62 research outputs found

    Topos Semantics for Higher-Order Modal Logic

    Full text link
    We define the notion of a model of higher-order modal logic in an arbitrary elementary topos E\mathcal{E}. In contrast to the well-known interpretation of (non-modal) higher-order logic, the type of propositions is not interpreted by the subobject classifier ΩE\Omega_{\mathcal{E}}, but rather by a suitable complete Heyting algebra HH. The canonical map relating HH and ΩE\Omega_{\mathcal{E}} both serves to interpret equality and provides a modal operator on HH in the form of a comonad. Examples of such structures arise from surjective geometric morphisms f:F→Ef : \mathcal{F} \to \mathcal{E}, where H=f∗ΩFH = f_\ast \Omega_{\mathcal{F}}. The logic differs from non-modal higher-order logic in that the principles of functional and propositional extensionality are no longer valid but may be replaced by modalized versions. The usual Kripke, neighborhood, and sheaf semantics for propositional and first-order modal logic are subsumed by this notion

    Natural Communication

    Get PDF
    In Natural Communication, the author criticizes the current paradigm of specific goal orientation in the complexity sciences. His model of "natural communication" encapsulates modern theoretical concepts from mathematics and physics, in particular category theory and quantum theory. The author is convinced that only by looking to the past is it possible to establish continuity and coherence in the complexity science

    Topos semantics for higher-order modal logic

    Get PDF

    Topos and Stacks of Deep Neural Networks

    Full text link
    Every known artificial deep neural network (DNN) corresponds to an object in a canonical Grothendieck's topos; its learning dynamic corresponds to a flow of morphisms in this topos. Invariance structures in the layers (like CNNs or LSTMs) correspond to Giraud's stacks. This invariance is supposed to be responsible of the generalization property, that is extrapolation from learning data under constraints. The fibers represent pre-semantic categories (Culioli, Thom), over which artificial languages are defined, with internal logics, intuitionist, classical or linear (Girard). Semantic functioning of a network is its ability to express theories in such a language for answering questions in output about input data. Quantities and spaces of semantic information are defined by analogy with the homological interpretation of Shannon's entropy (P.Baudot and D.B. 2015). They generalize the measures found by Carnap and Bar-Hillel (1952). Amazingly, the above semantical structures are classified by geometric fibrant objects in a closed model category of Quillen, then they give rise to homotopical invariants of DNNs and of their semantic functioning. Intentional type theories (Martin-Loef) organize these objects and fibrations between them. Information contents and exchanges are analyzed by Grothendieck's derivators

    Topos semantics for higher-order modal logic

    Get PDF

    Glosarium Matematika

    Get PDF
    273 p.; 24 cm

    Glosarium Matematika

    Get PDF

    Foundations of Quantum Theory: From Classical Concepts to Operator Algebras

    Get PDF
    Quantum physics; Mathematical physics; Matrix theory; Algebr
    • …
    corecore