our goal is to formulate a dynamical model in

which the ‘‘switch’’ to a proliferative state spontaneously emerges

by incorporating additional interactions between the tumor and

the microenvironment, for example the effects of immune system,

which were not included in our previous CA model. The new rules

of our CA model induce a ‘‘competition’’ between the tumor’s

propensity to proliferate and the microenvironmental factors that

suppress its growth. In our model, a fraction of the dormant cells

undergo phenotypic transformations triggered by intracellular

factors or external stimulus and acquire the ability to actively

proliferate. Subsequently, those microenvironmental factors act to

suppress the growth of these transformed tumor cells either by

killing some of these cells or turning these actively dividing

proliferative cells back into dormant cells.

The ‘‘competition’’ between the tumor and the microenviron-

mental suppression factors either results in a ‘‘stalemate’’ for a

period of time in which the tumor either eventually wins

(spontaneously emerges) or is eradicated; or it leads to a situation

in which the tumor is eradicated before such a ‘‘stalemate’’ could

ever develop. Since we are mainly interested in the situations in

which tumor growth involves a period of dormancy, we will

henceforth focus on those situations in which a ‘‘stalemate’’

between the tumor and the microenvironmental suppression

factors develops. Our model demonstrates that a variety of

parameters characterizing the tumor-host interactions may greatly

alter the growth dynamics of the tumor. These parameters include

the rate of phenotypic transformation, by which the tumor cells

gain the ability to proliferate against those suppression factors, the

suppression rate imposed by suppression factors on individual

tumor cells, and the mechanical rigidity of the microenvironment.

The growth dynamics influenced by these parameters include the

existence of a dormant period in tumor’s growth, the length of the

dormant period (if there exists one) and the existence of a sudden

‘‘switch’’ to a highly proliferative state. We also demonstrate that if

the number of actively dividing cells within the proliferative rim

reaches a critical, yet low level, the tumor has a high probability to

begin rapid proliferation. While we study a 2D CA model for

simplicity in this paper, our model can be easily generalized to

three dimensions (3D).

Figure 1. Fluorescence micrograph of a breast tumor stained to visualize carcinoma cells (phospho-p53, green) surrounded by
macrophages (CD11b, red) (a). Nuclei appear blue (DAPI). Image courtesy of Michael Graham Espey, PhD, National Cancer Institute, NIH (private
communication). (b) Representative pictures of dormant and fast-growing tumors and their vascular structure. Reprinted from Cancer Letters, 294,
Almog N, Molecular mechanisms underlying tumor dormancy, 139–146, Copyright (2010), with permission from Elsevier.
doi:10.1371/journal.pone.0109934.g001
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Materials and Methods

We divide the two-dimensional square simulation box into

different polygonal units (i.e., automaton cells). Our model is

coarse-grained, allowing us to grow the tumor from a very small

size with a cross section of roughly 1000 real cells through to a fully

developed tumor with a cross section consisting of 2.06106 cells.

Specifically, the innermost automaton cells represent roughly 100

real tumor cells or or a region of host microenvironment of similar

size, while the outermost automaton cells represent roughly 104

real tumor cells or a region of host microenvironment of similar

size. To generate the automaton cells in the simulation box, we

first fill the simulation box with non-overlapping circular disks (or

spheres in 3D) using random-sequential-addition packing method

[43] until there is no void space left for additional circular disks (or

spheres in 3D). Periodic boundary conditions are used for

generating the packing. Then we divide the simulation box into

polygons (or polyhedra in 3D), each polygon (or polyhedron in 3D)

associated with a particle center, such that any point within a

polygon (or polyhedron in 3D) [i.e., a Voronoi polygon (or

polyhedron in 3D)] is closer to its associated particle center than to

any other particle centers. The resulting Voronoi polygons (or

polyhedra in 3D) are referred to as automaton cells. In this paper,

we focus on the two-dimensional case, but our model should be

readily generalized to three dimensions.

The microenvironment surrounding a tumor is mainly com-

posed of stroma cells and extracellular matrix (ECM). In the

current model, we explicitly take into account the effects of the

ECM macromolecule density, ECM degradation by the prolifer-

ative cells, and the pressure built up due to the ECM deformation

by tumor growth. The effects of the stroma cells are not explicitly

considered in our current model. Henceforth, we will refer to the

regions of microenvironment as ECM-associated cells for simplic-

ity. In addition, we consider the interactions between the tumor

and the various suppression factors in the microenvironment, for

example the immune system. Since we consider development of

primary tumor or local recurrences of micrometastases under

microenvironmental suppression, invasive tumor growth is not a

mechanism relevant for our purposes and hence is not included in

our dormancy model.

In our model of noninvasive proliferative tumor growth, tumor

cells can be in one of the three possible states: proliferative,

quiescent or necrotic, depending on their nutrient supply.

Proliferative cells are tumor cells that have enough nutrients and

possess the ability to divide. Quiescent (or arrested) cells are tumor

cells that are alive, but do not have enough nutrient supply to

support cell division. Quiescent cells can eventually become inert,

necrotic (dead) cells due to an insufficient nutrient supply. In this

paper, we focus on avascular tumor growth and assume that there

is no explicit angiogenesis during the growth process (although this

assumption can be relaxed). The nutrients available to tumor cells

are those that diffuse into the tumor region through tumor edge.

As the tumor grows, the amount of nutrient supply, which is

proportional to the perimeter of the tumor interface (or surface

area of the tumor interface in 3D), cannot meet the needs of all of

the tumor cells. As a result, quiescent and necrotic regions emerge

near the center of the tumor. The state of a tumor cell is

determined by its distance to the tumor edge (i.e., the source of

nutrients). We assume that proliferative cells more than dp away

from the tumor edge become quiescent and quiescent cells more

than dn away from the tumor edge become necrotic (see details

below).

In this section, we will introduce our CA dormancy model,

which modifies our previous basic CA models of tumor growth

[41,42,44] by introducing several additional parameters to

incorporate the interactions between tumor cells and the

microenvironmental suppression factors. This dynamical model

is capable of producing situations in which a ‘‘switch’’ from a

dormant state to a proliferative state spontaneously emerges.

Noninvasive proliferative tumor growth
We now specify the cellular automaton rules used in our model

for noninvasive proliferative tumor growth. Each ECM-associated

automaton cell is assigned a specific density rECM, representing

the density of the ECM molecules within the automaton cell. If a

proliferative cell divides, its daughter cell occupies a nearby ECM-

associated cell. The daughter cell pushes away or degrades the

ECM within the ECM-associated cell it occupies. Initially, a tumor

is introduced by designating several automaton cells at the center

of the growth permitting region as proliferative tumor cells. Then

time is discretized into units, with each time step representing one

day. At each time step, the tumor grows according to the following

cellular automaton rules.

N Quiescent cells more than a certain distance dn from the

tumor’s edge are turned necrotic. The tumor’s edge, which is

assumed to be the source of nutrients, consists of all ECM-

associated cells that border the tumor. The critical distance dn

for quiescent cells to turn necrotic is computed as follows:

dn~aL
(d{1)=d
t , ð1Þ

where a is the necrotic thickness controlled by nutritional

needs, d is the Euclidean spatial dimension and Lt is the

distance between the geometric centroid xc of the tumor (i.e.,

xc~
PN

i xi=N, where N is the total number of cells in the

tumor) and the tumor edge cell that is closest to the quiescent

cell under consideration.

N Proliferative cells more than a certain distance dp from the tumor’s

edge are turned quiescent. The critical distance dp is given by

dp~bL
(d{1)=d
t , ð2Þ

where b is the proliferative thickness controlled by nutritional

needs, d is the spatial dimension and Lt is the distance between the

geometric tumor centroid xc and the tumor edge cell that is closest

to the proliferative cell under consideration.

N The probability of division for a proliferative cell used in our

model is

pdiv~p0½1{rECM{v�(j{1)zj
‘

w
�: ð3Þ

where p0 = 0.192 is the base probability of division linked to

cell-doubling time, rECM is the local ECM density,

v�~2r0
ECM is a parameter taking into account the effect of

pressure, j~rECM=r0
ECM is the ratio of current average ECM

density over the initial density, and ‘ and w are, respectively,

the length and width of local protrusion tips.

Interactions between the tumor and the
microenvironmental suppression factors

Here, we specify the additional interaction rules between the

tumor and the microenvironmental suppression factors beyond the

aforementioned ones for noninvasive proliferative growth, which

were not included in our previous CA models. We assume that

there are two possible states of proliferative cells, dormant or

Modeling Tumor Dormancy with an Emergent Switch Behavior
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actively dividing, depending on their interactions with the

microenvironmental suppression factors.

N Initially, we assume that all proliferative cells are kept in

dormant states by the microenvironmental suppression

factors, which means that they are not able to divide.

N At each day, beyond the aforementioned CA rules for

proliferative noninvasive growth, each dormant proliferative

cell has a certain probability c to change in their phenotypes

due to intracellular factors or external stimulus. The cell with

phenotype change gains different degrees of resistance to the

suppression factors in the microenvironment, depending on

the specific phenotype change the cell undergoes. For

example, mutated leukaemic cells in acute myeloid leukaemia

acquire resistance to cytotoxic T lymphocytes-mediated cell

lysis, whose degree is related to the level of the cell’s

expression of B7-H1 or B7.1 [45]. For simplicity, we divide

the phenotypic changes into two different types: weak changes

and strong changes with respect to their resistance to the

suppression factors in the microenvironment (i.e. their ability

to actively proliferate). Henceforth, we will refer to these

phenotypic changes as ‘‘transformations’’ and the cells that

undergo these changes as ‘‘transformed’’ cells for simplicity.

Strong-type ‘‘transformed’’ cells gain a larger competition

advantage and thus have a greater ability to divide actively.

The quantities xW and xS are the fractions of weak-type

‘‘transformations’’ and strong-type ‘‘transformations’’.

Henceforth, we set xW 0.99 and xS 0.01.

N At each subsequent day, the microenvironmental suppression

factors will counteract the weak-type ‘‘transformed’’ and

strong-type ‘‘transformed’’ cells with probabilities aW and aS.

The suppression factors in the microenvironment will either

kill the ‘‘transformed’’ cells or turn them back into dormant

cells [14,15].

N When the number of tumor cells reaches a certain threshold

NT, strong reactions of the microenvironmental factors are

triggered and those factors start to kill the ‘‘transformed’’ cells.

The parameter NT is introduced to ensure that the tumor is

not completely removed by the microenvironmental suppres-

sion factors. Note that the particular choice of NT barely has

any effect on the simulation results within a relatively wide

range of NT values. In this work NT is set to be 50, a

sufficiently small value that leads to biophysically realistic

outcomes. As the tumor grows, the microenvironmental

factors are weakened by the tumor, resulting in weaker

suppression of the tumor cells [46,47]. Therefore, when the

microenvironmental factors counteract the ‘‘transformed’’

cells, the fraction of the cells that are killed can be coupled

with the growth rate of the tumor by

k~k0(1{
1

DrC

dA

dt
): ð4Þ

where k0 is a constant characterizing the strength of the

suppression factors in the microenvironment, dA/dt is the

daily area change of the tumor (i.e. the growth rate of the

tumor), and DrC is the critical value of the tumor’s growth

rate. In this work, DrC is chosen as half of the tumor’s

maximum growth rate under suppression, but our numerical

tests have revealed that the simulation results are insensitive to

the choice of DrC as long as DrC is smaller than the tumor’s

maximum growth rate. When the growth rate of the tumor

reaches this critical value, the suppression factors become too

weak to kill any actively dividing tumor cells and k is set to be

0 [46,47].

N Due to the ‘‘competition’’ between the tumor and the

suppression factors in the microenvironment, the ratio of the

number of actively dividing proliferative cells over the total

number of proliferative cells n
pro
acti=npro changes with time. The

larger is this ratio n
pro
acti=npro, the larger is the amount of

nutrients the tumor tissue consumes. As a result, the nutrient

concentration around the tumor depends on the ratio

n
pro
acti=npro. Therefore, we make the necrotic thickness a and

proliferative thickness b functions of n
pro
acti=npro:

a~a0½q{(q{1:0)
n

pro
acti

npro
�: ð5Þ

b~b0½s{(s{1:0)
n

pro
acti

npro
�: ð6Þ

where a0 = 0.58 mm1/2 and b0 = 0.30 mm1/2 are base

necrotic thickness and base proliferative thickness respective-

ly, q = 1.6, s = 2.0 are parameters determining the ranges of

necrotic thickness and proliferative thickness as n
pro
acti=npro

changes.

The aforementioned additional parameters associated with the

new rules that we employ for dormancy (beyond the ones for

noninvasive proliferative growth) are summarized in Table 1.

These parameters are sufficient to formulate a model in which the

transition from ‘‘dormant’’ to proliferative state emerges sponta-

neously. Note that unlike other parameters listed in Table 1, the

two critical threshold parameters themselves do not incorporate

any additional CA rules. Instead, the critical threshold parameters

determine when the microenvironmental suppression factors are

able to kill the proliferative cells. Also, it is noteworthy that we

map the complicated tumor-host interactions onto a number of

‘‘effective’’ parameters. The values of these parameters could differ

for different tumors in different microenvironments. It is

noteworthy that currently due to a lack of detailed in-vivo or in-

vitro data for the growth dynamics of a dormant tumor, we are not

able to determine the values of the parameters in our model for a

specific real system. Instead, we have done a full parametric study

to probe different outcomes corresponding to different parameter

values in the subsequent sections. However, once we obtain the

statistics of a dormant tumor as a function of time from the

initiation of the tumor, we should be able to extract the parameter

values for the tumor by fitting the statistics. At this stage, the

extracted parameter values could be applied to other tumors of

similar type.

Noninvasive proliferative tumor growth under
suppression

Here, we specify how the additional interaction rules are

coupled together with the original CA rules for noninvasive

proliferative tumor growth, resulting in noninvasive proliferative

tumor growth under suppression.

N As mentioned above, proliferative cells in the dormant state do

not divide. Only proliferative cells in actively dividing states

actually proliferate.

N At each day, each dormant proliferate cell is checked to see if it

enters the active state according to the interaction rules. Once

it begins to actively divide, it proliferates according to the CA

rules for proliferative tumor growth.

N At each day, each active proliferative cell is checked to see if it

is killed or turned back into dormant cell according to the

interaction rules.

Modeling Tumor Dormancy with an Emergent Switch Behavior
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N Quiescent cells and necrotic cells act according to CA rules for

proliferative tumor growth. However, the values of parameters

a and b determining the transitions from necrotic cells to

quiescent cells and from proliferative cells to quiescent cells

respectively are influenced by interaction rules, as mentioned

above.

Note that our CA dormancy model should be readily

generalized to angiogenic dormancy by explicitly considering the

angiogenic process and vascular tumor growth. This is beyond the

scope of this work and will be addressed in future work.

Results

In this section, we apply our CA model and show that it

produces a dormancy period of the tumor that can lead to a

subsequent emergent ‘‘switch’’ behavior to a proliferative state. A

homogeneous distribution of ECM density is used for simplicity

[41]. A circular growth permitting region containing ,26104

automaton cells is employed. Simulating the growth of a 2D tumor

from several cells (representing roughly 1000 real cells) to a

macroscopic-size tumor (a cross section of 5 cm2 consisting of

,26106 real cells) with a period of dormancy up to a person’s life

(,80 years) generally takes no more than a few minutes on a

standard Dell Workstation (Precision T3400).

Initially, a few automaton cells at the center of the growth-

permitting region are designated as proliferative cells. Then the

initial tumor is allowed to grow according to our CA model

incorporating the additional interaction rules between the tumor

and the suppression factors in the microenvironment. Certain

geometrical characteristics of the tumor (e.g., tumor area, areas of

different tumor cell populations) and its morphology (e.g., the

geometrical positions of the tumor cells) are collected every Tc

days. We set c~0:005, aW = 0.75, aS = 0.15, k0 = 0.8 and use these

parameter values throughout this paper, except where otherwise

stated.

Statistics of tumor growth
Here we consider the growth of a proliferative tumor in a

confined space with �rrECM~0:30. As shown in Figure 2(a), with

the interactions between the tumor and the microenvironmental

suppression factors incorporated, there exists a period of

dormancy in the tumor’s growth. Specifically, for the initial

approximate 900 days, the tumor stays in a dormant state.

Suddenly at approximately day 900, the tumor switches its

behavior and begins rapid proliferation. The virtual patient would

die 100 days after this critical point in time. Figure 2(b) shows the

areas A of different populations normalized by the area of the

growth-permitting area A0. For purposes of comparison, Fig-

ure 2(c) and Figure 2(d) show the statistics of the tumor growth

without the suppression of microenvironmental factors. Moreover,

by comparing Figure 2(a) and Figure 2(c), it is seen that the

interactions between the tumor and the microenvironmental

suppression factors lead to the existence of a dormancy period and

a subsequent emergent ‘‘switch’’ behavior of the tumor from a

dormant state to a proliferative state. Also, from the comparison of

Figure 2(b) and Figure 2(d), one can see that the additional

interaction rules alter the fractions of necrotic cell population and

proliferative cell population within the tumor. When suppression

of the tumor growth is present, the necrotic region decreases and

the proliferative region increases relatively; the area of the

quiescent region remains almost unchanged.

Figure 3 shows snapshots of the simulated 2D tumor. It can be

clearly seen that the tumor develops a highly aspherical

morphology due to the interactions between the tumor and the

microenvironmental factors. Figure 3 also demonstrates that the

tumor hardly grows during the period of dormancy, but once the

‘‘switch’’ occurs, the tumor expands very rapidly. Henceforth, we

will use the ‘‘CA dormancy model’’ to investigate the effects of the

various parameters characterizing the tumor-host interactions on

the growth dynamics of the tumor. These parameters include the

rate of phenotypic transformation, by which the tumor cells gain

the ability to proliferate against those suppression factors, the

suppression rate imposed by suppression factors on individual

tumor cells, and the mechanical rigidity of the microenvironment.

Suppression rate vs transformation rate
Here we investigate growth dynamics of the tumor under

different suppression rates a and phenotypic transformation rates

c. The suppression rate a is defined as the following weighted

average:

a~aW
:xW zaS

:xS: ð7Þ

where xW = 0.99 and xS = 0.01 are the fractions of weak-type

Table 1. Parameters characterizing the interactions between tumor suppression factors and tumor cells in the CA dormancy
model.

Tumor growth parameters

c Probability of phenotypic change for a dormant proliferative cell to acquire the dividing ability

xW Fraction of weak-type transformations

xS Fraction of strong-type transformations

Microenvironmental suppression parameters

aW Probability that suppression factors counteract the weak-type transformed cell at each day

aS Probability that suppression factors counteract the strong-type transformed cell at each day

k Fraction of ‘‘transformed’’ cells killed when suppression factors counteract the ‘‘transformed’’ cells (time dependent)

Critical threshold values

NT Critical value of proliferative tumor cell number, beyond which suppression of tumor growth is triggered

DrC Critical value of tumor growth rate, beyond which the suppression factors are unable to kill the ‘‘transformed’’ cells

Note that the two ‘‘critical threshold’’ parameters themselves do not incorporate any additional CA rules.
doi:10.1371/journal.pone.0109934.t001
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‘‘transformations’’ and strong-type ‘‘transformations’’, and aW and

aS are the suppression rates of the weak-type ‘‘transformed’’ cells

and strong-type ‘‘transformed’’ cells by the microenvironmental

factors. It is found that increasing a and decreasing c generally

increases the length of the dormancy period and delays the

‘‘switch’’ from a dormant state to a proliferative state, as

demonstrated in Figure 4(a). Within some regimes of a and c,

the tumor could lie dormant for a period equal to or longer than a

person’s life (,80 years).

Based on our simulation results, we construct a ‘‘phase

diagram’’ to characterize the tumor’s growth dynamics in terms

of a and c, as shown in Figure 4(b). There are two regions in this

phase diagram: proliferative and dormant regions. By ‘‘prolifer-

ative’’, we mean that the tumor resumes rapid proliferation after a

period of dormancy and the length of the dormancy period is less

than a virtual patient’s life; by ‘‘dormant’’, we mean that the tumor

remains in a dormant state during the whole life of a person and

undetected by conventional clinical methods (usually clinicians call

such tumors ‘‘benign’’ [48–50]). The solid line separates the two

regions, and crossing this boundary line is associated with a ‘‘phase

transition’’.

Rigidity of the microenvironment
Various mechanical cues in the microenvironment could

influence the growth dynamics of the tumor [51]. Here we only

consider the effects of the ECM macromolecule density, ECM

degradation by the proliferative cells, and the pressure built up due

to the ECM deformation by tumor growth. As shown in Figure 5,

when ECM rigidity increases, the time at which the switch occurs

gets delayed significantly and the final size of the tumor when it

plateaus appreciably decreases. For example, with all the other

parameters fixed, when the tumor grows in a soft ECM with

�rrECM~0:15, the ‘‘switch’’ point occurs approximately on day 250.

This is to be contrasted with growth in a rigid ECM with

�rrECM~0:45 where the dormancy period could last for 2,000 days

before a ‘‘switch’’ to a proliferative state occurs. Also, the plateau

size of the tumor growing in a soft ECM with �rrECM~0:15 is five

times as large as that of one growing in a rigid ECM with

�rrECM~0:45. In other words, when the tumor grows in a harsher

microenvironment, it’s harder for the tumor to break out of a

dormant state and potential proliferative growth is largely

suppressed. Note that the rigidity of the microenvironment could

also affect tumor growth via various intracellular signaling

Figure 2. Upper panel: statistics of a simulated noninvasive tumor growing in the ECM with �rrECM~0:3 and microenvironmental
suppression factors, as predicted by the ‘‘CA dormancy model’’. (a) Tumor area AT normalized by the area A0 of the growth permitting
region. (b) Areas of different cell populations normalized by the area A0 of the growth permitting region. Lower panel: statistics of a simulated
noninvasive tumor growing in the ECM with �rrECM~0:3 without suppression. (c) Tumor area AT normalized by the area A0 of the growth permitting
region. (d) Areas of different cell populations normalized by the area A0 of the growth permitting region.
doi:10.1371/journal.pone.0109934.g002
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processes [51]. Those mechanotransduction effects will be

incorporated into our CA dormancy model in future work, which

could result in different scenarios from those reported here [51].

Strength of the suppression factors
Here we investigate how tumor growth dynamics changes with

the strength of the microenvironmental suppression factors. As

shown in Figure 6, increasing the fraction of actively dividing

tumor cells that are killed [i.e., increasing k0 in the equation (4)]

when the microenvironmental suppression factors (which we recall

could either kill the ‘‘transformed’’ cells or turn them back into

dormant cells) delays the ‘‘switch’’ point from a dormant state to a

rapid proliferative state and decreases the final tumor size.

However, relatively speaking, the simulated tumor growth statistics

are insensitive to k0 compared to the influences of the aforemen-

tioned other factors. Note that even when the suppression factors

can only turn the ‘‘transformed’’ cells back into dormant cells and

do not kill any ‘‘transformed’’ cells (i.e. k0 = 0), a ‘‘switch’’ behavior

from a dormant state to a rapid proliferative state can still emerge.

This indicates that turning the active proliferative cells back into

dormant cells could also be a possible independent mechanism

leading to a dormancy period and a subsequent ‘‘switch’’ to a

proliferative state.

Discussion

In this paper, we generalized a two-dimensional cellular

automaton (CA) model previously developed for proliferative

growth of avascular solid tumors to investigate tumor dormancy

and evasion from dormancy to proliferation. Our CA dormancy

model incorporates a variety of cell-level tumor-host interactions,

including those between the tumor and the suppression factors in

the microenvironment, for example the immune system. Our CA

dormancy model induces a ‘‘competition’’ between the tumor’s

propensity to proliferate and the microenvironmental factors that

suppress its growth. Our CA dormancy model predicts a dramatic

emergent ‘‘switch’’ behavior from a dormant state to a rapidly

proliferative state. Our results show that under the suppression of

microenvironmental factors, the tumor develops a highly aspher-

ical morphology with an larger proliferative region and a smaller

necrotic region than those of a tumor that grows without the

presence of suppression factors. We also predict that if the number

of actively dividing cells within the proliferative rim of tumor

Figure 3. Snapshots of a simulated noninvasive tumor growing in the ECM with �rrECM~0:3 on different days given by the CA
dormancy model. Upper panel: Dormancy period. Lower panel: Regrowth period.
doi:10.1371/journal.pone.0109934.g003

Figure 4. The ‘‘critical’’ point at which the noninvasive tumor growing in the ECM with �rrECM~0:3 switches from a dormant state to a
proliferative state as functions of a and ª (a). A schematic phase diagram that characterizes the growth dynamics of a noninvasive tumor
growing in the ECM with �rrECM~0:3 under different a and c (b).
doi:10.1371/journal.pone.0109934.g004
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reaches a critical, yet low level, the tumor has a large probability to

resume rapid regrowth and exit dormancy. In addition, we

demonstrate that a variety of different factors could greatly alter

tumor growth dynamics, including the rate of phenotypic

transformations, the suppression rate by the microenvironmental

factors, the mechanical rigidity of the microenvironment, and the

strength of the suppression factors. However, relatively speaking,

the tumor growth is insensitive to the strength of the suppression

factors in terms of killing active proliferative cells. We inferred

from our simulation results a qualitative phase diagram to

characterize the growth dynamics of the tumor under the

suppression of microenvironmental factors in terms of the

phenotypic transformation rate and the suppression rate. In this

paper we focused on the two-dimensional case, but our model

should be easily generalized to three dimensions.

At the cellular level, the origin of the ‘‘stalemate’’ between the

tumor and microenvironmental suppression factors remains

unclear. This ‘‘stalemate’’ may come from cell proliferation

balanced by cell death, which could be the case for a dividing

cancer stem cell [52]. Arrested tumor cell proliferation imposed by

microenvironmental factors could also result in the ‘‘stalemate’’

between the tumor and the microenvironmental suppression

factors. Both scenarios could account for the case of differentiated

cancer cells, since our CA dormancy model is coarse-grained and

therefore considers the effective behavior of the tumor.

Our CA dormancy model may shed light on the fundamental

understanding of cancer dormancy phenomenon. Specifically, our

CA dormancy model proposes possible scenarios for cancer

dormancy that during the dormancy period the great majority of

proliferative cells stay in a dormant state, while only a small

portion of proliferative cells, i.e., ‘‘transformed’’ cells are actively

dividing, and the microenvironmental suppression factors coun-

teract these ‘‘transformed’’ cells by either killing them or turning

them back into dormant cells. As a result, the tumor cell

population is barely expanding during the dormancy period. It

is noteworthy that our CA dormancy model predicts that the

tumor either eventually spontaneously emerges or is eradicated

after a period of a ‘‘stalemate’’ between the tumor and the

microenvironmental suppression factors; or the tumor is eradicat-

ed before such a ‘‘stalemate’’ could ever develop. These predicted

scenarios arising from the interaction between the tumor and the

microenvironmental suppression factors in our simulation quali-

tatively match the experimental observations of the cancer

immunoediting process, by which the immune system controls

the tumor growth and necessarily leads to tumor escape or

elimination [53]. The predictions of our CA dormancy model can

be further verified by comparing the macroscopic geometrical and

dynamical properties of our simulated tumor in different

microenvironments [54] to those obtained by experimental data

from future animal studies. In future work we plan on

incorporating recently discovered mechanisms for cancer dor-

mancy via the clinical trials and experiments [55,56] to better

inform our computational model. These results together could aid

in answering the important fundamental question of whether the

majority of cancer cells in a dormant tumor are arrested at a

certain stage of the cell cycle or not. Furthermore, they will have

significant treatment implications in terms of what stage of the cell

cycle the therapies should target [57].

Besides the aforementioned influences, our findings informed by

clinical data might be able to provide further insights to novel early

cancer detection and therapy. For example, a new cancer drug

that suppresses the emission of CD47 by the tumor tissues, which

helps the tumor cells evade attack by the immune system, has been

discovered [58]. It was shown via in vitro experiments that this

drug is able to kill a variety of cancer cell types. Thus, an effective

clinical application of this drug depends upon the ability to identify

different tumor cell populations while they are dormant. Our work

may serve to provide insights to the application of this new drug as

well by contributing to the development of new early detection

methods. In addition, our work may shed light on why the

immune system may not always be able to prevent tumor

progression. Specifically, our work shows that even if the immune

system maintains its strength throughout the tumor growth

process, there is still a high possibility that the immune system

could eventually fail, which is to be contrasted with the simple

explanations that it becomes weaker as the tumor develops [15–

18]. Also, for a tumor of a specific type, we can extract the

parameter values in our model by fitting our simulation results to

the statistics of a real in-vitro or in-vivo tumor of this type. Then

we can utilize our model to explore optimal treatment strategies

Figure 5. Simulated tumor area AT normalized by the area A0 of
the growth permitting region of a noninvasive tumor growing
in the ECM with different �rrECM.
doi:10.1371/journal.pone.0109934.g005

Figure 6. Tumor area AT normalized by the area A0 of the
growth permitting region of a simulated noninvasive tumor
growing in the ECM under different killing rates by microen-
vironmental suppression factors. The parameter k0 is the fraction
that the suppression factors from the microenvironment kill the actively
dividing proliferative cells when the suppression factors counteract
these cells.
doi:10.1371/journal.pone.0109934.g006
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for the tumors of this specific type. In addition, once we determine

the effects of a specific microenvironmental factor (e.g., specific

integrins [59]) on the parameter values in our model, we could

then study the effects of this microenvironmental factor on the

tumor growth dynamics.

Our current CA dormancy model is still preliminary, and to

achieve our ultimate goal of understanding cancer dormancy and

progression, we need to develop robust models that incorporate

appropriate cell-level tumor-host interactions that are informed by

experiments. For example, by explicitly considering angiogenesis

and using more realistic distribution of ‘‘transformed’’ tumor cells’

resistance to microenvironmental suppression factors (currently we

just divide the ‘‘transformed’’ cells into two types with respect to

their resistance to microenvironmental suppression factors: weak
and strong), our model might be able to yield more realistic results

and improve our understanding of cancer dormancy and

progression. Also, the effects of tumor cell competition, cooper-

ation and the microenvironmental changes caused by tumor cell

activities could be incorporated to further strengthen our CA

dormancy model [60]. It is noteworthy that although we employ

interaction rules based on a discrete cell model to describe

‘‘competition’’ between the tumor and the microenvironmental

suppression factors, alternatives such as evolutionary game theory

implemented by partial-differential equations are also available to

address the interplay between the tumor and the microenviron-

ment [61].
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