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Introduction

The connection between algebraic and categorical semantics for S4 modal
systems has a long history. Algebraic models for classical propositional
S4 modal logic and related systems have already been studied by Tarski
[22, 23]. For quantified modal logic the standard approach is through possi-
ble worlds semantics, or Kripke frames. A topos-theoretic account of modal-
ities started a few years back with the work of Ghilardi, Reyes, Makkai and
others [12, 10, 26, 24, 21]. The present work develops these accounts fur-
ther w.r.t. higher-order theories. Part of it has been presented in [6], where
models of higher-order modal systems in a topos were defined and soundness
proved. In addition, we improve on these results by proving two complete-
ness theorems of the system of higher-order logic that was studied in [6].
The first is an elementary completeness theorem w.r.t. models in topoi in
general. It is achieved by constructing the syntactic topos ET from a higher-
order theory T and defining a generic canonical model in it. The idea follows
the construction of the syntactic topos for a higher-order intuitionistic the-
ory [16]. The second is a topological completeness theorem proved abstractly
using general topos-theoretic constructions. The idea for that proof follows
an idea used in [3] who used it to prove topological completeness of classical
higher-order logic w.r.t. models in sheaf categories.

For the second theorem to work we introduce the new notion of rela-
tive model structure which is studied mostly in sections 2.3, 3.6, and 4.3.
The elementary soundness and completeness result concerned models in S4
algebras

i : ΩE � H : τ

in a topos E , w.r.t. a complete Heyting algebra H for which the initial frame
map i is monic. Many naturally occurring examples are of that kind. On
the other hand, a relative model structure is an S4 algebra

i : B � H : τ,

for which the classifying map β : B → ΩE of the top element 1 : > → B
of B is a monomorphim. In fact, ΩE -based structures are instances of this
relaxed notion. As such, it will be shown that the canonical model of a
higher-order modal theory T in the syntactic topos ET can be embedded as
a relative model into a topos of sheaves on a space.

The material is structured in four main parts. In the first one we review
a few central notions associated with algebraic modal logic and indicate
how internalize these into a topos. We also recall a few aspects of the topos
structure, in particular the definition of a subobject classifier which plays
crucial role in topos semantics in general. The second part develops the
structure that is needed to define a sound notion of model in a category.
We chose the hyperdoctrinal approach first propsed by Lawvere [17, 18], as
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it nicely exhibits the purely algebraic character of the categorical semantics
developed. In the third part we revisit the soundness proof and discuss
some aspects of the system of higher-order logic studied here, in particular
the failure of normal function and propositional extensionality. Moreover, we
will show how to develop the familiar Kripke structures from our framework.
The material from this chapter is mainly contained in [6]. In the last chapter
we finally turn to the completeness results.

We presuppose familiarity with standard category-theoretic notions and
results, including topos theory. References for basic categorical background
include [19] and [2]. The standard reference for topos-theory is [15].

Acknowledgements. I like to thank everyone at the Munich Center for
Mathematical Philosophy where this thesis was produced. I experienced a
congenial academic atmosphere and research environment that is one of its
kind. I profited significantly from the personal and professional connections
with the people I met. I would like to thank prof. DDr. Hannes Leitgeb
and prof. Steve Awodey in particular for their patience and extraordinary
support throughout the time I spent at the MCMP.
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1 Preliminary Concepts

1.1 Modal Operators Through Adjoints

Throughout the following work we will be concerned exclusively with modal
operators that satisfy the rules of an S4 modal logic:

(M1)
ϕ ` ψ
�ϕ ` �ψ

(M2) �ϕ ∧�ψ ` �(ϕ ∧ ψ)

(M3) > ` �>

(M4) �ϕ ` ϕ

(M5) �ϕ ` ��ϕ

The reason to focus on S4 modal operators lies with their mathemat-
ically rather well-behaved nature and in their admitting many significant
examples, as will be seen presently.

Semantically, a classical S4 modal logic corresponds to a Boolean algebra
A with an operator � that satisfies the same rules as the modal operator �
when the syntactic entailment relation ` is replaced by the partial ordering
≤ on A. The rule M1 expresses that � is an order-preserving map. The
rules M2 and M3 say that � preserves finite meets, while the rules M4 and
M5 express that � is a comonad on A. The category of coalgebras for the
comonad � is the set of fixed points for �

�A = {x ∈ A | �x = x}.

This set is in general only a Heyting algebra. Finite meets are computed as
in A, as they are �-stable. However, implication between �-stable elements
is not computed in A. This is essentially due to the fact that the algebraic
converse of the K-axiom does not hold in general, so that x ⇒ y is not
in general �-stable. Instead, �(x ⇒ y) works, as can be easily verified.
That �A does not generally admit complements, is most readily seen by
a counterexample. Probably the easiest concerns the four element Boolean
algebra

11

01

==

10

aa

00

aa ==
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on which the modal operator is explicitly defined as

�x =

{
x, if x ∈ {00, 10, 11}
00 ow.

The inclusion �A ↪→ A thus looks like

11 11

10

aa

↪→ 01

==

10

aa

00

==

00

aa ==

The left-hand structure evidently fails to have complements. The same
example illustrates that i may not preserve implication. On the one hand,

10⇒ 00 = 00

in �A = 3, while
10⇒ 00 = 01

in A = 4.1

There is an obvious map τ : A→ �A defined by

τ(x) = �x,

for any x ∈ A. This map preserves the order and finite meets by definition.
More importantly, τ is right adjoint to the inclusion i : �A ↪→ A, since

i(x) ≤ y iff x ≤ τ(y),

for any x ∈ �A and y ∈ A.
The algebraic structure of �A can now be formulated more precisely in

terms of the maps i and τ . For x, y ∈ �A, define:

x ∧′ y = τ(i(x) ∧ i(y))

x⇒′ y = τ(i(x)⇒ i(y))

x ∨′ y = τ(i(x) ∨ i(y)).

A broad and well-studied class of examples is provided by topological
spaces X. The power set P(X) is a Boolean algebra under the usual set-
theoretic operations. The modal operator � is defined by

�U =
∨
{V ∈ O(X) | V ⊆ U},

1 Recall that for any complete Heyting algebra H the implication x ⇒ y can be ex-
pressed by

∨
{z ∈ H | z ∧ x ≤ y}.
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i.e. the largest open set within U , also known as the interior of U . More
precisely, the interior operation is the right adjoint τ : P(X) → O(X) to
the inclusion O(X) ↪→ P(X).

Not only does any modal operator � on a Boolean algebra define an
adjunction

i : �A� A : τ,

there is also a converse. Consider a Boolean algebra A, a distributive lattice
B, and an adjunction

i : B � A : τ

(i a τ) where i is injective and in addition preserves finite meets. This
adjunction determines a modal operator iτ : A → A. The rules M1-3 are
satisfied because both i and τ preserve the order and finite meets. The
rules M4-5 in turn hold by properties of the adjunction i a τ ; the inequality
iτ(x) ≤ x is the counit, while τ(x) = τiτ(x) is one of the triangle identities.
Note moreover that τi = 1, since the other triangle identity i(x) = iτ i(x)
implies x = τi(x), because i is injective. Finally, this makes i into an order
embedding, since if i(x) ≤ i(y) in A, then x = τi(x) ≤ τi(y) = y in B.

Although B was not assumed to be a Heyting algebra, one may define
an implication for x, y ∈ B by setting

x→ y := τ(i(x)⇒ i(y)),

where ⇒ is the implication of A:

z ≤ τ(i(x)⇒ i(y)) iff i(z) ≤ i(x)⇒ i(y)

iff i(z) ∧ i(x) ≤ i(y)

iff i(z ∧ x) ≤ i(y)

iff z ∧ x ≤ y,

using the properties mentioned before. Note that this uniquely determines
the Heyting implication of B in any case. Of course, the assumption that i
is injective and preserves finite limits is essential in all that. Note, finally,
that the argument remains valid if A is merely assumed to be a Heyting
algebra. The proof of the following is then essentially obvious.

Proposition 1.1. There is a one-to-one correspondence between S4 modal
operators on a Heyting algebra A and adjunctions

i : B � A : τ

where i a τ , B is a Heyting algebra, and such that i is injective and preserves
finite limits.
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Note finally that for any complete A and B the right adjoint τ can be
described by the formula

τ(x) =
∨
{y ∈ B | i(y) ≤ x}. (1)

Since adjoints are unique, the right adjoint, if it exists, must be given by
that formula.

Example 1.1. Kripke models for propositional S4 are special kinds of alge-
braic models. By definition, a Kripke structure consists of a poset (A,≤)
on which the model of a modal theory is defined by suitable forcing condi-
tions for each logical connective. The expression ‘x  ϕ’ is to mean that ϕ
‘holds’ at stage/world/point x. Given an extension for all the basic propo-
sitional variables, one recursively extends the definition to all the formulas,
for instance

x  ϕ ∧ ψ iff x  ϕ and x  ψ.

In particular, the modal formulas are interpreted as

x  �ϕ iff y  ϕ, for all y ≥ x.

Every formula ϕ determines a set Uϕ ⊆ A where it is defined to hold:

x ∈ Uϕ iff x  ϕ.

One then shows by induction that

x ∈ Uϕ∧ψ iff x ∈ Uϕ ∩ Uψ

x ∈ Uϕ⇒ψ iff x ∈ Uϕ ⇒ Uψ

...

x ∈ U�ϕ iff x ∈ �Uϕ,

where
�Uϕ :=

⋃
{V ⊆ Uϕ | y ∈ V & y ≤ z implies z ∈ V }.

The operation U 7→ �U defines a map P(A) → P(A) on the whole
powerset that satisfies the rules of an S4 operator on the Boolean algebra
P(A). As such, it may be factored as adjunction

i : �P(A)� P(A) : τ.

The set of box stable elements for the modal operator � on P(A) is isomor-
phic to the set of upward closed subsets U(A) of the poset (A,≤). The left
adjoint i : U(A) → P(A) is the inclusion while the right adjoint τ is given
by

τ(U) =
⋃
{V ∈ U(A) | V ⊆ U}, (2)
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in accordance with the formula (1). Thus, a Kripke model for S4 on a poset
(A,≤) may equivalently be given purely algebraically by an adjunction

i : U(A)� P(A) : τ

by recursively assigning to each formula ϕ an element Uϕ ∈ P(X) and
interpreting the modal operator through the composite iτ . We will return
to Kripke models in section 3.5.

1.2 Modal operators in a Category

Eventually, we will be concerned not with set-based Heyting algebras, but
Heyting algebras in an arbitrary topos E . The definition of a Heyting algebra
in E is a suitable diagrammatic version of the standard one and makes sense
in any category with finite limits. It is, by definition, an object H in E along
with maps

H ×H ∧,∨,⇒
// H 1

>,⊥
oo

that provide the Heyting structure on H. To this end these maps are to make
certain diagrams commute, corresponding to the usual equations defining a
Heyting algebra. For instance, the axiom x ∧ > = x, for any x ∈ H,
corresponds diagrammatically to the requirement that the diagram

H × 1
1×>

//

π1

##

H ×H

∧

��

H

commutes. The correspondence between the usual equational definition and
commutative diagrams in a topos E can be made precise using the internal
language of E .2

The induced partial ordering on H is constructed as the equalizer

E // // H ×H
∧ //

π1

// H,

corresponding to the usual definition

x ≤ y iff x ∧ y = x.

Equivalently, it is the pullback of > : 1→ H along the implication H×H ⇒−→
H, corresponding to the rule > ≤ x ⇒ y iff x ≤ y. It may be shown that

2 Cf. e.g. [20].
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the relation E thus defined satisfies the diagrammatic versions of a partial
ordering. For instance, reflexivity means that the diagonal ∆ := 〈1H , 1H〉 :
H → H ×H factors through the subobject E � H ×H.

The notion of homomorphism also internalizes. Given posets A and B
in E with orderings ≤A� A × A and ≤B� B × B, respectively, an arrow
f : A → B is said to preserve the order, if there is a factorization as in the
following:

≤A //
��

��

≤B��

��

A×A
f×f

// B ×B

This directly expresses that x ≤A y implies f(x) ≤B f(y). Preservation of
algebraic structure may be similarly expressed using commutative diagrams.
For instance, provided the required structure is present, the following two
diagrams describe preservation of finite meets:

1

>

��

1

>

��

A×A f×f
//

∧

��

B ×B

∧

��

A
f

// B A
f

// B

One may also define an adjunction f : A � B : g between posets in
E . This may be achieved by saying that f a g, if in the internal language
of E it holds that f(x) ≤ y iff x ≤ g(y). Diagrammatically, this is most
easily expressed by requiring the unit and counit inequalities. That is to
say, requiring that the map 〈fg, 1B〉 : B → B × B factors through ≤B and
that 〈1A, gf〉 : A→ A×A factors through ≤A.

The S4 rules may similarly be expressed by appropriate diagrams. For
any Heyting algebra H in E , a map b : H → H is an S4 modal operator if
it is a finite meet preserving map of posets that in addition satisfies bb = b
and such that the map

H
〈b,1〉−−−→ H ×H

factors through the partial ordering on H. With this we have:

Proposition 1.2. For any topos E, there is a one-to-one correspondence
between modal operators on a Heyting algebra A and adjunctions

i : B � A : τ

in E such that i a τ and i is a finite limit preserving monomorphism.
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Proof. Given such an adjunction, it is readily seen that the composite iτ
defines a modal operator much as in the set case. On the other hand,
given an S4 operator b : H → H, define in the internal language an object
�H = {x : H | x = bx} � H. The inclusion will be the structure map i.
By Kripke-Joyal forcing, the map b : H → H factors through the subobject
�H if and only if for all maps z : Z → H, it holds that bbz = bz. This is
indeed the case by assumption on b. Hence b factors as b = iτ , for some
map τ : H → �H.

The object �H is a Heyting algebra. As to the top, note that > : 1→ H
satisfies > = b>, by assumption on b, and hence factors through i. The
factorization thus constructed is the pullback of > : 1 → H along i, which
makes it a top element of �H. The meet operation is the composite

�H ×�H i×i−−→ H ×H ∧−→ H
τ−→ �H.

In a similar way one obtains the other binary operations, in the same way
as were defined in the set-case before. The partial ordering similarly arises
by pulling back ≤H� H ×H along i× i.

Moreover, τi = 1, because i factors through �H via the identity. Hence,
by definition of Kripke-Joyal forcing again (regarding the generalized ele-
ment i), we get i(x) = bi(x) = iτ i(x) in the internal language, and so
1 = τi, because i is monic. Therefore also i a τ . The counit is simply the
condition b ≤ 1, while the unit is provided by the identity 1 = τi.

While the map i preserves all finite joins because it is a left adjoint,
it moreover preserves finite limits. It preserves the top by construction.
It moreover preserves finite meets, as through the following commutative
diagram:

H ×H ∧ //

τ×τ

��

H

τ

��

�H ×�H

i×i

99

i×i

%%

�H ×�H

i×i

��

�H

i

��

H ×H ∧
// H

where the square commutes, because b = iτ preserves meets of H by as-
sumption.
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1.3 Complete Heyting Algebras in a Topos

By definition, for any topos E , a Heyting algebra H in E is complete if and
only if for any object I in E , the diagonal map ∆I : H → HI obtained by
exponentiation of the unique map I → 1 has both a left and a right adjoint.
Set-theoretically, exponentiation by a map f corresponds to the operation
of precomposition with f . In the case I → 1, this reads as

∆I(x)(i) = x, for all x ∈ H, i ∈ I.

Here we use that H1 ∼= H and that maps 1 → H from the singleton 1
correspond to elements x ∈ H. Its right and left adjoints ∀I are given by

∀I(f) =
∧
i∈I

f(i),

∃I(f) =
∨
i∈I

f(i),

resp. This directly follows from the adjunction, where we use the pointwise
ordering on HI

∆I(x) ≤ f iff x ≤ ∀I(f),

∃I(f) ≤ x iff f ≤ ∆I(x).

The condition ∆I(x) ≤ f means nothing other than that x ≤ f(i), for all
i ∈ I; dually for f ≤ ∆I(x). The biconditionals thus precisely capture the
definition of big joins and meets.

The definition might also be seen from a more general viewpoint. Replac-
ing a complete Heyting algebra by a category C, and I by any indexing cate-
gory, then C has I-indexed (co)limits if and only if the functor ∆I : C→ CI

has a (left) right adjoint. This connection is more than an analogy, since
every Heyting algebra is a category and every set I is a discrete category,
and joins and meets are precisely colimits and limits in an ordered category.

A map f : A→ B between complete Heyting algebras is said to preserve
arbitrary meets and joins, if the following commute, for any object I in E :

AI

fI

��

∀I // A

f

��

AI

fI

��

∃I // A

f

��

BI
∀I

// B BI
∃I

// B

With these observations, HI is a complete Heyting algebra in its own
right whose structure is obtained by exponentiating the structure H with I.
For sets, this is the ususal pointwise definition. For instance, the meet map

∧I : AI ×AI → AI

13



is the composite

AI ×AI ∼= (A×A)I
∧I−→ AI .

Since the functor (−)I preserves limits all the required commutative dia-
grams for a meet operation remain commutative. The structural diagonal
map HI → (HI)J , for any J , is given by exponentiating ∆J as in

(∆J)I : HI → (HJ)I ∼= (HI)J .

It is, up to the isomorphism (HI)J ∼= HI×J , the same as the map HI →
HI×J obtained by exponentiating with the projection I × J → I.

The right and left adjoints to this map are

(HI)J ∼= (HJ)I
(∀J )I/(∃J )I−−−−−−−→ HI

resp. Note also that since the functor (−)I preserves finite limits the (point-
wise) ordering on HI is the pulllback of >I : 1→ HI along ⇒I .

Each map ∆I : A → AI is a map of complete Heyting algebras. For a
binary operation β on A observe that each square commutes:

A×A β
//

∆I×∆I

��

A

∆I

��

AI ×AI
βI

// AI

This is because the maps

∆I : A×A→ (A×A)I

and

∆I ×∆I : A×A→ AI ×AI

coincide up to the isomorphism (A×A)I ∼= AI ×AI . But each square

A×A β
//

∆I

��

A

∆I

��

(A×A)I
βI

// AI
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commutes by construction of ∆I , as in the following, where the η’s are the
unit of the adjuntion (−)× I a (−)I :

A
ηA // (A× I)I

πI // AI

A×A

β

OO

ηA×A
// ((A×A)× I)I

(β×1)I

OO

πI
// (A×A)I

βI

OO

Moreover, any map ∆I also preserves arbitrary indexed joins and meets,
because it has both a left and a right adjoint, by the assumption that A is
a complete Heyting algebra.

Propositionally speaking, HI should be viewed as the object of predicates
varying over I. The map ∆I corresponds to variable weakening. It maps a
proposition x ∈ H to a predicate that doesn’t actually vary over I, i.e. has
a constant truth value x. Similarly, for the maps (∆J)I : HI → (HI)J ∼=
HI×J . The adjointness

∃I a ∆I a ∀I
ensures the maps behave like quantifiers. That is to say,

∀I(ϕ) = > iff ϕ(i) = >, for all i ∈ I,

and
∃I(ϕ) = > iff ϕ(i) = >, for some i ∈ I.

Note that since ∆I is a map of complete lattices its adjoints may alterna-
tively described as

∀I(f) =
∨
{a ∈ H | ∆I(a) ≤ f},

∃I(f) =
∧
{a ∈ H | f ≤ ∆I(a)}.

This formulation lends itself to describe examples in other contexts when a
suitable definition of ∆I is known.

Example 1.2. Again, it helps to bear in mind classical two-valued semantics
in Sets, where H = 2 is the two-element set with its usual ordering.3 Then,
for any I, J , and U ⊆ I

(∆J)I(U) = U × J,

i.e. inverse image along the projection I × J → I. When I = 1, then ∆J(x)
is either all of J of empty, depending on whether x is all of 1 or empty. The

3 For convenience we may consider 2 as the powerset of a singleton 1. Then the top
element is the subset 1 ⊆ 1, and the bottom element is the empty set.
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adjoints are computed according to the formulas above as follows. For any
V ⊆ I × J , where we write π∗ for (∆J)I , and ∀J/∃J for its adjoints:

∀J(V ) =
⋃
{U ⊆ 2I | π∗(U) ⊆ V }

=
⋃
{U ⊆ 2I | U × J ⊆ V }

= {x ∈ I | for all y ∈ J : (x, y) ∈ V }.
= {x ∈ I | π∗(x) ∩ V = J}.

Dually for the existential quantifier:

∃J(V ) =
⋂
{U ⊆ 2I | V ⊆ π∗(U)}

=
⋂
{U ⊆ 2I | V ⊆ U × J}

= {x ∈ I | there is y ∈ J : (x, y) ∈ V }.
= {x ∈ I | π∗(x) ∩ V 6= ∅}.

For a unary predicate this gives the conditions from before. For then, if
π : J → 1 is the projection, π∗(x) = J iff x = 1 and empty otherwise.
Hence, for V ⊆ J ,

∀J(V ) = 1 iff V = J,

and
∃J(V ) = 1 iff V 6= ∅.

Example 1.3. Consider SetsC
op

, for a small category C. Products in SetsC
op

are computed pointwise. In particular, a Heyting algebra H in SetsC
op

has
pointwise natural structure. That is to say, each H(C), for C in C, is a
Heyting algebra in such a way that e.g. for all binary operations ? on H,
H(f) ◦ ?D = ?C ◦ (H(f) × H(f)), for any arrow f : C → D in C. This is
because the structure maps, being arrows in SetsC

op
, are natural transfor-

mations. Hence, for each f : C → D in C, the map H(f) preserves the
Heyting structure. The following sums up what it means to be a complete
Heyting algebra in SetsC

op
.4

Because we will need it later, we spell out the definition of the complete
join and meet maps. Recall that exponentials are computed by the formulas

HI(C) = Hom(yC × I,H)

HI(f) : η 7→ η ◦ (yf × 1I),

where yC denotes the contravariant functor HomC(−, C). The induced
Heyting structure on HI is the pointwise one at each component. In partic-
ular, for any η, µ : yC × I → H,

η ≤ µ (in HI(C)) iff ηD ≤ µD, for each D ∈ C

iff ηD(f, b) ≤ µD(f, b) (in H(D)), for each f : D → C, b ∈ I(D).

4 [J,C1.6.9]
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Since we are mainly interested in adjoints between ordered structures,
for any two order-preserving maps η : H � G : µ between internal partial
orderings H,G in SetsC

op
, η a µ means that ηC a µC at each component

C. That is to say
ηC(x) ≤ y iff x ≤ µC(y),

for all x ∈ H(C), y ∈ G(C).
The natural transformation ∆I : H → HI (henceforth ∆) determines

for each x ∈ H(C) a natural transformation ∆C(x) : yC × I → H with
components

∆C(x)D(f, a) = H(f)(x).

Its right adjoint ∀I : HI → H (henceforth ∀) has components, for any
η ∈ Hom(yC × I,H),

∀C(η) =
∨
{s ∈ H(C) | ∆C(s) ≤ η}

=
∨
{s ∈ H(C) | H(f)(s) ≤ ηD(f, b), for all f : D → C, b ∈ I(D)},

where the join is taken in H(C). Dually, the left adjoint ∃ of ∆ has compo-
nents

∃C(η) =
∧
{s ∈ H(C) | η ≤ ∆C(s)}

=
∧
{s ∈ H(C) | ηD(f, b) ≤ H(f)(s), for all f : D → C, b ∈ I(D)}.

Lastly, each H(C) really is a complete Heyting algebra in the usual sense
of having arbitrary set-indexed meets and joins (so the previous definitions
of ∀ and ∃ actually make sense). For any set J , the right adjoint ∀J :
H(C)J −→ H(C) can be found as follows. Consider the constant J-valued
functor ∆J on C (and constant value 1J on arrows in C). For any C in C,
there is an isomorphism

HomSets(J,HC) ∼= Hom
Ĉ

(yC ×∆J,H)

(natural in J and H). Given a function h : J → HC, define a natural
transformation νh : yC × ∆J → H to have components (νh)D(g, a) =
H(g)f(a). Conversely, given a natural transformation η on the right, define
a function fη : J → HC by fη(a) = ηC(1C , a). These assignments are
mutually inverse. Moreover, the map that results from composing ∆J :
HC → H∆J(C) with that isomorphism is computed as

f(∆C(x))(a) = ∆C(x)C(1C , a) = H(1C)(x) = x,

so that for any x ∈ HC, ∆C(x) is the constant x-valued map on J . This
justifies taking the right adjoint to ∆J as the sought right adjoint of the
diagonal map HC → H(C)J .
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Indeed, for exponents ∆J the formula for the right adjoint to ∆C , for
instance, takes the familiar form met in the previous example

∀C(η) = ∀J(fη) =
∧
a∈J

fη(a) =
∧

a∈∆J(C)

ηC(1C , a),

or
∀J(h) = ∀C(νh) =

∧
a∈∆J(C)

(νh)C(1C , a) =
∧
a∈J

h(a),

respectively. �

As for any equationally definable structure, if H is a Heyting algebra in
E , then so is the set

HomE(A,H),

for any object A in E . For instance, the top element is the composite

A
!−→ 1

>−→ H.

The binary operations ∗ are given, for any two maps f, g : A ⇒ H, by the
composites

A
〈f,g〉−−−→ H ×H ∗−→ H,

resp. The partial ordering is the relation

HomE(A,E) �
�

// HomE(A,H ×H) ∼= HomE(A,H)×HomE(A,H),

obtained by composition with the ordering relation E ↪→ H ×H in E .
When E = Sets, then this is the usual pointwise definition of the oper-

ations on the set of functions into H. For any arrow f : A→ B in E , there
is moreover a function

f∗ : HomE(B,H) −→ HomE(A,H),

defined by precomposition with f .

1.4 The Subobject Classifier of a Topos

Although the notion of subobject classifier is at the very core of the definition
of a topos and standard material, we will recall some of its structure in detail,
because we will refer to it extensively in the later parts. At the same time
it serves as an example of a complete Heyting algebra in a topos.

To begin with, recall that for each object A in E , the set SubE(A) of
subobjects of A is defined to contain equivalence classes of monomorphisms
U � A, where two monomorphisms m : U � A and n : V → A are
equivalent if and only if there is a, necessarily unique, isomorphism i : U →
V such that

n ◦ i = m,
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as in

U
i //

m

��

V

n

��

A

We will treat these equivalence classes silently, in that we will refer to a
subobject in terms of their representing monomorphisms. The set SubE(A)
is partially ordered by setting

m ≤ n iff there exists k : U → V such that n ◦ k = m.5

Moreover, we recall that for any arrow f : B → A the operation of pullback
along f is a monotone map of posets

f∗ : SubE(A)→ SubE(B).

The concept of subobject classifier is part of the definition of E . It is, by
definition, an object that admits, for any object C in E , an isomorphism

SubE(C) ∼= HomE(C,ΩE),

natural in C w.r.t. to pullback of subobjects on the left-hand side and
composition on the right. Equivalently, there is a distinguished subobject
> : 1 → ΩE with the property that for any subobject m : U � C there
exists a unique morphism µ : C → ΩE that fits into a pullback diagram

U��

m

��

// 1

>

��

C µ
// ΩE

The map µ is called the classifying map of m.6 The map > itself is the
classifying map of the identity arrow on the terminal object 1. The identity
map on ΩE , in turn, classifies the monomorphism >. Thus, for instance, it
is readily seen that ΩE is uniquely determined up to isomorphism. Also, it
follows from properties of pullbacks in general that a monomorphism m is
an isomorphism if and only if its classifying map µ factors through >.

5 Thus, equivalently, we could have first defined the preorder of monomorphisms to A
in a similar way, and then define SubE(A) to be the poset reflection of that preorder.

6 The second definition derives from the first by defining the generic subobject > : X →
ΩE to be the subobject corresponding to the identity map on ΩE . It follows that X is a
terminal object.
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Logically speaking, ΩE is an object of truth values. The existence of a
universal, generic, subobject > : 1→ ΩE may be understood as a separation
principle. Regarding a map µ : C → ΩE as a “property” on C, the universal
property of the generic subobject > states that every property on an object
C uniquely determines a sub-object Uµ of V in a canonical way. Adopting
set-theoertic notation, one may thus write Uµ as {x ∈ C | µ(x)}.
Example 1.4. In the category Sets of all sets any two-element set with with a
distinguished element is a subobject classifier.7 Of course, a canonical choice
might be {∅, {∅}}, with > singeling out {∅}. Slightly more generally, in the
following we will simply consider any singleton 1 and the corresponding
two-element set P(1) = {∅, 1}. Note that

SubSets(A) ∼= P(A) ∼= 2A.

In fact, in any topos E , the object ΩA
E behaves like an internal powerobject

of A.

Example 1.5. The subobject classifier in the topos of I-indexed families
of sets, for some fixed set I, is the family with constant components the
two element set 2. Equivalently, viewed as a functor category SetsI , the
subobject classifier is the functor Ω : I → Sets with components Ω(i) = 2.
A subobject of a family of sets is family of inclusion, with characteristic the
pointwise charactristic map as in Sets.

Example 1.6. Generalizing the previous example, the subobject classifier in
SetsC

op
, for any small category C, is described as follows. For any object C

in C, Ω(C) is the set of all sieves σ on C, i.e. sets of arrows h with codomain
C such that h ∈ σ implies h ◦ f ∈ σ, for all f with cod(f) = dom(h). For
an arrow g : D → C in C, Ω(g)(σ) is the restriction of σ along g:

Ω(g)(σ) = {f : X → D | g ◦ f ∈ σ},

which is a sieve on D. The mono > : 1 → Ω is the natural transformation
whose components pick out the maximal sieve >C on C, i.e. the set of all ar-
rows with codomain C (the terminal object 1 being pointwise the singleton).
The classifying map χm of a subfunctor m : E � F has components

(χm)C(a) = {f : X → C | F (f)(a) ∈ E(X)}.

In particular, if C is a preorder, then Ω(C) is the set of all downward closed
subsets of ↓ C. Since in this case there is at most one arrow g : D → C, the
function F (g) may be thought of as the restriction of the set F (C) to F (D)
along the inequality D ≤ C.

7 For a discussion of foundational questions regarding the category Sets see e.g. [19].
For instance, one may assume a universe whose elements are sets that are closed under the
standard set-forming operations. The elements of this category are then called small sets,
while subsets of the universe are called large. In the following we will continue to refer to
Sets as the “category of sets”, where by “set” we mean small set in an appropriate sense.
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Proposition 1.3. For each object A in E, the set SubE(A) of subobjects of
A is a Heyting algebra, and for each arrow f : B → A in E the operation

f∗ : SubE(B)→ SubE(A)

of pulling back subobjects along f is a map of Heyting algebras. Moreover,
each map f∗ has both a left and a right adjoint.

Proof. The top element of each SubE(A) is the identity map on A. The meet
of m : U → A and n : V → A is the diagonal through the pullback

P //

��

V

n

��

U m
// A

The join of m : U → A and n : V → A is the image of the induced map

[m,n] : U + V −→ A.

Finally the bottom element is the unique map 0→ A from the initial object
of A, which in a topos is always monic.

For the second part, the map f∗ preserves the finite limit structure by
instant properties of pullbacks. For joins and the bottom element the state-
ment is essentially the fact that in a topos coproducts and image factoriza-
tions are stable under pullback.

The left adjoint ∃f of f∗ is obtained, for any subobject m : U � B, as
the image of the composite fm, as in

U

m

��

// •

∃f (m)

��

B
f

// A

The right adjoint ∀f is the restriction to monomorphisms of the right
adjoint

Πf : E/B → E/A

to the pullback functor defined on the entire slice category. For a detailed
description of that right adjoint, see e.g. [20]. Regardless of the explicit de-
scription of ∀f , however, it follows that implication m⇒ n, in each SubE(A),
can be expressed by

∀mm∗(n).
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For compute, purely by definition of order adjoints, for any k ∈ SubE(A):

k ≤ ∀mm∗(n) iff m∗(k) ≤ m∗(n)

iff ∃mm∗(k) ≤ n
iff k ∧m ≤ n

As for the last step, recall that the meet of two subobjects m and k is
given by the diagonal composite through their pullback. This is equivalently
expressed by first pulling back k along m, and then composing with m again.
Since the direct image functor ∃m along a monomorphism m is essentially
composition with m, the composite ∃mm∗(k) is precisely the meet k ∧m.

With this description of implications one may show that f∗ preserves
these using the Beck-Chevalley condition for the right adjoints ∀. (For the
latter, see proposition 2.4 and example 2.3 below.)

The proposition essentially shows that the functor

SubE(−) : E −→ Sets

is Heyting algebra in the category of all functors from E to Sets. We now
outline how through the natural isomorphism

SubE(−) ∼= HomE(−,ΩE) (3)

the Heyting structure of SubE(−) internalizes to the object ΩE . Of course,
it would be enough to give the structure maps pertaining to ΩE , and then
verify the equations defining a Heyting algebra. However, we give some
more detail to show how the Heyting structure of ΩE is conceptually linked
to the structure of the subobject lattices in E .

Proposition 1.4. For any topos E, its subobject classifier ΩE is a Heyting
algebra in E.

Proof. For any A in E , the operation of forming meets is a function

∧A : SubE(A)× SubE(A) −→ SubE(A),

and therefore by the isomorphism (3) at A a map

∧∗ : HomE(A,ΩE)×HomE(A,ΩE) −→ HomE(A,ΩE).

This operation is natural in the argument A, since the operation ∧A is
preserved by pulling back. Hence, by the Yoneda lemma, there exists a
unique map

∧ : ΩE × ΩE −→ ΩE
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in E such that ∧∗ is defined by composition with ∧. Moreover, there is a
canonical way of deducing ∧, namely by applying the map ∧∗, modulo the
isomorphism

HomE(A,ΩE)×HomE(A,ΩE) ∼= HomE(A,ΩE × ΩE),

to the identity map on ΩE . In this way the meet operation

∧ : ΩE × ΩE −→ ΩE

turns out to be the classifying map of 〈>,>〉 : 1 −→ ΩE × ΩE , which is the
classifying map of the pullback of 〈1,>u〉 and 〈>u, 1〉 (u : ΩE → 1 is the
canonical map):

1
> //

>

��

ΩE

〈1,>u〉

��

ΩE 〈>u,1〉
// ΩE × ΩE

viewed as subobject of ΩE×ΩE ; while 〈1,>u〉 and 〈>u, 1〉 in turn arise as the
subobjects classified by π2 and π1, respectively. Since the external maps ∧A
all satisfy the basic equalities defining meets (idempotency, commtuativity,
symmetry), so does the internal map ∧.

The induced partial ordering is then again the equalizer

E // // ΩE × ΩE
∧ //

π1

// ΩE .

It now follows that the generic subobject > : 1→ ΩE is the top element
of ΩE , since both composites

ΩE × 1
1×>−−−→ ΩE × ΩE

π1−→ ΩE

and

ΩE × 1
1×>−−−→ ΩE × ΩE

∧−→ ΩE

classify the same subobject, hence are equal. Therefore 1×> factors through
the ordering E. The bottom element is the classifying map of the subobject
0→ 1. The join operation is determined as classifying map of the image of
the map

[〈1,>uΩE 〉, 〈>uΩE , 1〉] : ΩE + ΩE −→ ΩE × ΩE .

Finally, implication, if it exists, is necessarily the classifying map of the
ordering E ↪→ ΩE ×ΩE . The latter of course exists and can be expressed as
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the following lower horizontal composite

E //
��

��

ΩE //

∆ΩE

��

1

>

��

ΩE × ΩE 〈∧,π1〉
// ΩE × ΩE

δΩE

// ΩE

following a standard description of equalizers. A Yoneda argument in the
style as was employed for meets and joins determines ⇒ as the classifying
map of the subobject ∀〈>uΩE ,1〉

(>) of ΩE ×ΩE , which in turn is precisely the
said equalizer.

Proposition 1.5. For any topos E the subobject classifier ΩE is a complete
Heyting algebra.

Proof. Using a standard Yoneda argument, the adjoints to the map ∆I :
ΩE → ΩI

E are provided by the fact that, for any topos E , and any arrow
f : A→ B in E , the pullback functor

f∗ : SubE(B) −→ SubE(A)

has both a right and a left adjoint. In the context of an additional parameter
X the functor

(1X × f)∗ : SubE(X ×B) −→ SubE(X ×A)

may be written as a functor

HomE(X,Ω
B
E ) −→ HomE(X,Ω

A
E ),

in view of the isomorphisms

SubE(X × Y ) ∼= HomE(X × Y,ΩE) ∼= HomE(X,Ω
Y
E ).

These are natural in X and so by Yoneda provide a map

ΩB
E −→ ΩA

E ,

which is precisely Ωf
E . In particular, ∆I arises in this way from pullback

along the projection π1 : X × I → X:

π∗1 : SubE(X) −→ SubE(X × I),

that is by applying the previous argument to the map uI : I −→ 1, as re-
quired. The external adjoints of π∗1 induce the required internal adjoints of
ΩuI
E = ∆I .
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In topos-theoretic contexts complete Heyting algebras are often referred
to as frames. The reason for the extra terminology lies in the fact that
oftentimes one studies not maps of complete Heyting algebras, but only
those Heyting maps that preserve arbitrary joins, not necessarily arbitrary
meets. An example is the inclusion

i : O(X) ↪→ P(X)

of the open sets of a topological space X into the powerset. It does not in
general preserve arbitrary meets.

More generally, for any S4 algebra A, the inclusion i : �A → A is a
frame map. We have seen earlier that this inclusion has a right adjoint. In
a similar fashion every frame map f : A→ B has a right adjoint f∗ : B → A
given, for any y ∈ B, by

f∗(y) =
∨
{x ∈ A | f(x) ≤ y}.

Another class of examples involves the inverse image functor

f∗ : O(Y )→ O(X)

of a continuous maps of spaces f : X → Y , which does not in general
preserve arbitrary meets.

As a frame, the Heyting algebra ΩE has the property that it is the initial
frame in E . That is to say, for any frame H in E , there exists a unique frame
map

i : ΩE → H.

We call a complete Heyting algebra H in E faithful, if the canonical frame
map i is a monomorphism. As a frame map, i has a right adjoint τ , which is
the classifying map of the top element of H. The initial frame map has the
special propert that i is a monomorphism if and only if the diagram (which
commutes, because i preserves meets)

1

>

��

1

>

��

ΩE i
// H

is a pullback diagram. If i is monic, then this is a straightforward veri-
fication. On the other hand, assuming it to be a pullback, the following
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composite diagram is a pullback as well:

1

>

��

1

>

��

1

>

��

ΩE i
// H τ

// ΩE

and hence τi = 1, by uniqueness of classifying maps. It follows that i is
monic, as is any map that has a retract.

2 Algebraic Models for First-Order Theories

2.1 First-Order Hyperdoctrines

The following notion is due to Lawvere [17].

Definition 2.1. A hyperdoctrine is a functor H : Cop → HA from a finitely
complete category C to the category of Heyting algebras. The functor H is
to satisfy the following conditions:

• For every projection π : X × Y → X in C, the map

H(π) : H(X)→ H(X × Y )

has both a left and a right adjoint

∀, ∃ : H(X × Y )⇒ H(X)

which, however, are not required to be Heyting maps.

• Both adjoints satisfy the Beck-Chevalley condition. That is to say, for
any arrow f : Z → X in C, the following commute:

H(X)

H(f)

��

H(X × Y )

H(f×1)

��

Qπ
oo

H(Z) H(Z × Y )
Qπ

oo

for Q = ∀,∃.
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• For all maps ∆X = 〈1X , 1X〉 : X → X ×X the morphism H(∆X) has
a left adjoint that satisfies the Beck-Chevalley condition for pullback
diagrams

A
∆A //

∆A

��

A×A

1×∆A

��

A×A
∆A×1

// A×A×A

The definition states the minimal amount of structure needed to inter-
pret (intuitionistic) first-order logic. In practice, however, most examples are
such that every map H(f) will have adjoints satisfying the Beck-Chevalley
condition w.r.t. underlying pullbacks in C. The idea is that C encodes vari-
able contexts, i.e. sorts, while the arrows are terms. Note that the category
C is not necessarily to have actual meaning in the sense that the objects and
arrows in C are mere indices. Elements in H(X), in turn, are to be thought
of propositions in the free variable X, or properties. In particular, the set
H(1) encodes propositions. The operation H(π) models the operation of
variable weakening whose adjoints are quantifiers. An arrow f : Z → X
in C may in turn be regarded as corresponding to a term z : Z | f : X,
and H(f) to model a substitution function that substitutes f(z) for x in
any property in H(X). The Beck-Chevalley condition thus ensures that
quantification commutes with substitution.

Before giving examples, we outline the notion of model in a hyperdoctrine
of a sorted first-order theory so as to provide some more detailed intuition
about the intention behind the notion of hyperdoctrine. We proceed infor-
mally, skipping some technical details, in order to convey the guiding idea.
A sorted first-order language consists of a set Σ of sorts, basic propositional
constants >,⊥, and a relation =A, for each sort A ∈ Σ. Moreover, there may
be basic relation symbols each R, each equipped with a (possibly empty)
sequence A1, . . . , An of sorts, indicating the sorts over which R is defined,
written

R : A1, . . . , An.

Empty relation symbols (those which are assigned the empty sequence) are
to be thought of as propositions. In a similar way one may assume constants

c : A

and function symbols

f : A1, . . . , An → B.8

8 The arrow “→” is a purely formal notation, with the same syntactical function as
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Terms and formulas are going to be written in a variable context which
indicates the free variables that occur in formula ϕ, along with sort of the
variable. The context may contain more variables than actually occur in ϕ
but it must at least contain all the free variables of ϕ. A context generally
looks like

x1 : A1, . . . , xn : An

meaning that the variable xi is of type Ai. For instance, the expression

x : A, y : B | ϕ

means that ϕ may contain the variables x and y of sorts A and B, resp.
Also, the expression

∅ | ϕ

means that ϕ does not contain any free variables whatsoever. Similarly
for terms. Most importantly, terms and formulas always occur in such con-
texts. Terms-in-context and formulas-in-context are thus the basic syntactic
entities of the formal system. One and the same formula ϕ may occur in
different contexts, yielding two different formulas-in-context. It is only the
latter that are meaningful in the formal system.

The set of terms-in-context and formulas-in-context is defined recursively
(henceforth simply “term” and “formula”). For instance one has the follow-
ing term forming rules

• For every variable x, the expression x : A | x : A is a term.

• For each constant c : A, the following is a term

∅ | c : A

• For any function symbol f : A1, . . . , An → B, given terms

Γ | t1 : A1, . . . ,Γ | tn : An,

where Γ is any suitable context, there is a term

Γ | f(t1, . . . , tn) : B.

One additionally assumes structural rules that specify new terms through
manipulation of the contexts. These are permuation of variable declarations,
contraction, and weakening. The last one is quite important. It says that if

Γ | t : A

e.g. a comma; the choice of the arrow is of course to indicate its intended meaning. As
for propositions, one may also treat constants as function symbols where the sequence
A1, . . . , An is empty.
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is a term, then for any variable z : C there is a term

Γ, z : C | t : A.

Formulas are defined in an analogous way.

• The expressions ∅ | ⊥ and ∅ | > are formulas

• If R : A1, . . . , An is a basic relation symbol, then given terms

Γ | t1 : A1, . . . ,Γ | tn : An,

where Γ is any suitable context, the expression

Γ | R(t1, . . . , tn)

is a formula.

• if Γ | s : A and Γ | t : A are terms, then Γ | s =A t is a formula.

• if Γ | ϕ and Γ | ψ are formulas, then Γ | ϕ ∧ ψ is a formula, etc., for
all the connectives.

• if Γ, y : B | ϕ is a formula such that y : B does not occur in Γ, then

Γ | ∃y:Bϕ and Γ | ∀y:Bϕ

are formulas.

• if Γ | ϕ is a formula, then for any variable z : C, the expression
Γ, z : C | ϕ is a formula. (Weakening)

Finally one specifies an intuitionistic deduction relation for formulas. For
instance one defines

Γ | ϕ ` ψ ∧ ρ iff Γ | ϕ ` ψ & Γ | ϕ ` ρ.

We will give a precise formulation for higher-order logic in section 3. The
idea behind the definition of the connectives and the quantifiers is, however,
the same. The purely propositional rules concerning the logical connectives
determine a deduction relation `Γ relative to each context. The quantifiers,
however, relate different context with each other. They are defined by the
following two-way rules, where we assume that the variable that is quantified
out does not occur in the context Γ:

Γ | ψ ` ∃y:Bϕ

Γ, y : B | ψ ` ϕ
Γ | ∀y:Bϕ ` ψ

Γ, y : B | ϕ ` ψ

Note also that we assume that Γ | ψ is well-written, hence does not contain
y freely.
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As for interpretations, consider any hypderdoctrine H : Cop → HA. We
first interpret each sort A in Σ by some object JAK in C. Any term-in-context

x1 : A1, . . . , xn : An | t : B

is going to be recursively assigned an arrow

JA1K× · · · × JAnK
Jx1:A1,...,xn:An|t:BK

// JBK

in the index category C. Although the assignment is context-sensitive, to
ease notation, if the context is clear we will simply write JtK. Following the
previous term-forming rules, a constant ∅ | c : A is interpreted as an arrow

JcK : 1 −→ JAK.

A term of the form x : A | x : A is interpreted as the identity arrow on JAK.
A term constructed from a functional symbol f : A1, . . . , An → B and terms
Γ | t1 : A1, . . . , tn : An, as defined above, is interpreted as the composite

JΓK
〈Jt1K,...JtnK〉

// JA1K× · · · × JAnK
JfK

// JBK.

The object JΓK is the cartesian product of all the interpretations of sorts
occurring in Γ. Finally, a term Γ, z : C | t : B obtained by weakening is
interpreted as the composite

JΓK× JCK π // JΓK
JΓ|t:BK

// JBK,

where π is the projection.
One also defines substitution recursively, which is a bit tricker. However,

without going into details, it can be done in such a way that, for instance
(to take a simple case), if x : A | t : B and y : B | s : C are terms, then
x : A | s[t/y] : C is defined and interpreted as the composite

JAK
JtK

// JBK
JsK

// JCK.

Formulas-in-context

x1 : A1, . . . , xn : An | ϕ

are recursively interpreted as elements in the Heyting algebra

H(JA1K× · · · × JAnK).

The basic propositions ⊥ and > are interpreted as top and bottom:

J⊥K = ⊥H(1)
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J⊥K = >H(1).

Each basic relation R : A1, . . . , An is assigned an element

JRK ∈ H(JA1K× · · · × JAnK).

In particular, the equality predicate =A, for each sort A, is interpreted as

Jx : A, y : A | x = yK = ∃H(∆JAK)(>H(JAK)) ∈ H(JAK× JAK),

as explained before. A formula Γ | R(t1, . . . , tn), constructed from Γ | t1 :
A1, . . . , tn : An is interpreted as

H(〈Jt1K, . . . , JtnK〉)(JRK);

that is to say by applying the function

H(JA1K, . . . , JAnK)
H(〈Jt1K,...,JtnK〉)

// H(JΓK)

to
JRK ∈ H(JA1K, . . . , JAnK).

For each context Γ the formulas formed through the rules for the connectives
are interpreted by the corresponding algebraic operations in each H(JΓK).

The operation of weakening by z : C, for a given formula Γ | ϕ, is
defined in a similar way by applying H(π) to JΓ | ϕK ∈ H(JΓK), where
π : JΓK× JCK→ JΓK is the projection.

If Γ, y : B | ϕ is a formula such that y : B does not occur in Γ, the
formulas Γ | ∃y:Bϕ and Γ | ∀y:Bϕ are interpreted, resp., as

∃πJΓ, y : B | ϕK ∈ H(JΓK)

∀πJΓ, y : B | ϕK ∈ H(JΓK)

Here, π : JΓK× JBK→ JΓK is again the projection. As for terms, one defines
substitution of terms in formulas in such a way that one can show – again
considering a simple case – that if x : A | t : B is a term and y : B | ϕ any
formula, then x : A | ϕ[t/y] is defined and interpreted as the element

H(JtK)(Jy : B | ϕK) ∈ H(JAK),

where, recall, JtK : JAK→ JBK, and hence H(JtK) : H(JBK)→ H(JAK).

Soundness is obtained almost by construction as the algebraic operations
mirror the syntactic ones. That is to say, if one can prove (in intuitionistic
first-order logic) that

Γ | ϕ ` ψ,
then

JΓ | ϕK ≤ JΓ | ψK

in H(JΓK). In particular, the biconditional rules for the quantifiers corre-
spond exactly to the adjointness conditions.
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Remark 2.2. The definition of equality as a predicate ∃∆X
(>) is due to

Lawvere and neatly describes the equality relation as the smallest reflex-
ive relation. If ϕ ∈ H(X × X) is any predicate in two variables, then
H(∆X)(ϕ) ∈ H(X) is the same predicate restricted to pairs (x, x). The
definition of the equality predicate through the left adjoint of H(∆X) yields
the bicondition

∃∆X
(>) ` ϕ

> ` H(∆X)(ϕ)
.

Informally, this means that ϕ(x, x) holds for all x ∈ X if and only if ϕ
contains the equality predicate.9

It follows that the equality relation is symmetric and transitive. For
instance, as to symmetry, note that the twist map

θ = 〈π2, π1〉 : X ×X → X ×X

is an isomorphism. Hence so is the map H(θ) which then trivially has a left
adjoint (its inverse). Moreover, since ∆X = θ∆X ,

∃∆X
∼= ∃θ∃∆X

.

Applying H(θ) yields

∃∆X
(>X) ∼= H(θ)∃θ∃∆X

(>X) ∼= H(θ)∃∆X
(>X),

because ∃θ and H(θ) are inverses. But that is precisely the symmetry state-
ment.

Remark 2.3. From the point of view of finding models for first-order theo-
ries, the category C may, as hinted at the beginning, be viewed as a mere
index category for a structure in which to interpret first-order theories. The
interpretation of the sorts, constants, and function symbols need not neces-
sarily have any particular meaning in the sense that they are merely used
to define a C-indexed Heyting algebra and operations between the com-
ponents. Strictly speaking, one would not even need to make the detour
through C but could interpret a sort A directly by a Heyting algebra H(A),
and a function symbol f : A→ B by a Heyting map H(f) : H(B)→ H(A)
in a suitable way. The functorial approach is, from this perspective, just a
convenient way to express this idea of a purely algebraic approach to models.

However, there are advantages to the functorial approach. From the
point of view of a finite limit category C, a hyperdoctrine may be seen as
endowing C it with an “external” first-order structure in which to build
models. Mostly, this external structure is in fact defined through C itself.
We will see examples of this presently. For instance, if C is a Heyting
category, the functor SubC(−) : Cop → HA sends an object X to the poset
of subobjects of X, which is a Heyting algebra. We will take a closer look
at these examples when C is a topos.

9 In particular, > ` H(∆X)∃∆X (>), which is the unit at >.
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Example 2.1. A hyperdoctrine for classical logic has each H(X) to be a
Boolean algebra. For instance, one may put C = Sets and H(X) = P(X),
while H(f) is inverse image along the function f . Inverse image in fact
preserves all the Boolean structure, so it is a map in the category of Boolean
algebras and homomorphisms. The inverse image along a function f : Y →
X always has a left and a right adjoint. The left adjoint is the direct image
functor while the right adjoint is the dual image operation:

∀f (U) =
⋃
{V ⊆ X | f−1(V ) ⊆ U}.

Hence the second and third conditions in def. 2.1 are satisfied. For the
Beck-Chevalley condition we refer to the next example.

To illustrate the definition of the equality predicate, consider any set
U ⊆ X and the direct image along ∆X :

∃∆X
(U) = {(x, y) ∈ X ×X | x = y & x ∈ U}.

For X itself, which is the top element of P(X), this boils down to

∃∆X
(X) = {(x, y) | x = y}.

Example 2.2. The previous example may be generalized. Let again C =
Sets and fix any complete Heyting algebra A in Sets. Define a hyperdoc-
trine by setting

H(X) := AX .

For any f : Y → X, the map H(f) : AX → AY is defined by precomposition
with f :

H(f)(g) = g ◦ f.

The maps so defined are Heyting homomorphisms. Each map H(f) : AX →
AY also has a left and right adjoint. The left adjoint ∃f of H(f), for instance,
sends a map g ∈ AY to the function g defined on any x ∈ X as

g(x) =
∨

f(y)=x

g(y).

Dually for the right adjoint. For f = ∆X , and g = > (the constant >A-

valued map X → 1
>−→ A), this reads

g(x, y) =
∨
x=y

g(x) =
∨
x=y

>

and thus
∃∆X

(>)(x, y) = > iff x = y.

Note that if x 6= y the join
∨
x=y > is empty, so that

∨
x=y > = ⊥ in that

case.
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We will verify a slightly more general version of the Beck-Chevalley con-
dition from which the special one involving projections follows. Consider a
complete Heyting algebra H and a pullback square

P
r //

q

��

C

g

��

A
f

// B

Spelling out definitions, for any a ∈ A, and h ∈ HC :

∃qHf (h)(a) = ∃q(hr)(a) =
∨

q(x)=a

hr(x)

Hf∃g(h)(a) = ∃g(h)(f(a)) =
∨

g(y)=f(a)

h(y)

First, consider any x such that q(x) = a. By commutativity of the square
above

gr(x) = fq(x) = f(a).

Hence, for y = r(x),

hr(x) ≤
∨

g(y)=f(a)

h(y),

and therefore ∨
q(x)=a

hr(x) ≤
∨

g(y)=f(a)

h(y).

On the other hand, consider any y ∈ C for wich g(y) = f(a). By the
definition of a pullback, there exists a unique x ∈ P such that q(x) = a and
r(x) = y. Hence, since r(x) = y:

h(y) ≤
∨

q(x)=a

hr(x).

Since y was arbitrary ∨
g(y)=f(a)

h(y) ≤
∨

q(x)=a

hr(x).

A dual argument can be made for the right adjoint ∀f .

�
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The previous example of a hyperdoctrine H(X) = AX , for a complete
Heyting algebra A generalizes from Sets to an arbitrary locally small topos
E . Concretely, for given A, a hyperdoctrine H : E → Sets is defined as

X 7→ HomE(A,X)

An arrow f : Y → X is mapped to the function (−) ◦ f of precomposition
with f . Using the internal language in a topos, the definitions of the adjoints
are logically the same. To this end, the function of precomposing with f
corresponds under the isomorphism Hom(X,A) ∼= Hom(1, AX) to the map
of composition with Af . We will spell out the adjoints to precomposition
with projections, although of course the argument generalizes to arbitrary
maps in E .

Proposition 2.4. For any complete Heyting algebra A in E, and projection
πY : X × Y → X in E, the operation of precomposing with πY

π∗Y : HomE(X,A) −→ HomE(X × Y,A)

has both a left and a right adjoint satisfying the Beck-Chevalley condition.

Proof. Define the right adjoint on any g : X × Y → A as the map

X
g−→ AY

∀Y−−→ A,

where g is the exponential transpose of g, i.e. by transposing along the
composite

HomE(X × Y,A) ∼= HomE(X,A
Y )

(∀Y )∗−−−→ HomE(X,A).

The left adjoint is defined in a similar fashion by composition with ∃Y .
The result now follows by noting that the operation π∗Y is given by trans-

position along

HomE(X,A)
(∆Y )∗−−−−→ HomE(X,A

Y ) ∼= HomE(X × Y,A).

For any f : X → A the exponential transpose of the composite

X
f−→ A

∆Y−−→ AY

is the map π ◦ (f × 1), fitting into the following commutative square:

X × Y f×1
//

πY

��

A× Y

π

��

X
f

// A
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which proves the claim. The adjoints thus defined satisfy the Beck-Chevally
condition by naturality (in X) of the composition operations and of the
product-exponential adjunction.

Remark 2.5. In the set-theoretic notation of the internal language, the equal-
ity map was given by

∃∆X
(>X)(x, y) =

∨
x=y

>.

However, in contrast to the Sets case, if x 6= y we cannot conclude that the
join is empty, i.e. equals ⊥. For in the context of an arbitrary topos E the
equality relation is not in general decidable unless E is Boolean. In other
words, it is not the case that “either x = y or x 6= y” holds in the internal
language.

There is another difference. Although A is a complete Heyting algebra
in E , the set HomE(X,A) is not in general a complete Heyting algebra. That
is to say, it does not admit arbitrary set-indexed meet and joins. It is, on
the other had, if for instance E is cocomplete. For let γ : E → Sets be the
unique geometric morphism that exists since E is cocomplete. The direct
image is γ∗(X) = HomE(1, X), for any X in E . Modulo the isomorphism

HomE(X,A)I = HomSets(I,HomE(X,A))

∼= HomSets(I,HomE(1, A
X))

∼= HomSets(I, γ∗(A
X))

∼= HomE(γ
∗(I), AX)

∼= HomE(γ
∗(I)×X,A)

∼= HomE(X,A
γ∗(I))

the diagonal HomE(X,A) −→ HomE(X,A
γ∗(I)) is defined by composition

with
∆γ∗(I) : A→ Aγ

∗(I).

Similarly, the meet and join operations are given by composition with ∀γ∗(I)
and ∃γ∗(I), resp. External adjointness (∃γ∗(I))∗ a (∆γ∗(I))∗ a (∀γ∗(I))∗ fol-
lows from ∃γ∗(I) a ∆γ∗(I) a ∀γ∗(I). 10 If E = Sets this recovers the ex-
ample of hyperdoctrine mentioned at the beginning of the section because
HomSets(X,A) = AX . The geometric morphism γ is simply the identity
functor (Sets is cocomplete), so that HomE(X,A)I ∼= HomE(X,A

I).

10 Cocompleteness is slightly stronger than needed. While the functor γ∗ always exists,
in order to have a left exact left adjoint one needs set-indexed copowers of 1. This is also
a necessary condition. Every such left adjoint must have γ∗(I) ∼=

∐
I 1E .
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Cocompleteness of a topos is, in general, a rather strong condition. Ex-
amples include presheaf and Grothendieck toposes. In fact, by Giraud’s
theorem every locally small cocomplete topos with a small generating set is
a Grothendieck topos.

Example 2.3. Another example of a hyperdoctrine is provided by any topos
E . The functor

HomE(−,ΩE) : E → HA

discussed earlier assigns to each object A in E the complete Heyting algebra

SubE(A) ∼= HomE(A,ΩE)

is a hyperdoctrine. We know already by prop. 1.3 that for each f : A→ B
the pullback functor along f has a left and a right adjoint. The Beck-
Chevalley condition also holds. For the left adjoints this can be verified
directly using the fact that image factorizations are stable under pullback.
The Beck-Chevalley condition for right adjoints then follows from this fact,
because for any commutative square

P
p

//

q

��

C

g

��

A
f

// B

if

Sub(P )

∃q

��

Sub(C)

∃g

��

p∗
oo

Sub(A) Sub(B)
f∗

oo

commutes, then so does the square with all the respective right adjoints.
For further illustration, consider the equality predicate. For any A in E ,

the left adjoint to pullback along the diagaonal

∆A = 〈1A, 1A〉 : A→ A×A

sends a subobject m : U → A simply to the composite ∆A ◦m (because ∆A

is monic). Hence it sends the top element of SubE(A), i.e. the identity arrow
on A to the subobject ∆A in SubE(A× A), the classifying map of which is
δA : A×A→ ΩE .
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2.2 Modal Hyperdoctrines

In this section we extend the notion of hyperdoctrine so as to allow models
for (first- and higher-order) modal logic.11 Recall that an S4 algebra is an
adjunction

i : B � A : τ

where A and B are Heyting algebras, and i is a monic finite meet-preserving
left adjoint to τ . It follows that i preserves joins, and thus is a map of
distributive lattices. The modal operator on A is the composite iτ . A
morphism h of S4 algebras formally is a pair of maps (h1 : A → A′, h2 :
B → B′) such that h1i = i′h2 and h2τ = τ ′h1. A right adjoint of a map
of modal algebras (h1, h2) is a pair (r1, r2) such that h1 a r1 and h2 a r2.
Similarly for left adjoints.

Definition 2.6. A modal hyperdoctrine is a functor P : Cop →MA satis-
fying formally the same conditions as a first-order hyperdoctrine.

To understand this definition better denote for any X in C the modal
algebra associated with it by the hyperdoctrine by

iX : BX � AX : τX .

For every map f : Y → X in C label the corresponding map of modal
algebras with fA : AX → AY and fB : BY → BX , resp. Then the Beck-
Chevalley condition for the first part requires that for each f : X → Z, and
projections π : Y ×X → X and π′ : Y × Z → Z, the following commutes,
where ∃Y and ∃′Y are the left adjoints of πA and π′A, resp:

AX×Y
∃Y // AX

AZ×Y ∃′Y
//

fA×1Y

OO

AZ

fA

OO

Similarly for ∀Y and ∀′Y . The same is then required to hold with all A’s
replaced with B’s. This ensures that quantification commutes with substi-
tution. For the modal operators, and any map f : Y → X, the condition

11 A slightly more narrow notion of modal hyperdoctrine is discussed in [11] w.r.t. the
structure induced by a geometric morphism discussed below.
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that (fA, fB) be a map of modal algebras means that the diagrams

AX
fA // AY AX

fA //

τX

��

AY

τY

��

BX

iX

OO

fB
// BY

iY

OO

BX
fB

// BY

commute. These conditions ensure that the modal operator commutes with
substitution. For that reason we will informally refer to these two conditions
as “Beck-Chevalley-condition for i and τ”, although from a technical point
of view, they are rather different from the Beck-Chevalley condition of the
quantifiers.

Note that the left and right adjoints that are to model the quantifiers
are not maps of modal algebras themselves, for this would mean that they
commute with the modal operator which would contravene basic principles
from quantified modal logic.

Moreover, we observe the following.

Proposition 2.7. In any modal hyperdoctrine the equality relation is box-
stable in the sense that

∃∆X
(>X) ≤ iτ∃∆X

(>X),

with ∃∆X
: AX → AX×X the left adjoint of ∆A : AX×X → AX (dropping

the index X for readibility), and >X is the top element of AX .

Proof. For better readiblity we leave out the indices for the maps i and τ .
The inequality

>X ≤ ∆A∃∆X
(>X),

is the unit of the adjunction ∃∆X
a ∆A at >X . Hence

>X = iτ>X ≤ iτ∆A∃∆X
(>X) = ∆Aiτ∃∆X

(>X).

The second equality holds because ∆A is, by assumption, a map of modal
algebras. With the above, the inequality

∃∆X
(>X) ≤ iτ∃∆X

(>X),

follows by adjointness again.

Proposition 2.8. In any modal hyperdoctrine, existential quantification is
box-stable for box-stable elements in the sense that for each projection π :
X × Y → Y

∃Aπ i = iτ∃Aπ i,
where ∃π : AX×Y → AY is the left adjoint to πA.

39



Proof. The diagram

AX×Y
∃Aπ // AY

BX×Y

i

OO

∃Bπ
// BY

i

OO

commutes, because the corresponding diagram with the respective right ad-
joints commutes by the Beck-Chevalley condition for τ . Hence

τ∃Aπ i = τi∃Bπ = ∃Bπ .

Then composing with i again:

iτ∃Aπ i = τi∃Bπ = i∃Bπ = ∃Aπ i.

Logically, the first proposition expresses that the equality predicate, for
each X, is box-stable. The second expresses that the existential quan-
tifier is �-stable for �-stable formulas. It corresponds to the principle
�∃x:Aϕ a` ∃x:Aϕ, provable as long as ϕ is �-stable. We will give a proof in
the next section that is also valid in first-order logic.

We will mainly be concerned with representable modal doctrines that
arise from a complete S4 algebra in a topos E , in particular a faithful Heyting
algebra H

i : ΩE � H : τ

The components of the functor Eop → Sets are given by the external ad-
junction

τ∗ : HomE(X,H)� HomE(X,ΩE) ∼= SubE(X) : i∗. (4)

The Beck-Chevalley condition for quantifiers holds by prop. 2.4. For i and
τ the Beck-Chevalley condition is simply associativity of composition.

The representable modal doctrines that arise from a faithful Heyting
algebra have the nice property that the equality predicate as defined in the
hyperdoctrinal way by Lawvere’s adjointness condition can be expressed in
a simpler more direct way.

Lemma 2.9. For any X in E the composite

X ×X δX // ΩE
i // H
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is the equality predicate for the hyperdoctrine (4). (Here δX is the classifying
map of the diagonal ∆X : X → X ×X.) That is to say,

∃∆X
(>) = iδX .

Proof. The top element of HomE(X,H) is the composite X → 1
>−→ H.

Hence ∃∆X
(>) is the transpose of the composite

1
> // HX

∃∆X // HX×X

Now in the following diagram

1
>X //

>X

��

HX
∃∆X // HX×X

ΩX
E

iX

OO

∃∆X
// ΩX×X
E

iX×X

OO

the left-hand triangle always commutes. The right-hand square commutes,
because the corresponding square with the respective right adjoints does so
by the Beck-Chevalley condition for τ . The claim now follows because the
transpose of the lower composite is precisely

X ×X δX // ΩE
i // H.

The last can be seen for instance by the final remark of the previous section,
and the external description of the map ∃∆X

: ΩX
E −→ ΩX×X

E through
images of subobjects along ∆X .

In fact, any map ∂X : X ×X → H such that iτ∂X = ∂X and that fits
into a pullback

X //

∆

��

1

>

��

X ×X
∂X

// H

must necessarily equal iδX , since then τ∂X = δX , by uniqueness of classify-
ing maps.
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A wide class of the previous kind of examples arises from surjective
geometric morphisms f : F → E with

H = f∗ΩF .

When f is fixed, we will continue to write Ω∗ for f∗ΩF . The next holds for
any geometric morphism.

Proposition 2.10. For any geometric morphism f : F → E, the object Ω∗
is a complete Heyting algebra in E.

Proof. The object Ω∗ is a Heyting algebra under the image of f∗, since f∗
preserves products. The same algebraic structure is equivalently determined
through Yoneda by the external Heyting operations on each SubF (A∗) under
the natural isomorphisms

SubF (A∗) ∼= HomF (A∗,ΩF ) ∼= HomE(A,Ω∗). (5)

Completeness means that Ω∗ has I-indexed joins and meets, for any
object I in E . One way to see this is to first note that there are isomorphisms
(natural in E)

Hom(E, (Ω∗)
I) ∼= Hom(E × I,Ω∗) ∼= Hom(E∗ × I∗,ΩF ) ∼= Hom(E∗,ΩI∗

F ),

where we use that f∗ preserves finite limits. Composition with

∀I∗ : ΩI∗
F −→ ΩF

hence yields a function

Hom(E, (Ω∗)
I)
∼=−→ Hom(E∗,ΩI∗

F )
∀I∗◦(−)−−−−−→ Hom(E∗,ΩF )

∼=−→ Hom(E,Ω∗),

all natural in E. Thus, by the Yoneda lemma, there is a unique map

∀I : (Ω∗)
I −→ Ω∗

such that the function

Hom(E, (Ω∗)
I) −→ Hom(E,Ω∗)

from above is induced by composition with ∀I . The internal map ∀I is
indeed right adjoint to ∆I : Ω∗ → ΩI

∗. For ∆I∗ : ΩF → ΩI∗
E induces, by

composition, a function

Hom(E,Ω∗) ∼= Hom(E∗,ΩF )
∆I∗◦(−)−−−−−→ Hom(E∗,ΩI∗

F )

with
∆I∗ ◦ (−) a ∀I∗ ◦ (−).
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This adjunction in turn is the one that corresponds by Yoneda under the
isomorphism (5) to the adjunction π∗1 a ∀π1 :

∀π1 : SubF (E∗ × I∗)� SubE(E
∗) : π∗1,

where π∗1 is pulling back along π1 : E∗ × I∗ → E∗. I-indexed joins are
treated similarly.

The same line of argument provides a map

g∗ : ΩJ
∗ → ΩI

∗,

for any arrow g : I → J in E , as well as both adjoints. The map g∗

internalizes the operation of precomposition

HomE(J,Ω∗)→ HomE(I,Ω∗).

In terms of subobjects, it corresponds to the operation of pulling back along
f∗g:

f∗g : SubF (f∗J)→ SubF (f∗I).

(Again, f∗ denotes the inverse image part of a geometric morphism f : F →
E .) Similarly the adjoints. For instance, the operation

∃g : SubF (f∗I)→ SubF (f∗J)

sends a subobject of f∗I to the image along the composite with f∗g.

To account for the modal operator, we must consider surjective geometric
morphisms. Before ging into details, we recall a few equivalent characteriza-
tions of surjective geometric morphisms, which we state here without proof.
There are more conditions, but the ones below will be most useful for us.

Proposition 2.11. For any geometric morphism f : F → E the following
are equivalent:

(i) The inverse image part f∗ is faithful

(iii) The unit of the adjunction f∗ a f∗ is a monomorphism

(iv) For each A in E the inverse image f∗ induces an injective lattice ho-
momorphism

SubE(A)→ SubF (f∗(A)),

natural in A; hence a monic frame homomorphism of functors SubE(−)→
SubF (f∗(−)).
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(vi) For each monomorphism m : A� B the square

A
ηA //

m

��

f∗f
∗(A)

f∗f∗m

��

B
ηB // f∗f

∗(B)

is a pullback.

(vii) The canonical frame map i : ΩE → f∗ΩF is a monomorphism.

Any geometric morphism that satisfies either of these conditions is called
surjective. �

Consider the map τ : f∗ΩF → ΩE that classifies the top element f∗> :
1→ f∗ΩF , right adjoint to the monic frame map i : ΩE → f∗ΩF . In view of
the isomorphism (5), the external adjunction

τ∗ : HomE(X,Ω∗)� HomE(X,ΩE) : i∗

defined by composition with τ and i, resp., can be formulated in terms of
the corresponding subobject structure

τ∗ : SubF (f∗X)� SubE(X) : i∗

In this context the operation i∗ corresponds to applying f∗ to subobjects.
Since i is monic, i∗ (in either form) will also be. Transposing any U � X
along

SubE(X) ∼= HomE(X,ΩE)
i∗−→ HomE(X, f∗ΩF ) ∼= HomF (f∗X,ΩF ) ∼= SubF (f∗X),

must yield the subobject of f∗X that is classified by the transpose along
f∗ a f∗ of the composite i ◦ α, where α : X → ΩE is the classifying map of
U . The transpose of iα is the map

f∗X
f∗α

// f∗ΩE
f∗i

// f∗f∗ΩF
ε // ΩF ,

with ε the counit at ΩF . Now the composite ε ◦ f∗i classifies the monomor-
phism

f∗> : 1 −→ f∗ΩE .

The claim now follows because pulling back f∗> along f∗α yields precisely
the monomorphism f∗U � f∗X, as f∗ preserves pullbacks.12

12 The converse also holds. That is to say the operation of applying f∗ to subobjects, as
it commutes with pullback, uniquely determines a map ΩE → f∗ΩF through the Yoneda
lemma which must then be equal to i.
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In a similar fashion one spells out the action of

τ∗ : SubF (f∗X)→ SubE(X).

For any m : U � f∗X with classifying map β : f∗X → ΩF , we must
construct the subobject classified by the composite

X
ηX // f∗f

∗(X)
f∗β

// f∗ΩF
τ // ΩE .

This is done by forming pullbacks:

P

��

// f∗U //

f∗m

��

1

f∗>

��

1

>

��

X ηX
// f∗f

∗(X)
f∗β

// f∗ΩF τ
// ΩE .

The leftmost square succinctly describes the action of τ∗ : SubF (f∗X) →
SubE(X).

Lemma 2.12. For each A in E, the maps

i∗ : SubE(A) // SubF (f∗(A))

τ∗ : SubF (f∗(A)) // SubE(A)

satisfy the Beck-Chevalley condition.

Proof. For i∗, and any arrow g : B → A, commutativity of

SubE(A)
i∗ //

g∗

��

SubF (f∗(A))

g∗

��

SubE(B)
i∗ // SubF (f∗(B))

follows because f∗ preserves pullbacks. For τ∗ one invokes the unit of the
adjunction f∗ a f∗:

f∗f
∗A

f∗f∗g
// f∗f

∗B

A

ηA

OO

g
// B

ηB

OO
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so that for every subobject m : U � f∗B the pullback of f∗m along either
composite must be identical, which is precisely saying that

SubE(A)

g∗

��

SubF (f∗(A))

g∗

��

τ∗oo

SubE(B) SubF (f∗(B))
τ∗oo

Although by lemma 2.9 we know that the equality predicateM×M → Ω∗
can be expressed by the map i◦δM , there is an equivalent description (prop.
2.14 below) which was first studied in [29]. Before turning to that, we need
a lemma.

Lemma 2.13. For any map α : D → Ω∗, it holds that iτ ◦ α = α iff the
subobject classified by the transpose α̃ : f∗D → ΩF of α is of the form
f∗m : f∗U � f∗D, for some m : U � D in E. �

Proof. Assuming iτ ◦ α = α, consider the subobject m : U � D classified
by α. This yields pullbacks (denoting again f∗(−) by (−)∗)

U∗ //

m∗

��

1

>

��

1

>

��

1

>

��

D∗
α∗

// (Ω∗)
∗

τ∗
// Ω∗ τ•

// ΩF

where τ• is the classifying map of >∗ : 1 → Ω∗, and Ω∗ is short for ΩE
∗.

The transpose of α is the composite εΩF ◦ α∗. On the other hand, τ• is the
transpose of i : ΩE → Ω∗, i.e.

τ• = εΩF ◦ i
∗.

Hence the above diagram extends to

U∗ //

m∗

��

1

>

��

1

>

��

1

>

��

D∗
α∗

// (Ω∗)
∗

τ∗
// Ω∗

i∗
// (Ω∗)

∗
εΩF

// ΩF
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Sicne the lower composite equals α̃ = εΩF ◦ α∗, the claim follows.

Conversely, suppose α̃ classifies a subobject m∗ : U∗ � D∗. Then τα
classifies m : U � D:

U

m

��

ηU // (U∗)∗

(m∗)∗

��

// 1

>

��

1

>

��

D ηD
// (D∗)∗

(α∗)∗
// ((Ω∗)

∗)∗
(εΩF )∗

// Ω∗ τ
// ΩE

The leftmost unit square is a pullback, because the geometric morphism f
is surjective. Moreover, α = (εΩFα

∗)∗ηD by definition of transposing back
and forth. Hence, since τα classifies m, the subobject m∗ is classified by the
composite

τ• ◦ (τα)∗ = εΩF i
∗ ◦ τ∗α∗,

i.e. the transpose of iτα. Therefore,

α̃ = ĩτα,

by uniqueness of classifying maps. So finally α = iτα by uniqueness of
transposing maps along adjunctions.

Denote by δM∗ be the classifying map of the diagonal 〈1M∗ , 1M∗〉 : M∗ →
M∗ ×M∗. We will write its transpose along f∗ a f∗ simply as

M ×M δ∗−→ Ω∗ (6)

when M is clear.

Proposition 2.14. For any object D in E, and any geometric morphism
f : F → E:

δ∗ = i ◦ δD.

Proof. We prove this by showing

τ ◦ δ∗ = δD,

whence the statement follows from δ∗ = i◦ τ ◦ δ∗ = i◦ δD, where the identity
δ∗ = i ◦ τ ◦ δ∗ holds by applying lemma 2.13 to δ∗.
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The proof is essentially contained in the following diagram

D
ηD //

∆D

��

(D∗)∗ //

(∆∗)∗

��

1

>

��

1

>

��

D ×D ηD×ηD //

δ∗

55

δD
11

(D∗)∗ × (D∗)∗
(δD∗ )∗

// Ω∗

τ
&&
ΩE

where ∆D = 〈1D, 1D〉, η is the unit of f∗ a f∗, and δ, τ denote the respective
classifying maps. The square in the middle is a pullback, since f∗ preserves
them. Moreover, by the definition of δD, the large outer square is a pullback.
Note further that δ∗ = (δD∗)∗◦ηD×D, by the definition of δ∗ as the transpose
of δD∗ along f∗ a f∗. Thus the desired equality would follow if the unit
square were a pullback, for then

τ ◦ (δD∗)∗ ◦ ηD×D = τ ◦ δ∗

would classify ∆D, and so τ ◦δ∗ = δD. This is in fact the case. For f : F → E
being surjective (i.e. f∗ faithful) implies that the unit components, and
therefore ηD × ηD, are monic. A direct verification then shows that the
square is a pullback.

Remark 2.15. The class of examples deriving from geometric morphisms
are in a sense representative, since it follows from general topos-theoretic
considerations that any faithful Heyting algebra over ΩE is of the form f∗ΩF ,
for a some geometric morphism f : F → E , for some topos F . Specifically,
for any complete Heyting algebra H in E one may form the topos ShE(H)
of E-internal sheaves on H. There results a geometric morphism

p : ShE(H) −→ E

with the property that
f∗ΩShE(H)

∼= H.

In particular, p is surjective just in case the initial frame map i : ΩE → H
is monic.

2.3 Relative Modal Structures

In this section we study a useful weakening of the canonical modal structure
studied in the previous section, and develop some of its properties. The

48



difference is that instead of considering modal adjunctions

i : ΩE � H : τ

we consider S4 algebras

i : B � H : τ

in a topos E where B is a Heyting algebra for which the classfiying map
β : B → ΩE of the top element of B is a monomorphism. We begin by
giving some examples.

• In any topos the classifying map of the coproduct inclusion > : 1 →
1 + 1.

• For any Grothendieck topos Sh(C, J) the subobject classifier ΩJ as-
signs to every object C in C the set of closed sieves on C. The classify-
ing map of the top elementof ΩJ assigns to each closed sieve σ ∈ ΩJ(C)
the set

τC(σ) = {Z → C | f∗σ = >Z}.

Here >Z is the maximal sieve on Z, f∗ is restriction along f . Since for
any sieve, s ∈ σ if and only if s∗σ = >, then, if τC(σ) = τC(ρ), then
for any s : X → C in σ clearly s∗σ = >X . Hence s∗ρ = >X , and so
s ∈ ρ. Similarly, ρ ⊆ σ. In fact, τC is simply the inclusion of ΩJ as a
subfunctor of Ω.

• More generally, for any topos E , and any Lawvere-Tierney topology
j : ΩE → ΩE ,

13 since j> = j, the map > factors through the image
m : Ωj � ΩE of j via a map >j : 1→ Ωj . It is necessarily a pullback,
since m is monic. The map >j : 1 → Ωj is the subobject classifier
in the topos of j-sheaves, and hence a Heyting algebra. In fact, up
to equivalence of categories every geometric embedding is of the form
Shj(E) ↪→ E .

• For any small topos E , the finite epi topology J is subcanonical. There-
fore, the Yoneda embedding factors through Sh(E , J), i.e. every rep-
resentable presheaf is a sheaf. The classifying map yΩE → Ω is a
monomorphism. In fact, it is (componentwise) the ideal completion of
yΩE . We will return to this example later. (This is an example where
the Heyting algebra yΩE in question is actually not complete.)

For instance, the trivial topology (only maximal sieves cover) is finitely
epimophic. Hence the classifying map yΩE → Ω in SetsE

op
is monic,

which is also readily checked directly.

13 Johnstone calls them local operators.
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• Let f : F → E be any locally connected geometric morphism. Then
the classifying map

f∗ΩE → ΩF

of f∗> : f∗1→ f∗ΩE is a monomorphism.

The next proposition expresses that for any β : B → ΩE , the complete
lattice structure B is completely determined by a choice of a complete Heyt-
ing algebra A and an adjunction

i : B � A : τ

in which i is a monomorphism.

Proposition 2.16. In any typos E, consider any S4 algebra i : B � A : τ
in E such that the classifying map β : B → ΩE of the top element > : 1→ B
is a monomorphism. Then, if A is a complete Heyting algebra, so is B.
Moreover, the map i exhibits B as a subframe of A.

Proof. Define the meet operation on B as

∀(B)
I : BI iI−→ AI

∀I−→ A
τ−→ B.

For any x ∈ B, and g ∈ BI :

x ≤ τ∀IiI(g) iff i(x) ≤ ∀IiI(g)

iff ∆Ii(x) ≤ iI(g)

iff iI∆
(B)
I (x) ≤ iI(g)

iff ∆
(B)
I (x) ≤ g.

The last step uses that iI is an order-embedding given that i is.14 The

equality ∆Ii = iI∆
(B)
I holds because the left-hand square in the following

commutes, as it is the exponential transpose of the right-hand one:

A
∆I // AI A× I π // A

B

i

OO

∆
(B)
I

// BI

iI

OO

B × I

i×1

OO

π
// B

i

OO

For further use we note that an analogous argument shows that

iIτ I∆I = ∆Iiτ.

14 The functor (−)I , as a right adjoint, preserves monomorphisms and pullbacks.
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However, the map i does not necessarily preserve ∀(B)
I . A counterexample

is the same as provided below which showed that the sequent ∀x:A�ϕ `
�∀x:Aϕ is not provable. It will be given later once the required notions are
introduced.

The left adjoint ∃(B)
I : BI → B exists, since ∆

(B)
I preserves arbitrary

meets. To see this note that

iI : BI � AI : τ I

is an S4 algebra, since exponentiation preserves all the relevant properties.
Then ∆I : A→ AI is an S4 algebra map that preserves the complete Heyting

structure as it has both a left and right adjoint. Hence we can write ∆
(B)
I

as

∆
(B)
I = τ I∆Ii,

in accordance with former observation.

To prove that ∆
(B)
I preserves all meets we show that for every J the

following commutes:

BJ
∀(B)
J //

(∆
(B)
I )J

��

B

∆
(B)
I

��

(BI)J

∀(B
I )

J

// BI

To begin with, the diagram translates into the following, unwinding defini-

51



tions:

BJ iJ // AJ

(∆I)J

��

∀J //

(1)

A
τ //

∆I

��

(2)

B

∆
(B)
I

��

(AI)J

∀(A
I )

J

//

(τI)J

��

AI
τI

//

τI

��

BI

(BI)J

(iI)J

��

(3) BI

iI

��

(4)

(AI)J

∀(A
I )

J

// AI

τI

PP

The upper horizontal composite τ∀J iJ is the definition of ∀(B)
J . Furthermore,

(τ I)J(∆I)
J iJ = (∆

(B)
I )J ,

τ I∀J(iI)J = ∀(BI)
J .

The square (1) commutes because ∆I preserves big meets [it has a right
adjoint w.r.t. the relevant ordering], while (2) always commutes. While the
square (3) does not necessarily commute the composite square of (3) and
(4) does.15 To see this note first that both composites

AJ
∀J−→ A

τ−→ B
β−→ ΩE

AJ
(iτ)J−−−→ AJ

∀IJ−→ A
τ−→ B

β−→ ΩE

classify the top element of AJ , and hence are equal. Therefore, since β is
monic, the respective composites without β on the right coincide as well.
Exponentiating with I then gives the composite square (3)-(4) drawn be-
fore, modolu the isomorphism (AI)J ∼= (AJ)I (Recall that modulo that

isomorphism the map ∀(AI)
J was defined as (∀J)I).

15 Compare to the fact that the double sequent �∀x:A�ϕ a` �∀x:Aϕ is provable in the
logic introduced later.
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Note also that once ∃(B)
I is in place, the following commutative diagram

verifies the equation

τ∃IiI = ∃(B)
I :

BI
∃(B)
I //

iI

��

B
i //

i

��

1B

��

A

τ

��

AI
∃I

// A τ
// B

Here, the left-hand side commutes, because the square with the respective
right adjoints does. In particular, the left-hand-side expresses the fact that
i preserves arbitrary joins, as is expected from i having a right adjoint. A
consequence of the last observation is that

iτ∃IiI = i∃(B)
I = ∃IiI .

We have met this property when we considered modal hyperdoctrines. How-
ever, the difference to def. 2.6 is that there we assumed certain properties
that we here derived from the mere assumption that β : B → ΩE is a
monomorphism.

We will later discuss the case where the Heyting algebras are not com-
plete but only complete w.r.t. a certain class of objects M in E .

Definition 2.17. In any topos E, and collection M of objects in E, a Heyt-
ing algebra B is called M-complete, if the map ∆M : B → BM has both a
left and a right adjoint, for all M ∈M.

An analogous fact to prop. 2.16 holds for this case.

Proposition 2.18. Given any S4 algebra i : B � A : τ in E, if A is an
M-complete Heyting algebra, then to is B. Moreover, i exhibits B as a
sub-M-frame of A.

Note, incidentally, that for any M-complete Heyting algebra B in a
topos E , and any map f : X → Y between objects X,Y ∈M, the exponen-
tiated map f∗ : BY → BX will both have a left and a right adjoint. This
observation will be important later one when defining representable modal
hypderdoctrines on M-complete S4 algebras.16

We now turn to the equality predicate for B-relative structures. In
proposition 2.9 we gave an explicit description of the abstract definition
of equality given through the hyperdoctrinal approach. One may wonder

16 Cf. example 2.2.
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whether it is possible to give a similar characterization of equality for the
representable hyperdoctrine associated with a B-relative S4 algebra.

To begin with, consider any X in E for which the classifying map δX :
X ×X → ΩE of ∆X factors through β : B ↪→ ΩE , by a, necessarily unique,
map ∂X : X ×X → B.17 Inspecting the following diagram

A

τ

��

X ×X
∂X

//

∃∆X (>)

<<

B //
β

// ΩE

it is easy to see that the left-hand triangle commutes if and only if ∃∆X
(>)

fits into a pullback diagram

X //

∆

��

1

>

��

X ×X
∃∆X (>)

// A

(7)

This then provides a factorization ∃∆X
(>) = i ◦ ∂X , because the equality is

box stable. Conversely, ∃∆X
(>) = i ◦ ∂X implies τ∃∆X

(>) = ∂X , because i
is monic.18 To sum up:

Fact 2.19. Consider any X for which the classifying map δX : X×X → ΩE
of ∆X factors through β : B ↪→ ΩE via map ∂X : X × X → B. Then the
following are equivalent:

• ∃∆X
(>) = i ◦ ∂X

• τ∃∆X
(>) = ∂X

• (7) is a pullback

The following proposition states another equivalent condition that does
not directly mention the equality predicate ∃∆X

(>).

17 For formal reasons, we also assume that the map ∆∗X : BX×X → BX has a left
adjoint. In later applications this will always be the case. For instance, if X belongs to
the class M, for which B is complete.

18 Note, incidentally, that since ∆∗X∃∆X (>) = >, by the unit of the adjunction ∃∆X a
∆∗X , the square (7) always commutes.
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Proposition 2.20. Consider any X for which the classifying map δX :
X ×X → ΩE of ∆X factors through β : B ↪→ ΩE via map ∂X : X ×X → B.
Then the following are equivalent:

(i) ∃∆X
(>) = i ◦ ∂X

(ii) ∂X = ∃∆X
>X , where ∂X denotes exponential transposition, and ∃∆X

>X
is the map

1
>X // BX

∃∆X // BX×X

(iii) β preserves the equality relation in the sense that the following com-
mutes:

1
>X //

>X

��

BX
∃∆X // BX×X

βX×X

��

ΩX
E ∃∆X

// ΩX×X
E

(8)

Proof. Suppose δX factors through β via a map ∂X : X ×X → B and that
(8) holds. We show that (ii) holds. To see this, note that

β∂X = δX

along with lemma 2.9 entails that the following commutes:

1
∂X //

>

��

BX×X

βX×X

��

ΩX
E ∃∆X

// ΩX×X
E

(9)

With the assumption (8), it follows that

∂X = ∃∆X
>X ,

because βX×X is monic. To show (ii) ⇒ (i) observe that

1
>X //

>X

��

AX
∃∆X // AX×X

BX

iX

OO

∃∆X
// BX×X

iX×X

OO
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commutes; the triangle does by the usual properties of i, and the square with
the respective right adjoints does by definition of map of modal algebras (see
def. 2.6). Hence the transposes of the outer two composites must be equal.
Given (ii), this is precisely saying that

∃∆X
(>) = i ◦ ∂X .

In the other direction, we show that (i) implies (ii) which in turn implies
(iii). In fact, ∂X = ∃∆X

◦>X entails (iii) because (9) commutes. So assume
that ∃∆X

(>) = i ◦ ∂X . To see that exponential transpose of ∃∆X
◦ >X is

∂X , we may use the decription of ∃∆X
: BX → BX×X given earlier as

BX iX // AX
∃∆X // AX×X

τX×X // BX×X

Since iX ◦ >X = >X , we are led to compute the transpose of

1
>X // AX

∃∆X // AX×X
τX×X // BX×X

But this is precisely τ∃∆X
(>), which equals ∂X by the previous observations.

Although we don’t have a counterexample, it does not seem that the mere
existence of β and the factorization ∂X are already sufficient to entail either
of the foregoing equivalent conditions. Hence, in the case of a B-relative
modal structure, where one considers a B-relative S4 algebra i : B � A : τ
in M with the associated functor M→ HA

i∗ : HomE(X,B)� HomE(X,A) : τ∗,

the hyperdoctrinal equality predicate ∃∆X
(>) may not in general be de-

scribed as i◦∂X . Thus one might want to impose the additional requirement
that for each X in M

X

∆

��

// 1

>

��

X ×X
∃∆X (>X)

// A

is a pullback. Formulated as a requirement on the underlying choice of B,
the definition of the equality predicate, for each M in M, as the transpose
of

1
>−→ AM

∃∆M−−−→ AM×M
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then remains intact. All of the representable relative structures that we will
meet presently are of that form, which is why we will mostly define equality
directly through i ◦ ∂X .

We will meet an example of a structure that meets these conditions when
considering relative models in the topos of sheaves on a small topos. In this
respect, note that in the proof we didn’t make use of the fact that either A
or B is actually complete, aside from the assumption that the adjoint ∃∆X

exists. Therefore the propositions still applies in case A and B are merely
complete w.r.t. to certain collection of objects as long as every such object
X admits the factorization ∂X . This is of interest insofar as relative models
seem to be generally useful when studying S4 algebras that are complete
only w.r.t. certain objects.

Definition 2.21. For any topos E, consider any Heyting algebra H for
which the classifying map ı : H → ΩE of the top element is a monomorphism.
An object A is called H-standard if the classifying map δA : A×A→ ΩE of
the diagonal ∆A : A→ A×A factors through ı : H → ΩE .

Recall that such a factorization, if it exists, is necessarily unique. As
before, we will denote it be ∂A : A×A→ H. It follows immediately that

A //

∆

��

1

>

��

A×A
∂A

// H

is a pullback. Thus ∂A behaves very much like the classifying map of the
diagonal.

H-standard objects may be used to interpret the types in the language.
In particular, ∂A is used to interpret equality on a type. For this to work, it
needs to be verified that H-standard objects are closed under the categorical
type forming operations.

Lemma 2.22. For any E, and any relative algebra ı : H ↪→ ΩE in E, the
collection of H-standard objects is closed under finite products and exponen-
tiation by objects in M.

Proof.

• The terminal object is H-standard, because 1 × 1 ∼= 1, so that the
diagonal coincides with the identity map on 1. The classifying map of
the identity is > : 1 → ΩE . Since ı : H → Ω preserves >, the map
> : 1→ H yields the required factorization.
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• Let A and B be H-standard and consider

∆A×B = 〈∆A,∆B〉 : A×B → (A×B)× (A×B).

Therefore, modulo the isomorphism (A × B) × (A × B) ∼= (A × A) ×
(B ×B), there is the following pullback diagram:

A×B

∆A×B

��

// 1

〈>,>〉

��

1

>

��

1

>

��

(A×A)× (B ×B)
∂A×∂B // H ×H ∧ // H

ı // ΩE

Hence the composite at the bottom must equal δA×A and ∧◦ ∂A × ∂B
is the required factorization.

• Suppose A is H-standard, and consider any M ∈M. The factorization
∂AM of δAM is given, modulo the isomorphism AM ×AM ∼= (A×A)M ,
through the composite

(A×A)M
(∂A)M

// HM ∀M // H
ı // ΩE ,

by uniqueness of classifying maps as before.

The corresponding facts for the interpretation of the type of propositions
is contained in the following lemma.

Lemma 2.23. For any relative complete S4 algebra (H,M, i, θ) in E, both
H and M are H-standard.

Proof. The factorization ∂H is obtained because the following is a pullback.

H

∆

��

// 1

>

��

H ×H ⇔
// H

So the factorization of δH as ı◦ ⇔ follows from uniqueness of classifying
maps. As for M , there are pullbacks

M //

∆

��

1

>

��

1

>

��

M ×M ⇔
//M

θ
// H
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so the lower composite is a factorization of δM .

Definition 2.24. Given a topos E, and a collection of objects M of E, a
relative M-modal structure is a triple (B,A, i) where

• A and B are M-complete Heyting algebras

• i is a monic map of M-complete Heyting algebras

• the classifying map β : B → ΩE of > : 1→ B is a monomorphism

• the classifying map θ : A → ΩE of > : 1 → A factors through ı via a
map τ : A→ B, and i a τ

• each M inM is B-standard and B satisfies the condition (8) of propo-
sition 2.20.

The adjointness condition i a τ involves the information that for any B
for which β is monic, there is at most one map i that may possibly define a
modal structure on A. Moreover, since i is monic and i a τ , it follows that
1 = τi.

We have seen examples of Heyting algberas B � ΩE before. We saw
that a significant class of examples was provided by geometric embeddings e :
F ↪→ E . These examples are special because e∗ΩF will always be complete,
as the direct image part always preserves completeness.19 By contrast, the
inverse image of a locally connected geometric morphism f : E → F does
not preserve completeness of Heyting algebras. However, the object f∗ΩF is
complete w.r.t. objects of the form f∗A. In case M consists of the objects
in the image of a functor F , we refer to a Heyting algebra that is M-
complete as being F -complete. Thus, for instance, the Heyting algebra f∗ΩF
is f∗-complete, for the inverse image part of a locally connected geometric
morphism f : F → E . Moreover, for each object A in E

f∗A

∆

��

// 1

>

��

f∗A× f∗A
f∗δA

// f∗ΩF

is pullback, since f∗ preserves finite limits. Hence every object in the image
of f∗ satisfies the fourth condition in def. 2.24.

19 Incidentally, we note that the map β is the right adjoint of the initial frame map
ΩE → e∗ΩF . In fact, since F ' shj(E), for a unique local operator j : ΩE → ΩE , and
e∗ΩF classifies j-closed subobjects in E , it follows by [15] (C4.3.6) that the e∗ΩF -standard
objects are the j-separated ones.
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The slightly more general notion of relative model structures enables one
to obtain a sufficiently flexibel notion of model preserving functor between
toposes. For in general geometric morphisms do not preserve the subobject
classifier, and hence do not preserve Ω-based model structures. We will use
this additional generality to study topological models.

3 Higher-Order Modal Logic

3.1 Intuitionistic Higher-Order S4

The formal system of higher-order modal logic considered here is simply the
union of the usual axioms for higher-order logic and S4. The higher-order
part is a version of type theory (cf. [13, 15, 16]). Types and terms are
defined recursively. A higher-order language L consists of a collection of
basic types A,B, . . . along with basic terms (constants) a : A, b : B. To
stay close to topos-theoretic formulations, we assume the following type and
term forming operations that inductively specify the collection of types and
terms of the language:

• There are basic types 1, P

• If A, B are types, then there is a type A×B

• If A, B are types, then there is a type AB

Terms are recursively constructed as follows. Here we assume, for every
type A, an infinite set of variables of type A, written as x : A, to be given.
We follow [13] in writing Γ | t : B, for Γ = (x1 : A1, . . . , xn : An), involving
at least all the free variables in the term t. A context Γ may also be empty.
Formally, every term t always occurs in some variable context Γ and is
well-typed only w.r.t. such a context. This is important to understand the
recursive clauses below. To simplify notation, however, we omit Γ if it is
unspecified and the same throughout a recursive clause.

• There are distinguished terms ∅ | ∗ : 1 and ∅ | >,⊥ : P

• If t : A and s : B are terms, then 〈t, s〉 : A×B is a term

• If t : A×B is a term, then there are terms π1t : A and π2t : B

• If Γ | t : A is a term and y : B a variable in Γ, then there is a term
Γ[y : B] | λy.t : AB; where Γ[y : B] is the context that results from Γ
by deleting y : B.

• If t : AB and s : B are terms, then app(t, s) : A is a term.

• For any two terms t : P, s : P there are terms t ∧ s : P, t ∨ s : P,
t⇒ s : P.
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• If Γ, y : B | t : P is a term, then Γ | ∀y.t : P is a term; and similarly
for Γ | ∃y.t : P

• If t : A and s : A are terms, then s =A t : P is a term.

• If t : P is a term, then �t : P is a term.

There may also be additional basic constants a : A, for a type A. More-
over, we allow typed function symbols f : A1, . . . , An → B. For such an f ,
we declare that if

y1 : B1, . . . , ym : Bm | t1 : A1

...

y1 : B1, . . . , ym : Bm | tn : An

are terms, then there is a term

y1 : B1, . . . , ym : Bm | f(t1, . . . , tn) : B.

Lastly, every expression x : A | x : A to be a term.
One also assumes the following structural rules:

• Weakening. If x1 : A1, . . . , xn : An | t : B is a term, then so is

x1 : A1, . . . , xn+1 : An+1 | t : B,

for any xn+1 : An+1.

• Permutation. If

x1 : A1, . . . , xn : An, xn+1 : An+1, . . . , xn+m : An+m | t : B

is a term, then so is

x1 : A1, . . . , xn−1 : An−1, xn+1 : An+1, xn : An, xn+2 : An+2, . . . , xn+m : An+m | t : B

• Contraction. If Γ | t : B is a term such that xi ≡ xj (1 ≤ i, j ≤ n),
then Γ[xi : Ai] | t : B is a term.

As usual, we define a deductive system by specifying a relation ` between
terms of type P. The crucial difference between the standard formulation of
intuitionistic higher-order logic and the present one are the modified exten-
sionality principles marked with (∗).

• ϕ ` ϕ

• ϕ ` ψ t : A

ϕ[t/x] ` ψ[t/x]
, for x : A (similarly for simultaneous substitution)
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• ϕ ` ψ ψ ` ϑ
ϕ ` ϑ

• > ` x =A x, where x : A

• ϕ ∧ x =A x
′ ` ϕ[x′/x]. where x : A, x′ : A

(∗) �∀x(f(x) =B g(x)) ` f =BA g, for terms x : A and f, g : BA

(∗) �(p⇔ q) ` p =P q, for terms p, q : P

• > ` ∗ =1 x, where x : 1

• > ` π1〈x, y〉 =A x and > ` π2〈x, y〉 =B y, where x : A and y : B

• > ` 〈π1w, π2w〉 =A×B w, for w : A×B

• Γ[x : A] | > ` app(λx.t, x′) =B t[x′/x], for Γ | t : B and x′ : A

• > ` λx.app(w, x) =BA w, for w : BA

• ϕ ` >, for any ϕ : P

• ⊥ ` ϕ, for any ϕ : P

• ϕ ` ψ ∧ ϑ iff ϕ ` ψ and ϕ ` ϑ

• ϕ ∨ ψ ` ϑ iff ϕ ` ϑ and ψ ` ϑ

• ϕ ` ψ ⇒ ϑ iff ϕ ∧ ψ ` ϑ

• Γ | ∃x.ϕ ` ψ iff Γ, x : A | ϕ ` ψ

• Γ | ϕ ` ∀x.ψ iff Γ, x : A | ϕ ` ψ

Definition 3.1. A theory in a language L as specified above consists of a
set of closed sentences α, i.e. terms of type P with no free variables (well-
typed in the empty context), and which may be used as axioms in the form
Γ | > ` α.

Remark 3.2. Adding the axiom

Γ | > ` ∀p.p ∨ ¬p

makes the logic classical.
As is well-known there are more concise formulations of higher-order

systems. The particular one chosen here is very close to the definition of
a topos as a cartesian closed category with subobject classifier. One does
not really need all exponential types and their constructors, however, but
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only those of the form PA, for every type A, which we write PA and call
powertypes. Along these lines one may define:

{x : A | ϕ} :≡ λx.ϕ : PA,

where x : A | ϕ : P. On the other hand, for σ : PA and x : A, set

x ∈ σ :≡ app(σ, x).

According to the axioms for exponential terms, we have

x′ : A | > ` x′ ∈ {x : A | ϕ} = ϕ[x′/x]

| > ` {x : A | x ∈ w} = w.

Thus one could instead take only types of the form PA, and the constructors
{· · · | −} and ∈ as basic, along with the last two axioms. For further
simplifications see [15, 16].

Finally, the S4 axioms are the usual ones

• Γ | ϕ ` ψ
Γ | �ϕ ` �ψ

• Γ | > ` �>

• Γ | �ϕ ∧�ψ ` �(ϕ ∧ ψ)

• Γ | �ϕ ` ϕ

• Γ | �ϕ ` ��ϕ

The first three axioms express that �, viewed as an operator, is a mono-
tone finite meet preserving operation. The other two axioms are the T and
4 axioms, respectively. Further useful rules provable from the axioms are
necessitation

Γ | > ` ϕ
Γ | > ` �ϕ

,

and the axiom K:
Γ | �(ϕ⇒ ψ) ` �ϕ⇒ �ψ.

As far as deductions are concerned, proving a sequent in a context Γ may
also be read so as to mean that the sequent holds provided the types in the
context are non-empty. To quote an example from [LS], it is straightforward
to derive

x : A | ∀x:A ` ∃x:Aϕ,

which only makes sense in context x : A, i.e. under the assumption that
the type A is inhabited. The quantifier rules directly model the essential
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properties of image (∃) as a left adjoint to weakening (inverse image along
product projections) and dual image (∀) as right adjoint to weakening. Due
to the order-theoretic nature of the calculus (`), in order to show that
Γ | ϕ a` ψ, it suffices to show that for an arbitrary Γ | ϑ

Γ | ϕ ` ϑ iff Γ | ψ ` ϑ.

Or, equivalently,
Γ | ϑ ` ϕ iff Γ | ϑ ` ψ.

To illustrate the rules for the quantifiers, we will demonstrate a few easy
theorems.

• x : A | ϕ ` ∃x:Aϕ.

This is an immediate application of the ∃-rule to the axiom

∅ | ∃x:Aϕ ` ∃x:Aϕ.

An analogous argument shows that the sequent

x : A | ∀x:Aϕ ` ϕ

is derivable.

• If x : A | ϕ ` ψ, then ∅ | ∃x:Aϕ ` ∃x:Aψ.

First we have ϕ ` ∃x:Aψ by the previous fact and transitivity of `,
and thus ∃x:Aϕ ` ∃x:Aψ by the ∃-rule.

Dually for ∀.

• Suppose the variable x : A does not occur freely in ϕ. Then ϕ a`
∃x:Aϕ.

Applying the ∃-rule gives:

∃x:Aϕ ` ∃x:Aϕ

ϕ ` ∃x:Aϕ

ϕ ` ϕ
∃x:Aϕ ` ϕ

Dually for ∀.

• ∃x:A[ϕ ∧ ψ] a` ∃x:Aϕ ∧ ψ, where x : A does not occur freely in ψ.

Consider any ϑ that is well-written in the same context as ∃x:A[ϕ∧ψ],
i.e. that doesn’t involve free x : A. Then we have the following chain
of biconditions, adapting a standard proof of the Frobenius reprocity
for projections (weakening):
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∃x:A[ϕ ∧ ψ] ` ϑ
x : A | ϕ ∧ ψ ` ϑ
x : A | ϕ ` ψ ⇒ ϑ

∃x:Aϕ ` ψ ⇒ ϑ

∃x:Aϕ ∧ ψ ` ϑ

Of course, one may read off a direct proof from the reflexivity axiom
by replacing ϑ at the top and bottom by the same formula as on the
left, respectively, and then do the argument up (for the left-to-right)
or down (for the right-to-left).

However, note that we can’t make a dual argument to prove

∀x:A[ϕ ∨ ψ] ` ∀x:Aϕ ∨ ψ,

because the operation ψ ∨ (−) is not assumed to have a left adjoint
(coimplication). In fact, the sequent is not intuitionistically valid. The
converse, however, holds:

∀x:Aϕ ` ∀x:Aϕ

x : A | ∀x:Aϕ ` ϕ
x : A | ∀x:Aϕ ∨ ψ ` ϕ ∨ ψ
∀x:Aϕ ∨ ψ ` ∀x:A[ϕ ∨ ψ]

The very last step uses the variable condition that x : A does not occur
free in ψ.

• ∀x:A(ϕ⇒ ψ) ` ∃x:Aϕ⇒ ψ, where x does not occur freely in ψ.

∀x:A(ϕ⇒ ψ) ` ∀x:A(ϕ⇒ ψ)

x : A | ∀x:A(ϕ⇒ ψ) ` ϕ⇒ ψ

x : A | ∀x:A(ϕ⇒ ψ) ∧ ϕ ` ψ
∃x:A(∀x:A(ϕ⇒ ψ) ∧ ϕ) ` ∃x:Aψ

∀x:A(ϕ⇒ ψ) ∧ ∃x:Aϕ ` ψ
∀x:A(ϕ⇒ ψ) ` ∃x:Aϕ⇒ ψ

• ∃x:A(ϕ⇒ ψ) ` ϕ⇒ ∃x:Aψ, where x does not occur freely in ϕ:

ϕ ∧ (ϕ⇒ ψ) ` ψ
∃x:A(ϕ ∧ (ϕ⇒ ψ)) ` ∃x:Aψ

ϕ ∧ ∃x:A(ϕ⇒ ψ) ` ∃x:Aψ

∃x:A(ϕ⇒ ψ) ` ϕ⇒ ∃x:Aψ
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• For any x : A | ϕ:
∃x:A�ϕ ` �∃x:Aϕ

∃x:Aϕ ` ∃x:Aϕ

x : A | ϕ ` ∃x:Aϕ

x : A | �ϕ ` �∃x:Aϕ

∃x:A�ϕ ` �∃x:Aϕ

In particular, if x : A | ϕ is �-stable, then

∃x:Aϕ ` �∃x:Aϕ

For the universal quantifier we only have, for any formula x : A | ϕ:

�∀x:Aϕ ` ∀x:A�ϕ :

�∀x:Aϕ ` ϕ
�∀x:Aϕ ` �ϕ
�∀x:Aϕ ` ∀x:A�ϕ

but not the other way around.

• For any ϕ:
�∀x:A�ϕ a` �∀x:Aϕ.

Proof. For the right-to-left we reason as follows:

�∀x:Aϕ ` ∀x:Aϕ

�∀x:Aϕ ` ϕ
�∀x:Aϕ ` �ϕ
�∀x:Aϕ ` ∀x:A�ϕ
�∀x:Aϕ ` �∀x:A�ϕ

In the other direction

�∀x:A�ϕ ` �∀x:A�ϕ
�∀x:A�ϕ ` ∀x:A�ϕ
�∀x:A�ϕ ` �ϕ
�∀x:A�ϕ ` ϕ
�∀x:A�ϕ ` ∀x:Aϕ

�∀x:A�ϕ ` �∀x:Aϕ
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3.2 The Definition of Models

The definition of model of a higher-order modal theory in a topos is mainly
joins elements from models of non-modal higher-order logic and modal logic
as described in the previous sections. To make the presentation self-contained,
we state an explicit definition. We implicitly assume that the topos E is
equipped with a canonical topos structure, i.e. specific choice of products,
exponentials, subobject classifier, etc.

Definition 3.3. A model of a higher-order modal type theory in a topos E
consists of a faithful frame H in E, and an assignment J−K that assigns to
each basic type A in L an object JAK in such a way that

• J1K = 1E

• JPK = H

• JA×BK = JAK× JBK

• JABK = JAKJBK.

Moreover, each term Γ | t : B in L, where Γ = (x1 : A1, . . . , xn : An) is a
suitable variable context for t, is assigned an arrow

JtK : JΓK→ JBK

recursively as follows (where JΓK is short for JA1K×· · ·× JAnK and JtK really
means JΓ | t : BK).

• Each constant c : A in L is assigned an arrow

JcK : 1E → JAK.

In particular:

J> : PK = >H : 1E −→ H

J⊥ : PK = ⊥H : 1E −→ H

J∗ : 1K = 11E (the identity arrow on the terminal object).

• Every function symbol f : A1, . . . , An → B is assigned an arrow

JfK : JA1K× · · · × JAnK→ JBK

• A term x : A | x : A is assigned the identity arrow on A.

This extends to arbitrary terms-in-context as follows

• If Γ | s : A and Γ | t : B are terms, then JΓ | 〈s, t〉 : A×BK is the map

〈JsK, JtK〉 : JΓK→ JAK× JBK.

67



• If Γ | t : A×B is a term, then JΓ | π1t : AK is

JΓK
JtK−→ JAK× JBK π1−→ JAK,

and similarly for π2t.

• If Γ | t : A is a term and y : B a variable in Γ, then JΓ[y : B] | λy.t :
ABK is

λJBKJtK : JΓ[y : B]K→ AJBK

• If Γ | t : AB and Γ | s : B are terms, then JΓ | app(t, s) : AK is

〈JtK, JsK〉 : JΓK→ AB ×B ε−→ A.

• For any two terms Γ | p : P, Γ | q : P, and ? any of the connectives
∧,∨,⇒, JΓ | p ? q : PK is

JΓK
〈JpK,JqK〉−−−−−→ H ×H ?−→ H,

where in the last line ? is the evident algebraic operation on H.

• If Γ, y : B | t : P is a term, then JΓ | ∀y.t : PK is

JΓK
λJBKJtK−−−−→ HJBK ∀JBK−−−→ H

and similarly for JΓ | ∃y.t : PK via ∃JBK.

• If Γ | t : A and Γ | s : A are terms, then JΓ | t =A s : PK is the map

JΓK
〈JtK,JsK〉−−−−−→ JAK× JAK

δJAK−−→ ΩE
i−→ H,

where i is the unique (monic) frame map.

• If Γ | t : P is a term, then JΓ | �t : PK is the map

JΓK
JtK−→ H

τ−→ ΩE
i−→ H,

where τ is the classifying map of >H : 1→ H, as described before.

The structural rules are interpreted in the obvious way.

• Weakening: given a term x1 : A1, . . . , xn : An | t : B, then the term

x1 : A1, . . . , xn+1 : An+1 | t : B

is interpreted as the arrow

JA1K× · · · × JAn+1K
π−→ JA1K× · · · × JAnK

JtK−→ JBK,

where π is the projection.
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• Contraction: without loss of generality (by permutation) we consider
the case where given a term

x1 : A1, . . . , xn+1 : An+1 | t : B

such that xn ≡ xn+1 (and thus An ≡ An+1) , we form the term

x1 : A1, . . . , xn : An | t : B

which results from the former by omitting the variable declaration
xn+1 : An+1. The latter is interpreted by the composite

JA1K× · · · × JAnK
〈1JA1K×···×JAnK,1An 〉−−−−−−−−−−−−−→ JA1K× · · · × JAn+1K

JtK−→ JBK,

noting that JAnK = JAn+1K.

• Permutation. If

x1 : A1, . . . , xn : An, xn+1 : An+1, . . . , xn+m : An+m | t : B

is a term, then the term

x1 : A1, . . . , xn+1 : An+1, xn : An, . . . , xn+m : An+m | t : B

is interpreted by composing the interpretation of the upper term with
the isomorphism

1JA1K × · · · × 1JAn−1K × τ × 1JAn+2K × . . . 1JAn+mK,

where τ = 〈πn, πn+1〉 : JAn+1K × JAnK → JAnK × JAn+1K is the twist
map.

Substitution is defined by composition in the obvious way.

We note that a constant a : A in a context Γ | a : A is always interpreted
by the composite

JΓK→ 1E
JaK−−→ JAK.

One must be careful here. Strictly speaking, by the nature of the recursive
definition one does interpreted terms Γ | t : B but whole derivation trees. In
some cases, such as the above, Γ | a : A, there may be many ways to derive
the formula. For instance the term x : A | a : A may be constructed either
by weakening or substitution of x : A into ∅ | a : A. However, although
being a tedious formal proof by induction on the construction of the term
Γ | a : A, it is quite easily seen that the interpretation is the same in each
case, so that Γ | a : A is always interpreted as the arrow displayed above.
Before moving on, let us review some common examples
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Examples 3.1.

1. A well-studied class of examples are structures induced by surjective
geometric morphisms f : F → E . If F is Boolean, then so is f∗ΩF .
For instance, there are geometric morphisms

Sets|C| −→ SetsC

induced by the inclusion |C| → C. When C is a preorder, then this
yields Kripke semantics for first-order modal logic. This case was
originally studied in [12, 28].

Similarly, the canonical geometric morphism

Sets/X −→ Sh(X)

induced by the continuous inclusion |X| ↪→ X gives rise to sheaf models
for classical first- (and higher-) order modal logic, studied in [5]. The
exact structure of these examples will be discussed in more detail in
section ?? below.

2. More generally, by a well-known theorem of Barr, every Grothendieck
topos G can be covered by a Boolean topos B in the sense that there
is a surjective geometric morphism

f : B −→ G.

For H = f∗ΩB, this provides models in Grothendieck topoi.20

3. Of course, in any topos E the subobject classifier ΩE itself would do.
However, as noted e.g. in [25, 27], the resulting modal operator will be
the identity on ΩE .

Remark 3.4. In our definition of model of a higher-order modal theory T in
a topos E we included the provision of a faithful Heyting algebra H in E .
Strictly speaking, however, H is to be regarded as a part of the “logical”
algebraic-semantic structure on top of which interpretations are defined. It
interprets in an invariant way a certain logical constant in the language,
namely the type of propositions. For non-modal higher-order logic, one
may speak of models in a topos, because the provision of E suffices to fix the
interpretation of the logical constants of the type theory. Thus, foundational
concerns aside, it would seem in accordance with model-theoretic practice to
define an interpretation of a higher-order modal theory T w.r.t. a given pair
(E , H), where H is a faithful Heyting algebra in E . In this way we make the

20 Cf. e.g. [20], IX.9. Actually, the geometric morphism f can be extended to a surjective
geometric morphism E −→ B −→ G, where E is the topos of sheaves on a topological space,
although E might not be Boolean [20], IX.11.
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choice of a faithful Heyting algebra H part of the structure of the category
we define models in. We call a pair (E , H), where E is a topos, and H is a
faithful Heyting algebra in E , a τ -topos. The foregoing definition of model of
a higher-order modal theory T then essentially remains the same except that
one states it as defining a model, or interpretation, of T in (E , H). This may
look like a mere matter of convention, and indeed, nothing changes about
the idea of interpreting a higher-order modal theory T in a topos. However,
we will point out that later (thm. 4.21) we will explicitly need to refer to
interpretations in a structure (E , H), rather than merely E . In fact, for the
main theorem (4.21) of functorial semantics to work, it is essential to keep
H fixed, and to consider interpretations w.r.t. fixed H. This last observation
may be taken as evidence that the notion of model, or interpretation, of T
in (E , H) is the more appropriate one from a conceptual point of view.

3.3 Propositional Extensionality

The given system of intuitionistic higher-order S4 modal logic is sound w.r.t.
the semantics described in def. 3.3. Except for the two extensionality prin-
ciples, soundness is straightforward following known topos semantics. The
reason why plain propositional extensionality fails in our semantics is the
interpretation of implication. In the general topos semantics based on ΩE
Heyting implication on ΩE is given by the map

ΩE × ΩE
〈π1,∧〉−−−−→ ΩE × ΩE

δ−→ ΩE

that immediately implies propositional extensionality. By contrast, for an
arbitrary frame H we observe:

Lemma 3.5. For an arbitrary topos E, and a (faithful) frame H in E, it is
not in general the case that

H ×H ⇒ //

〈π1,∧〉

��

H

H ×H δH // ΩE

i

OO

commutes.

Proof. A counterexample may easily be found in the topos Sets with sub-
object classifier 2 and H = P(X), for some set X 6= 1. The adjunction

i : 2� P(X) : τ
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(i a τ) is defined by

i(x) =

{
X, if x = 1

∅, if x = 0

and

τ(U) = 1 iff U = X.

For any U, V ∈ P(X),

U ⇒ V =
⋃
{W ∈ P(X) |W ∩ U ⊆ V }.

If U * V , then U 6= U ∩ V , and so

iδ〈π1,∧〉(U, V ) = iδP(X)(U,U ∩ V ) = i(0) = ∅.

But U * V does not in general imply U ⇒ V = ∅. (Consider e.g. V ⊆ U ⇒
V , for U ∩ V 6= ∅.)

As suggested by the example, the reason for the failure of plain propo-
sitional extensionality is that failure to be true (in the sense of > = X *
U ⇒ V ) does not imply equality to ⊥ in H. On the other hand, note
that τ(U ⇒ V ) = 0, because X * U ⇒ V . This observation generalizes.
Although iδ〈π1,∧〉 = ⇒ fails in general, we have the following.

Lemma 3.6. In any topos E, the diagram

H ×H ⇒ //

〈π1,∧〉

��

H

τ

��

H ×H δH // ΩE

commutes, and thus

iτ◦ ⇒ = iδH〈π1,∧〉.
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Proof. Consider the pullbacks

(≤) //

��

1

>

��

1

>

��

H ×H ⇒
// H τ

// ΩE

(≤) //

��

H //

∆

��

1

>

��

H ×H
〈π1,∧〉

// H ×H
δH

// ΩE

whence the claim follows from uniqueness of classifying maps. The left-hand
square in the first diagram is a pullback by the definition of ⇒, while the
second diagram is the definition of the induced partial ordering on H as the
equalizer of π1 and ∧.

This argument neatly exhibits the conceptual role played by the modal op-
erator τ (more exactly, the adjunction i a τ). The soundness proof is essen-
tially a corollary to that.

Corollary 3.7. Modalized propositional extensionality

p : P, q : P | �(p⇔ q) ` p =P q

is true in any model (E , H).

Proof. In view of lemma 3.6, and since τ, i commute with meets, the left-
hand side of the above sequent is interpreted as the map

i ∧ (δH × δH)〈〈∧H , π1〉, 〈∧H , π2〉〉,

with ∧ the meet on ΩE . The right-hand side is the internal equality on H:

iδH : H ×H → ΩE → H.

It is clear from the properties of ≤Ω as a partial ordering that

∧(δH × δH)〈〈∧H , π1〉, 〈∧H , π2〉〉 ≤Ω δH .

Since i preserves that ordering, we have

i ∧ (δH × δH)〈〈∧H , π1〉, 〈∧H , π2〉〉 ≤H iδH .
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3.4 Function Extensionality

The failure of plain function extensionality and its recovering via τ can be
analyzed in a similar fashion. For non-modal function extensionality in the
standard ΩE -valued setting essentially holds because ∀Y ◦ (δX)Y = δXY .
However, in our setting we don’t in general have ∀Y ◦ (iδX)Y = iδXY , but
rather:

Lemma 3.8. For any topos E, and any faithful frame in H, the following
diagram commutes:

ΩY iY // HY

τY

��

∀Y // H

τ

��

XY ×XY

(δX)Y

OO

(δX)Y
//

δ
XY

>>Ω
Y ∀Y // Ω

Hence in particular
iδXY = iτ ◦ ∀Y ◦ (iδX)Y .

Proof. The right-hand square of the diagram commutes by uniqueness of
classifying maps, while for the left-hand square we have τi = 1. Similarly,
the bottom triangle commutes, because

XY

∆
XY

��

// 1

>Y

��

1

>

��

XY ×XY

(δX)Y
// ΩY

∀Y
// Ω

is a pullback diagram. (Note that the left-hand square is a pullback, because
the functor (−)Y , as a right adjoint, preserves these.)

Corollary 3.9. Modal function extensionality

f : XY , g : XY | �(∀y : Y.f(y) =X g(y)) ` f =XY g.

is true in any interpretation (E , H).

Proof. The left-hand side of the sequent is interpreted by the arrow

XY ×XY λY (iδX〈evπ13,evπ23〉)−−−−−−−−−−−−−→ HY ∀Y−−→ H
�−→ H,
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where the projections come from XY ×XY × Y , and ev : XY × Y → X is
the canonical evaluation. The right-hand side is simply

XY ×XY δ
XY−−−→ ΩE

i−→ H.

We need to show that the arrow

〈iτ∀Y λY (iδX〈evπ13, evπ23〉), iδXY 〉 : XY ×XY → H ×H

factors through the partial ordering (≤) � H × H. Write the left-hand
component as iϕ. It is enough to show that

ϕ ≤Ω δXY : XY ×XY ,

whence the claim follows as before, i being order-preserving.
To show that the subobject (Q,m) classified by the map τ∀Y λY (iδX〈evπ13, evπ23〉)

factors through ∆XY , as subobjects ofXY×XY , observe first that λY (iδX〈evπ13, evπ23〉)
can be written as

XY ×XY η−→ (XY ×XY ×Y )Y
〈evπ13,evπ23〉Y−−−−−−−−−→ (X ×X)Y

(δX)Y−−−−→ ΩY iY−→ HY ,

where η is the unit component (at XY × XY ) of the product-exponential
adjunction (−)× Y a (−)Y . By the previous lemma

τ ◦ ∀Y ◦ iY ◦ (δX)Y = δXY .

The subobject in question thus arises from pullbacks

Q
��

m

��

// XY //

∆
XY

��

1

>

��

XY ×XY 〈evπ13,evπ23〉Y ◦η
// XY ×XY

δ
XY // Ω

But 〈evπ13, evπ23〉Y ◦ η is the identity arrow. For it is the transpose (along
the adjunction (−)× Y a (−)Y ) of

〈evπ13, evπ23〉 : XY ×XY × Y → X ×X.

The latter in turn is the canonical evaluation of XY × XY viewed as the
exponential (X×X)Y , i.e. the counit of the adjunction at X×X, transposing
which yields the identity. As a result,

τ∀Y λY (iδX〈evπ13, evπ23〉) ≤Ω δXY ,

and therefore
iτ∀Y λY (iδX〈evπ13, evπ23〉) ≤H iδXY .
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Remark 3.10. Before giving a counterexample to iδXY = ∀Y ◦ (iδX)Y , let us
remark that the equation does actually hold in the topos Sets. For consider
f 6= g ∈ XY , i.e. f(y) 6= g(y), for some y ∈ Y . Then for any complete
Heyting algebra H, the function (iδX)Y (f, g) ∈ HY is defined as

(iδX)Y (f, g)(y) = iδX(f(y), g(y)) = >, if f(y) = g(y),

and ⊥ otherwise. Thus taking the meet (cf. the definition in example ??)
yields ∧

y∈Y
(iδX)Y (f, g)(y) = ⊥,

because f(y) 6= g(y), for some y ∈ Y , by assumption. In turn the meet
equals > just in case f(y) = g(y), for all y ∈ Y , i.e. if and only if f = g.

We now turn to a counterexample of function extensionality.

Proposition 3.11. It is not in general the case that for a topos E and a
frame H in E:

iδXY = ∀Y ◦ (iδX)Y .

Proof. To find a counterexample we consider a specific presheaf topos SetsC
op

described below.21 Let’s first recall some general facts. Write Ω|C| for the

subobject classifier in Sets|C| and choose H = f∗Ω|C| (henceforth Ω∗), where

f is the geometric morphism f : Sets|C| → SetsC
op

induced by the inclu-
sion |C| ↪→ C via right Kan extensions. Recall moreover from the beginning
that the subobject classifier Ω of SetsC

op
determines for each C the set of

all sieves on C. By contrast, Ω∗(C) is the set of arbitrary sets of arrows
with codomain C (cf. also the example from the next section).

Recall that in any category of the form SetsC
op

the evaluation maps
ε : BA ×A→ B have components

εC(η, a) = ηC(1C , a),

where η ∈ BA(C) = Hom(yC × A,B) and a ∈ A(C). The exponential
transpose α : Z → BA of a map α : Z ×A→ B has components

αC(z) = α ◦ (ζ × 1A), (10)

where ζ : yC → Z corresponds under the Yoneda lemma to the element
z ∈ Z(C), i.e. is defined as ζ(f) = Z(f)(z), for any f ∈ yC(D).

For any object A in C, the functor (−)A acts on arrows f : C → D as

fA = f ◦ ε,
21 The counterexample, in particular the choice of C and the functor G : C → Sets

below, follows a slightly different, though equivalent, proof first given in [29].
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for evaluation ε : CA ×A→ C. In particular,

(iδB)A = iδB ◦ ε,

for ε : (B ×B)A ×A→ B ×B evaluation at A. Thus, for any pair

〈η, µ〉 ∈ (B ×B)A(C) = Hom(yC ×A,B ×B),

we have
(iδB ◦ ε)C(η, µ) = iδBε(〈η, µ〉∗ × 1A) = iδB〈η, µ〉.

Here we use that 〈η, µ〉∗ : yC → (B×B)A corresponds under Yoneda to the
element 〈η, µ〉 ∈ (B × B)A(C) = Hom(yC × A,B × B) and that 〈η, µ〉∗ is
equal to the exponential transpose of 〈η, µ〉. Accordingly,

∀C(iδB)AC(η, µ) = ∀C(iδB ◦ ε)C(η, µ)

= ∀C(iδB〈η, µ〉)

=
⋃
{s ∈ Ω∗(C) | Ω∗(g)(s) ≤ iD(δB)D(ηD(g, b), µD(g, b)), for all

(g : D → C, b ∈ A(D))},

On the other hand, the classifying map of the diagonal on a functor
B : Cop → Sets is computed as

(δB)C(x, y) = {f : D → C | B(f)(x) = B(f)(y)},

for all pairs (x, y) ∈ B(C)×B(C). It is the maximal sieve >C on C just in
case x = y.

Now let C be the finite category

C
g−→ D,

and define a functor G : Cop → Sets as follows:22

G(D) = {u}, G(C) = {v, w}, G(g)(u) = v.

Furthermore, choose η, µ ∈ GG(D) such that η 6= µ. Observe that, while
necessarily

ηD = µD : yD(D)×G(D)→ G(D)

with assignment
(1D, u) 7→ u,

we can chose η, µ in such a way that ηC(g, x) 6= µC(g, x), for some pair
(g, x) ∈ yD(C) × G(C). Specifically, since the first component g is fixed,

22 Although g : C → D may be seen as the two-element poset with resulting presheaf
topos Sets→, we will not need that description. The objects and arrows in C merely play
the role of indices, so it seems better to use the more neutral notation C,D, g.
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the choice is only about x ∈ G(C) which in turn must concern w ∈ G(C).
For naturality requires that

G(g)ηD(1D, u) = ηC(yD(g)×G(g))C(1D, u) = ηC(g, v),

so that since G(g)ηD(1D, u) = G(g)(u) = v, we must have ηC(g, v) = v;
similarly µC(g, v) = v. However, no constraint is put on the values ηC(g, w)
and µC(g, w), respectively.

Then:

(δGG)D(η, µ) = {x : X → D | GG(x)(η) = GG(x)(µ)} = ∅. (11)

For if x = g, observe

GG(g)(η) = η ◦ (yg × 1G) 6= µ ◦ (yg × 1G) = GG(g)(µ),

because

ηC(yg × 1G)C(1C , w) = ηC(g, w) 6= µC(g, w) = µC(yg × 1G)C(1C , w),

where the inequality holds by construction. But also, if x = 1D, then
GG(x)(η) = η 6= µ = GG(x)(µ), where the inequality holds by assumption
again.

On the other hand,

∀D(iδG)GD(η, µ) =
⋃
{s ∈ Ω∗(D) | Ω∗(x)(s) ≤ iX(δG)X(ηX(x, b), µX(x, b))} = {1D}.

(12)
for all pairs (x : X → D, b ∈ G(X)) from C. It is clear that s = {1D}
satisfies the condition on the underlying set of the union, since for x = 1D,

Ω∗(1D)({1D}) = {1D}
⊆ >D = iD(δG)D(ηD(1D, u), µD(1D, u)).

On the other hand, for x = g, it is trivially always the case that

Ω∗(g)({1D}) = ∅ ⊆ (δG)C(ηC(g, b), µC(g, b)),

for all b ∈ G(C).
Furthermore, note that if g ∈ s, for some s ∈ Ω∗(D), then

Ω∗(g)(s) = >C = {1C}.

So if g ∈ s, for some s in the underlying set of the union (12), we had to
have

>C = Ω∗(g)(s) ≤ iC(δG)C(ηC(g, b), µC(g, b)),

for all b ∈ G(C). However, since by assumption ηC(g, w) 6= µC(g, w),

(δG)C(ηC(g, w), µC(g, w)) = ∅,
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and so
Ω∗(g)(s) � iC(δG)C(ηC(g, w), µC(g, w)).

Thus g /∈ s, for all s ∈ Ω∗(D) in the underlying set of ∀D(iδG)GD(η, µ).
Therefore

∀D(iδG)GD(η, µ) = {1D},
as claimed, and in contrast to (11):

iD(δGG)D(η, µ) = ∅.

(Of course, τ({1D}) = ∅, as lemma 3.8 predicts.)

There is an alternative, more combinatorial way of presenting the previ-
ous proof. The idea is to formulate the proof in terms of loop graphs rather
than presheaves. For presheaves on the category {C g−→ D} can equivalently
be regarded as labelled graphs that consist only of loops and points, for
instance:

•a

c

•b
Here, G(D) is the set of edges and G(C) the set of vertices, while G(g)
assigns to an edge a point, its “source”. Thus every loop has a unique
source but each point may admit several edges on it. Ω is the following
graph which is easily seen to classify subgraphs:

•1

11

10

•0

00

The labelling expresses the imposed algebraic structure of Ω with 0 < 1 and
xy ≤ uv iff x ≤ u & y ≤ v. Intuitively, in presheaf terms, 1 stands for
the maximal sieve on C and 0 for the empty sieve; similarly pairs xy encode
sieves on D, where x = 1 if and only if g is in the sieve and y = 1 if and
only if 1D is in it. Then the source of an edge xy is just x. For instance, the
sieve {g} on D is encoded by 10. Then Ω(g)({g}) = {1C} which is encoded
by 1. Note also that the set of edges is the three-element Heyting algebra
from example ??.

By contrast Ω∗ is the graph

•1

11

10

•0

00

01
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Here the additional edge 01 corresponds to the fact that {1D} ∈ Ω∗(D).
Thus the set of edges is the four-element Boolean algebra with the source
map 22 → 2 induced by the inclusion 1 ↪→ 2.

The functor G from before becomes the graph

•v

u

•w

while GG is

•ww

µ

•wv

η

•vw •vv
For recall that a natural transformation θ : yC ×G → G is completely de-
termined by pairs (x, y) representing the component at C, so that xy stands
for θC(x) = y. In this way, for instance, the vertex vw represents the natu-
ral transformation θ with component θC(v) = w. Moreover, recall from the
example before that there are precisely two edges in the graph G, namely
the two natural transformation η, µ : yD × G → G from before, differing
only in the values ηC(g, w) and µC(g, w). Without loss of generality, set
ηC(g, w) = v and µC(g, w) = w. The source of η is the natural transforma-
tion GG(η) = η(yg × 1G) which in turn only has non-trivial components at
C; similarly for η. Since, as argued before,

ηC(yg × 1G)C(1C , v) = ηC(g, v) = v = µC(g, v) = µC(yg × 1G)C(1C , v)

the source of η and µ are completely determined by the values

ηC(yg × 1G)C(1C , w) = ηC(g, w) = v

and
µC(yg × 1G)C(1C , w) = µC(g, w) = w.

Therefore, in the picture above the source of η is wv and that of µ is ww.
The graph ΩG then looks like this:

•11

111

110

•10

101

100

•01

010

•00

000

again with the pointwise ordering.
The labelling is to be understood as follows. Vertices are ΩG(C) =

Hom(yC × G,Ω) = 22, as there are exactly four natural transformations
ν : yC×G→ Ω, each one defined by the pair xy of values of the component
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at C; understood in such a way that x corresponds to νC(1C , v) and y
corresponds to νC(1C , w). (Hence, in the expression xy, y = 1 iff 1C ∈
νC(1C , w), and 0 ow.)

In turn, an edge θ in ΩG(D) is uniquely determined by the values
θD(1D, u) and θC(g, w). For the value of θC(g, v) is always determined by

θC(g, v) = θC(yD(g)×G(g))(1D, u) = ΩG(g)θD(1D, u),

by naturality of θ. The notation xyz is chosen in such a way that the source is
xy. Thus, xyz is to be read so as to mean θD(1D, u) = xz and θC(g, w) = y.
For by definition the source of an edge θ in ΩG is ΩG(g)(θ) = θ(yg × 1G).
Its component at D is empty while for C, while for x = w

θC((yg)C × 1GC)(1C , w) = θC(g, w),

and for x = v

θC((yg)C×1GC)(1C , v) = θC(g, v) = θC(yD(g)×G(g))(1D, u) = g∗θD(1D, u),

where the last identity holds by naturality of θ. Thus the source is the pair

(g∗θD(1D, u), θC(g, w)).

But g∗θD(1D, u) is the first digit of (the code corresponding to) θD(1D, u)
(which, recall, was 1 iff g ∈ θD(1D, u)).

The graph ΩG
∗ is:

•11

111

110

•10

101

100

•01

011

010

•00

000

001

The vertices are the four element Boolean algebra 22 with the pointwise
ordering, and the same for the edges 23. The source map xyz 7→ xy is the
map 23 → 22 induced by the inclusion 2 ↪→ 3 that projects out the first two
arguments of an element of 23.

The natural transformation δG : (G × G)G → ΩG is computed at the
component X = C,D, as the composite

(δG)X〈θ, θ′〉 = δ〈θ, θ′〉 : yX ×G→ G×G→ Ω,

for θ, θ′ : yX×G→ G, resp.; in accordance with exponentiation as explained
earlier. Hence, in particular

(δG)D〈η, µ〉 = 101.
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In order to determine what (δG)D〈η, µ〉 = δ〈θ, θ′〉means, we calculate the
codings for (δ〈η, µ〉)D(1D, u) and (δ〈η, µ〉)C(g, w), resp. As to the second,
compute:

(δ〈η, µ〉)C(g, w) = δC〈η, µ〉C(g, w)

= δC(ηC(g, w), µC(g, w))

= δC(v, w)

= ∅.

Therefore y = 0.

On the other hand,

(δ〈η, µ〉)D(1D, u) = δD(ηD(1D, u), µD(1D, u)) = >D,

as ηD(1D, u) = µD(1D, u). Hence x = z = 1

On the other hand, ∆C(x) = xx and ∆D(xy) = xxy, and so

∀D(xyz) =
∨
{st ∈ Ω∗(D) | sst ≤ xyz},

and similarly for Ω. Thus ∀D(101) =
∨
{00, 01} = 01, for ∀D : ΩG

∗ (D) →
Ω∗(D), while ∀D(101) =

∨
{00} = 00, for ∀D : ΩG(D)→ Ω(D).

Note finally that function extensionality is valid in constant domain
models. (See next section for the connection between topos semantics and
Kripke models.) For instance, consider a loop graph where G(D) ∼= 2 ∼=
G(C). An element in ΩG(D), as a natural transformation ηD : yD×G→ Ω,
is completely determined by the two values ηD(1, a), ηD(1, b), for {a, b} =
G(D). Thus, edges in ΩG can be represented by sequences xyzw, where
xy and zw are the respective edges ηD(1, a) and ηD(1, b) in Ω(D), using the
binary notation from before. The source of an edge xyzw is xz. On the other
hand, the map ∆D : Ω(D) → ΩG(D) can be computed as ∆D(st) = stst.
Now note that there can be no edge in ΩG of the form xy01 or 01zw, because
01 is not an edge in Ω (moreover that’s the only difference between ΩG and
ΩG
∗ ). As a result, there is no edge in ΩG such that applying ∀ to it is different

from applying ∀ to that same edge in ΩG
∗ . For the only reason this might

happen is because 01 is in the underlying set of the join

∀D(xyzw) =
∨
{st ∈ Ω∗(D) | stst ≤ xyzw}.

However, if 0101 ≤ xyzw, for any edge xyzw in ΩG, then xyzw = 1111. But
certainly ∀ has the same value on 1111 for both ΩG and ΩG

∗ . Although the
argument is for models with domain of cardinality 2, it easily generalizes to
any n.
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Remark 3.12. A similar style example can be used to show the failure of the
sequent ∀x:A�ϕ ` �∀x:Aϕ. In fact, we will show that the square

ΩA ∀A //

iA

��

Ω

i

��

ΩA
∗ ∀∗A

// Ω∗

does not necessarily commute (though note that the analogous one for τ
always does). Consider again the finite category C

C
g−→ D

and the functor A : Cop → Sets defined by

A(D) = {a}, A(C) = {b, c}, A(g)(a) = b.

Define the natural transformation η : yD ×A→ Ω by

ηD(1D, a) = >D and ηC(g, c) = ∅

Necessarily ηC(g, b) = {1C} = >C . For by naturality of η the following has
to commute:

yD(D)×A(D)

yD(g)×A(g)

��

ηD // Ω(D)

g∗

��

yD(C)×A(C) ηC
// Ω(C)

i.e.

ηC(g, b) = ηC(yD(g)×A(g))(1D, a) = g∗(ηD(1D, a)) = g∗>D = >C .

Then:

∀D(η) =
∨
{σ ∈ Ω(D) | Ω(l)(σ) ≤ ηX(l, x), for all l : X → D and x ∈ A(X)}

= ∅.

Because Ω(g)(σ) ≤ ηX(l, x), for all l : X → D and x ∈ A(C), only if σ = ∅.
On the other hand,

∀∗D(η) =
∨
{σ ∈ Ω∗(D) | Ω(l)(σ) ≤ ηX(l, x), for all l : X → D and x ∈ A(X)}

=
∨
{∅, {1D}}

= {1D},
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because g∗{1D} = ∅ and {1D} ≤ ηD(1D, a) = >D. We apply this argument
to the case where η = τAD(η′), for some η′ ∈ ΩA

∗ .

A similar example also shows that the dual statement

�∃x:Aϕ ` ∃x:A�ϕ

fails. In the previous setting change the definition of η so that

ηD(1D, a) = ∅ = ηC(g, b).

Then:

∃D(η) =
∧
{σ ∈ Ω(D) | ηX(l, x) ≤ Ω(l)(σ), for all l : X → D and x ∈ A(X)}

=
∧
{>D, {g}}

= {g},

while

∃∗D(η) =
∧
{σ ∈ Ω∗(D) | ηX(l, x) ≤ Ω(l)(σ), for all l : X → D and x ∈ A(X)}

=
∧
{{g},>D, {1D}}

= ∅.

3.5 Kripke Models

In this section we recall how Kripke models are described through the present
framework as a special case. As is well known, any functor F : C → D
induces a geometric morphism

f∗ a f∗ : SetsC → SetsD,

where f∗ is precomposition with F , and f∗ is a right Kan extension. Let
C = |D| and F the inclusion i : |D| → D. Then the induced geometric
morphism i∗ a i∗ : Sets|D| → SetsD is surjective. The subobject classifier
ΩD in SetsD consists, for each D, of the set of cosieves on D, which can be
construed as the functor category

2D/D,

where 2 is viewed as the poset {0 ≤ 1}; while Ω|D|(D) = 2, for each D in D.

On the other hand, by the definition of right Kan extension, i∗Ω|D|(D) =∏
h∈D/D 2 = 2|D/D|, as can also be seen from

i∗Ω|D|(D) ∼= Hom
D̂

(yD, i∗Ω|D|) ∼= Hom|̂D|(i
∗(yD),Ω|D|).
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The last set is (isomorphic to) the set of subfamilies of the functor i∗(yD) :
|D| → Sets, by the definition of the subobject classifier Ω|D|: each natural
transformation

i∗yD = yD ◦ i = HomD(D,−) −→ 2

determines, for each D′ in D, a set of arrows D → D′. On arrows h : D →
D′′, the functor i∗Ω|D| is the function i∗Ω|D|(h) : i∗Ω|D|(D) → i∗Ω|D|(D

′′)
defined as

i∗Ω|D|(h)(A) = {f : D′′ → X | f ◦ h ∈ A}.

The components of the (internal) adjunction i : ΩD � i∗Ω|D| : τ then read

iD : 2D/D � 2|D/D| : τD,

where iD a τD “externally”. It is not hard to see that i is the inclusion,
while

τD(A) =
∨
{S ∈ 2D/D | iD(S) ≤ A},

by the definition of right adjoint to the frame map i (cf. (??)). In words,
τ maps any family of arrows with domain D to the largest cosieve on D
contained in it. In particular, when D is a preorder, then D/D =↑ (D), the
upward closure of D; while 2D/D is the set of all monotone maps ↑ (D)→ 2,
i.e. upsets of ↑ (D), while 2|D/D| is the set of arbitrary subsets of ↑ (D).

An arrow ϕ : E → i∗Ω|D| = 2|−/D| in SetsD defines an indexed subfamily
P of the functor F , and conversely. Explicitly, given such ϕ : E → i∗Ω|D|,
define subsets Pϕ(D) ⊆ E(D), for each D in D and a ∈ E(D), by

a ∈ Pϕ(D) iff 1D ∈ ϕD(a). (13)

Conversely, given maps E(D)→ 2, i.e. components of an arrow i∗E → Ω|D|
in Sets|D|, or equivalently a subfamily P of E, define a natural transforma-
tion ϕP : E → i∗Ω|D| by

(ϕP )D(a) = {f : D → C | E(f)(a) ∈ P (C)}, (14)

These constructions are mutually inverse and so describe the canonical iso-
morphism

Hom(E, i∗Ω|D|) ∼= Hom(i∗E,Ω|D|) ∼= Sub(i∗E).

Note also that the transpose ϕ = εϕ∗ of ϕ : E → Ω∗ along the adjunction
f∗ a f∗ actually is the classifying map in Sets|D| of the subobject Pϕ of f∗E
defined in (13):

εCϕ
∗
C(a) = 1 iff 1C ∈ ϕ∗C(a)

iff 1C ∈ ϕC(a)

iff a ∈ Pϕ(C),
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for any a ∈ E(C).

On the other hand, considering ΩD = 2D/D instead of 2|D/D|, the same
definitions (13) and (14) establish a correspondence between subfunctors of
E and their classifying maps in SetsD. In particular, the classifying map of
a subfunctor of E factors through i∗Ω|K| via τ .

Thus, when D is a preorder, algebraic models in the complete Heyting
algebra i∗Ω|K| are precisely Kripke models on D. The “domain” of the model
is given by the functor E, while each E(D) is the domain of individuals at
each world D. Each formula determines, as an arrow ϕ : E → i∗Ω|K|, a
subfamily of E, that is a family (Pϕ(D) ⊆ E(D)). Then τ determines the
largest compatible subfamily of that family, i.e. a family closed under the
action of E. Indeed, for x ∈ E(D),

x ∈ Pτϕ(D) iff 1D ∈ (τϕ)D(x).

Now (τϕ)D(x) is the maximal sieve on D just in case ϕD(x) is. So, if
satisfied, the right-hand side means that x ∈ Pϕ(D) and moreover F (f)(x) ∈
Pϕ(C), for all C ≥ D. Semantically speaking, x satisfies τϕ (at D) just in
case x (or rather its “counterpart” FCD(x)) satisfies ϕ in all worlds accessible
from D.

Thus we recovered the natural adjunction

∆E : Sub(E)� Sub(i∗E) : ΓE

that succinctly describes the algebraic structure of Kripke models.

Lastly, presheaf semantics reduces to standard Kripke semantics for
propositional modal logic in the following sense. In the latter, propositional
formulas are recursively assigned elements in P(K), for a preorder K. Let
P(↓ (−)) = Ω∗ be the composite functor

K
↓−→ Sets

P(−)−−−→ Setsop.

Observe that

P(K) ∼= HomSetsK
op (1,P(↓ (−))),

via assignments (where ϕ ⊆ P(K))

ϕ 7→ (ϕk = ↓ (k ∩ ϕ) | k ∈ K)

and

(ϕk | k ∈ K) 7→
⋃
k

ϕk.

Thus modelling formulas (in one variable, say) by maps of presheaves

M −→ P(↓ (−)) = Ω∗

86



yields precisely the familiar Kripke model idea for propositions, i.e. closed
formulas. Moreover, for constant domains:

HomSetsK
op (∆M,P(↓ (−))) ∼= HomSets(M, lim←−P(↓ (−))) ∼= HomSets(M,P(K)).

Here, ∆ : Sets −→ SetsK
op

is the functor ∆(M)(k) = M , for any set M
and k ∈ K. A function ϕ : M −→ P(K) assigns to each individual in
the domain M a set of worlds for which the individual satisfies the formula
represented by ϕ.

Another way of seeing the close relation between presheaf semantics and
Kripke semantics is via the notion of “Kripke-Joyal forcing” [20, 16]. For
any topos E one can define a forcing relation  to interpret intuitionistic
higher-order logic . Given an arrow ϕ : M → ΩE , let Sϕ be the subobject
of M classified by ϕ. Then for any a : X →M , define

X  ϕ(a) iff a factors through Sϕ. (15)

This holds iff ϕa = tX , where tX is the arrow > ◦ !X : X → 1 → ΩE . The
idea is that ϕ corresponds to a formula, while a is a generalized element
of M , thought of as a term x : X | a : M . In fact, ϕ and a are terms in
the internal language of E , reinterpreted into E by the forcing relation. The
relation  satisfies certain recursive clauses for all the logical connectives
[20, 16]. Conversely, starting with an interpretation of the basic symbols
of a higher-order type theory in a topos E (as maps into ΩE), then these
recursive clauses determine when a formula is true (“at an objectX”). When
a is a closed term, i.e. a constant, for which one may assume X = 1, then
this says that the two arrows

1
a //

>

77M
ϕ

// ΩE

are equal; i.e. the closed sentence ϕ[a/x] is “true”. In general, the forcing
relation thus defines when formulas are true (at X), much as in Kripke
semantics, as we now illustrate.

Consider presheaf toposes of the form SetsC
op

. In this case, the forcing
relation X  ϕ(a) can be restricted to objects X in E forming a generating
set.23 For presheaf toposes SetsC

op
the representable functors yC form a

generating set, so one may assume that X = yC, for some object C in C.
Also, by the Yoneda lemma, generalized elements a : yC → M may be
replaced by actual elements a ∈ M(C). To say that a : yC → M factors
through a subobject S ∈ SubE(M) is then equivalent to saying that the

23 Cf. [16]. One says that a set S of objects from E is generating, iff for any f 6= g :
A⇒ B in E , there is an arrow x : X → A, for some X ∈ S, such that fx 6= gx.
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corresponding element a ∈ M(C) actually lies in S(C). As a result, the
forcing condition becomes

yC  ϕ(a) iff a ∈ Sϕ(C),

where, as before, ϕ classifies the subobject Sϕ of M . We shall hereafter
write C  . . . instead of yC  . . . .

Now consider the standard Ω∗-valued model for classical higher-order
modal logic in a presheaf topos SetsC

op
, associated with the canonical ge-

ometric morphism Sets|C| → SetsC
op

. We define another forcing relation
C ∗ ϕ(a) which takes this modal logic into account.

Definition 3.13. For any presheaf topos SetsC
op

, define a forcing relation
∗ for arrows ϕ : M → Ω∗, objects C in C, and elements a ∈M(C) by:

C ∗ ϕ(a) iff C  ϕ(a), (16)

where  on the right-hand side is the usual forcing relation w.r.t. Sets|C|

(as defined in (15)), and (−) indicates transposition along f∗ a f∗.

Further analysing the right-hand side of (16) gives:

C  ϕ(a) iff a ∈ Sϕ(C) (17)

where Sϕ is the subobject of M∗ classified by ϕ in Sets|C|.

Proposition 3.14. Let ∗ be the forcing relation of Definition 3.13. Then
for all ϕ,ψ : M → Ω∗ and a ∈M(C) the following hold:

C ∗ > always

C ∗ ⊥ never

C ∗ ϕ(a) ∧ ψ(a) iff C ∗ ϕ(a) and C ∗ ψ(a)

C ∗ ϕ(a) ∨ ψ(a) iff C ∗ ϕ(a) or C ∗ ψ(a)

C ∗ ϕ(a)⇒ ψ(a) iff C ∗ ϕ(a) implies C ∗ ψ(a)

C ∗ ∀xϕ(x, a) iff C ∗ ϕ(b, a) for all b ∈M(C)

C ∗ ∃xϕ(x, a) iff C ∗ ϕ(b, a) for some b ∈M(C)

C ∗ �ϕ(a) iff D ∗ ϕ(p∗a) for every p : D → C

C ∗ t(a) ∈ u(a) iff (1C , tC(a)) ∈ (uC(a))C ,

for t : M → Nand u : M → ΩN
∗

where � = iτ , and ∀xϕ is the arrow M
ϕ̂−→ ΩM

∗
∀M−−→ Ω∗, with ϕ̂ the expo-

nential transpose of M ×M ϕ−→ Ω∗, and similarly for ∃xϕ(x, a).
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Remark 3.15. Although ∗ is a relation between objects C and arrows ϕ :
M → Ω∗, it also makes sense to think of the ϕ as formulas, with the clauses
above holding w.r.t. the arrow JϕK assigned to the formula ϕ as in section 3.2
For instance, interpreting a syntactic expression ∃xϕ(x, y) (by 3.3) yields an

arrow ∃M ĴϕK. When C is a preorder this is then not merely similar to, but
actually is the Kripkean satisfaction relation between worlds and formulas,
extended to higher-order logic.

Proof. We shall just do a few exemplary cases for the purpose of illustra-
tion. Consider C ∗ ϕ(a) ∨ ψ(a), which by definition 3.13 means that

a ∈ Sϕ∨ψ(C). Here, Ω∗×Ω∗
∨−→ Ω∗ is the join map. Recall from proposition

2.10 that ∨ actually is of the form ∨∗, for the join map Ω × Ω
∨−→ Ω in

Sets|C|. Thus the following commutes, by naturality of the counit ε:

M∗ ×M∗
〈ϕ∗,ψ∗〉

//

〈ϕ,ψ〉

%%

(Ω∗)
∗ × (Ω∗)

∗ (∨∗)∗
//

ε×ε

��

(Ω∗)
∗

ε

��

Ω× Ω ∨
// Ω

That is to say,

ϕ ∨ ψ = ϕ ∨ ψ,

and so Sϕ∨ψ = Sϕ∨ψ. Since Sets|C| is a Boolean topos, by the definition of

Sϕ∨ψ in Sets|C| we have:

a ∈ Sϕ∨ψ(C) iff a ∈ Sϕ(C) or a ∈ Sψ(C),

i.e. if and only if C ∗ ϕ(a) or C ∗ ψ(a). The argument for the other
logical connectives is similar.

For ∀, by definition,

C ∗ ∀xϕ(x, a) iff a ∈ S∀M ϕ̂(C),

with

S∀M ϕ̂(C) = {a ∈M(C) | 1C ∈ (∀M ϕ̂)C(a)}
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defined as in (13). By the definition of ∀M , and because |C| is discrete:

1C ∈ (∀M ϕ̂)C(a) iff 1C ∈
⋃
{s ∈ Ω∗(C) | Ω∗(f)(s) ≤ ϕ̂C(a)D(f, b),

for all f : D → C, b ∈M(D)}

iff 1C ∈
⋃
{s ∈ Ω∗(C) | s ≤ ϕ̂C(a)C(1C , b), for all b ∈M(C)}

iff 1C ∈ ϕC(a, b), for all b ∈M(C)

iff (a, b) ∈ Sϕ, for all b ∈M(C)

iff C ∗ ϕ(a, b), for all b ∈M(C).

The last two equivalences hold by the definition of Sϕ and ∗. To see the
third equivalence, let α : yC → M be the map that corresponds under
Yoneda to a ∈M(C). Then, by the definition of ϕ̂ (cf. (10)):

ϕ̂C(a)C(1C , b) = ϕC(α× 1M )C(1C , b) = ϕC(αC(1C), b) = ϕC(a, b).

Then, if 1C is in the union, it is in one of the s ∈ Ω∗(C), and thus
1C ∈ ϕC(a, b), for all b ∈ M(C). On the other hand, if 1C ∈ ϕC(a, b),
for all b ∈M(C), then 1C is in the union for s = {1C}.

The clause for ∈ follows from its definition:

Sε〈s,t〉 = {a ∈M(C) | 1C ∈ ε〈s, t〉C(a)}
= {a ∈M(C) | 1C ∈ εC(sC(a), tC(a))}
= {a ∈M(C) | 1C ∈ (sC(a))C(1C , tC(a))},

using the definition of the evaluation map ε : ΩA ×A→ Ω.

For �, as before, iτϕ determines a subfamily of M with components

Siτϕ(C) = {a ∈M(C) | 1C ∈ (iτϕ)C(a)}.

But (iτϕ)C(a) is a sieve, as it factors through Ω(C), and so

Siτϕ(C) = {a ∈M(C) | (iτϕ)C(a) = >C},

for >C the maximal sieve on C. However, by the defining properties of τ
and i,

(iτϕ)C(a) = >C iff ϕC(a) = >C .

Therefore,

Siτϕ(C) = {a ∈M(C) | ϕC(a) = >C}
= {a ∈M(C) | (χSϕ)C(a) = >C}
= {a ∈M(C) | {p : D → C | p∗a ∈ Sϕ(D)} = >C}
= {a ∈M(C) | p∗a ∈ Sϕ(D), for all p : D → C}.
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In forcing terms:

C ∗ iτϕ(a) iff a ∈ Siτϕ(C)

iff p∗a ∈ Sϕ(D), for all p : D → C

iff D ∗ ϕ(p∗a), for all p : D → C.

3.6 Relative Models

This section sums up the notion of model w.r.t. relative model structures.

Definition 3.16. Consider any topos E, and anyM-relative model structure

H
τ //

B //
β

//

i

>oo ΩE

(for some suitable set M) in E that satisfies the conditions from def. 2.24.
An interpretation of a higher-order modal theory T (as defined in section
3.1) is same as in 3.3, with the following slight differences

• For each type A in T, JAK ∈M, i.e. JAK must be B-standard

• The type of proposition is interpreted by H

• The modal operator is interpreted by iτ

• For any type A, the equality relation is interpreted by the composite

i ◦ ∂A,

where ∂A is the factorization

∂A : JAK× JAK→ JBK

of the classifying map δA : JAK× JAK→ ΩE through β.

Note that the last condition can always be met given the first one.

We now record the soundness for relative models. It more or less follows
directly from the definitions. In particular, soundness of equality follows
from prop. 2.20 and soundness w.r.t. the doctrinal interpretation. Therefore,
it is mainly the two extensionality principles that are of interest.

Lemma 3.17. Modal propositional extensionality is valid in general models
θ : M � H : i.
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Proof. This follows right away because ∂M = θ◦ ⇔ by construction of ∂M .
Equivalently, in analogy to lemma 3.2 in the LeA paper it would be

sufficient to show that the following diagram commutes:

M ×M ⇒ //

〈π1,∧〉

��

M

θ

��

M ×M
∂M

// H

which is readily seen through the following two pullbacks and uniqueness of
classifying maps.

(≤) //

��

1

>

��

1

>

��

1

>

��

M ×M ⇒
//M

θ
// H // ı

// ΩE

(≤) //

��

M //

∆

��

1

>

��

1

>

��

M ×M
〈π1,∧〉

//M ×M
∂M

//

δM

88H // ı
// ΩE

Lemma 3.18. Function extensionality is valid in general models θ : M �
H : i.

Proof. Again, the idea is to prove a lemma analogous to lemma 3.4 in the
LeA paper. There we showed that the diagram

ΩY iY //MY ∀Y //M

τ

��

XY ×XY

(δX)Y

OO

δ
XY

// Ω

(18)
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commutes. Similarly, in the context of general models there exists a com-
mutative diagram:

HY iY //MY ∀Y //M

θ

��

XY ×XY

(∂X)Y

OO

∂
XY

// H

In fact, the composite θ ◦ ∀Y ◦ iY ◦ (∂X)Y = ∀Y (∂X)Y was precisely how the
factorization of δXY was obtained earlier.

Inspecting the soundness proof of functional extensionality for standard
models, it turns out that commutativity of the latter is precisely what is
needed to make the proof work for the present context of general models;
just as (18) was essential for the soundness of function extensionality w.r.t.
standard models.

Thus we record:

Proposition 3.19. Consider any topos E, any M-relative model structure

H
τ //

B //
β

//

i

>oo ΩE

(for some suitable set M) in E that satisfies the conditions from def. 2.24.
Then for any model J−K in that structure defined as in 3.16, if

Γ | ϕ ` ψ in T

in T, then

JΓ | ϕK ≤ JΓ | ψK in HomE(JΓK, H).

4 Elementary Completeness

By elementary completeness we mean completeness of higher-order modal
logic w.r.t. to models in arbitrary toposes. We prove this by constructing
the syntactic topos ET associated with a higher-order modal theory T. As
will turn out, the definition of ET is a variation of the non-modal higher-
order case. We will give the definition and point out where it differs from
the non-modal version.
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4.1 The Syntactic Topos of a higher-order theory

Given a higher-order modal theory T, define the category ET as follows:

• Objects: closed terms α : PA of the form α = {x : A | �ϕ}.

• An arrow ϕ : α → β is a triple (α,ϕ, β), where ϕ : P (A × B) is a
�-stable term that is provably a functional relation from α to β:

` ∀x:A(x ∈ α⇒ ∃!y:B[y ∈ β ∧ 〈x, y〉 ∈ ϕ]).

Note that if we can prove this sequent, the formula is automatically
�-stable given that ϕ is.

The requirement of a functional relation is equivalent to the provabilty
of the following sequents:

x : A, y : B | α ` ∃y:Bϕ

x : A, y : B | ϕ ` α ∧ β

x : A, y : B, z : B | ϕ ∧ ϕ[z/y] ` z = y

It is important to explicitly specify domain and codomain of an arrow,
as it may happen that the same term ϕ defines different arrows. For
instance, this is the case whenever an arrow factors through a subob-
ject of its codomain such as for image factorizations described below.
Another example are identity arrows and canonical monomorphisms.

• Objects and arrows are equal in case they are T-provably equivalent.
Note, however, if we are given two parallel arrows represented by terms
ϕ,ϕ′ resp., it readily follows that

ϕ a` ϕ′ iff > ` ϕ = ϕ′.

In the following we will therefore not distinguish between equality of
arrows that are represented by terms ϕ and ϕ′, resp. and internal
identity of terms in the sense that > ` ϕ = ϕ′. That is to say, we will
refer to arrows ϕ and ϕ′ and say that they are equal in case they are
equal as terms ϕ = ϕ′.

• Identity arrows 1α : α→ α are given by

{〈x, x′〉 ∈ A×A | α ∧ x = x′}.

• The composite of two arrows ϕ : α → β, ψ : β → γ is defined to be
the term

{〈x, z〉 : A× C | ∃y:B(〈x, y〉 ∈ ϕ ∧ 〈y, z〉 ∈ ψ)}.
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Since ϕ and ψ are �-stable, it follows that ∃y:B(〈x, y〉 ∈ ϕ∧〈y, z〉 ∈ ψ)
is �-stable, because for any stable x : A | ϕ it holds that �∃x.ϕ =
∃x.ϕ.

This concludes the definition of ET. We will make a few remarks about
monomorphisms and subobjects. Given an arrow ϕ : α→ β, denote by ϕ−1

the term

{(y, x) : P (B ×A) | (x, y) ∈ ϕ}.

The term ϕ−1 does not necessarily define an arrow itself. However, we can
still define the relational composition of the terms ϕ and ϕ−1 in the same
way as the composition of arrows was defined. We will also denote it using
◦.

Lemma 4.1. An arrow ϕ : α→ β is a monomorphism, if and only if

ϕ−1 ◦ ϕ = 1α,

where is the term defining the identity arrow in ET:

1α = {(x, x′) | x = x′}.

Proof. Suppose ϕ−1 ◦ϕ = 1α and consider any two arrows ψ, σ : γ ⇒ α such
that ϕ ◦ ψ = ϕ ◦ σ. Evidently,

ψ = ϕ−1 ◦ ϕ ◦ ψ = ϕ−1 ◦ ϕ ◦ σ = σ.

Conversely, consider the object

ϕ−1 ◦ ϕ ≡ {(x, x′) ∈ P (A×A) | ∃y:B.(x, y) ∈ ϕ ∧ (x′, y) ∈ ϕ}.

and arrows ψ, σ : ϕ−1 ◦ ϕ⇒ α:

ψ ≡ {((x, x′), x′′) : P ((A×A)×A) | x′′ = x ∧ (x, x′) ∈ γ}.

σ ≡ {((x, x′), x′′) : P ((A×A)×A) | x′′ = x′ ∧ (x, x′) ∈ γ}.

It now follows that ϕ ◦ψ = ϕ ◦σ, and thus ψ = σ, because ϕ is monic. This
in turn implies that ϕ−1 ◦ ϕ = 1α. For details see [16]

Lemma 4.2. Given T, an arrow ϕ : α → β in ET is a monomorphism if
and only if

x : A, x′ : A, y : B | ϕ ∧ ϕ[x′/x] ` x = x′

is provable in T.
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Proof. Assume the condition holds. Then:

ϕ−1 ◦ ϕ = {(x, x′) : P(A×A) | ∃y:B.(x, y) ∈ ϕ ∧ (y, x′) ∈ ϕ′}
= {(x, x′) : P(A×A) | ∃y:B.(x, y) ∈ ϕ ∧ (x′, y) ∈ ϕ}
= {(x, x′) : P(A×A) | x = x′} = 1α.

Here, we use that

x : A, x′ : A | ∃y:B.(x, y) ∈ ϕ ∧ (x′, y) ∈ ϕ ` x = x′

if and only if

x : A, x′ : A, y : B | (x, y) ∈ ϕ ∧ (x′, y) ∈ ϕ ` x = x′,

since y doesn’t occur free on the right.
Conversely, assume that varphi−1 ◦ ϕ = 1α. Then from

{(x, x′) : P(A×A) | ∃y:B.(x, y) ∈ ϕ∧(x′, y) ∈ ϕ} = {(x, x′) : P(A×A) | x = x′}

the claim follows.

For instance, every object α : PA is a subobject of {x : A | >} via the
map

{(x, x′) : A×A | α ∧ x = x′},

easily seen to be a monomorphism. We now show that in a similar way
every subobject can be represented in a canonical form.

Lemma 4.3. The image of a map ϕ : α→ β in ET is the object

Iϕ ≡ {y : B | ∃x:Aϕ}

included into β via the map

ıϕ ≡ {(y, z) : B ×B | ∃x:A.ϕ ∧ y = z}.

Proof. First, note that both terms are �-stable. Moreover, the term ıϕ
really defines a map Iϕ → β. In particular, the sequent

y : B, z : B | ∃x:Aϕ ∧ y = z ` β

holds because x : A, y : B | ϕ ` β. The map ıϕ is moreover clearly monic.
The factorization of ϕ through ıϕ is given by the term ϕ itself. We need to
check that the formula ϕ is well-defined as an arrow with codomain Iϕ. As
to the first condition of a functional relation we have

x : A | α ` ∃y:B∃x:Aϕ,
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because from α ` ∃y:Bϕ we get ∃x:Aα ` ∃x:A∃y:Bϕ and thus α ` ∃x:A∃y:Bϕ
by the ∃-rule. As to the second condition, the sequent

x : A, y : B | ϕ ` ∃x:Aϕ

is a consequence of y : B | ∃x:Aϕ ` ∃x:Aϕ. On the other hand ϕ ` α holds
by assumption on ϕ, as does the third condition, uniqueness of values.

Given any subobject γ : µ � β, through which ϕ factors via a map
η : α→ µ, define a map ν : Iϕ → µ to be given by the term

ν = {(y, z) : B × C | ∃x:A(η ∧ ϕ)}.

It is a functional relation:

• With ϕ ` α ` ∃z:Cη we have ϕ ` ∃z:Cη ∧ ϕ, and hence ∃x:Aϕ `
∃x:A[∃z:Cη ∧ ϕ], and therefore ∃x:Aϕ ` ∃x:A∃z:C [η ∧ ϕ], since z is not
free in ϕ. Hence

∃x:Aϕ ` ∃z:C∃x:A[η ∧ ϕ]

• From ϕ ∧ η ` ϕ ` ∃x:Aϕ and ϕ ∧ η ` η ` µ obtain ϕ ∧ η ` ∃x:Aϕ ∧ µ,
and so ∃x:A(ϕ ∧ η) ` ∃x:Aϕ ∧ µ, by the ∃-rule, since x is not free in µ.
Thus, the domain and codomain of ν is Iϕ and µ, resp.

• Uniqueness. Follows from ϕ a` ∃z:C [γ ∧ η] and that γ is monic.

Moreover, ıϕ = γ ◦ ν, as arrows in ET. The composite γ ◦ ν is given by
the term

{(y, z) : B ×B | ∃c:C [ν ∧ γ]}.

Writing

x : A, y : B | ϕ,

x : A, c : C | η,

c : C, z : B | γ,

observe that in context y : B, z : B the following equivalences hold:

∃c:C [ν ∧ γ] a` ∃c:C [∃x:A[η ∧ ϕ] ∧ γ]

a` ∃c:C∃x:A[η ∧ ϕ ∧ γ]

a` ∃x:A∃c:C [η ∧ γ] ∧ ϕ]

a` ∃x:A[ϕ[z/y] ∧ ϕ].

The second equivalence holds because x : A does not occur free in γ, while
the third obtains because c : C is not free in ϕ. The fourth one uses

x : A, z : B | ϕ[z/y] a` ∃c:C [γ ∧ η],
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which holds by assumption that ϕ : α→ β factors through µ. Hence, since
ϕ[z/y] ∧ ϕ ` z = y, we finally have

∃x:A[ϕ[z/y] ∧ ϕ] a` ∃x:Aϕ ∧ z = y.

Since the image ıϕ : Iϕ ↪→ β of a monomorphism ϕ : α → β is an
isomorphism, we have the following corollary:

Corollary 4.4. In the syntactic category ET of a higher-order modal theory,
every subobject of an object β can be represented by a map ıβ′ : β′ → β in
such a way such that β′ ` β and the inclusion ıβ′ is given by the term

ıβ′ = {(y′, y) : P (B ×B) | β′ ∧ y = y′}.

Proposition 4.5. For any higher-order modal theory T, the category ET has
all finite limits and exponentials, and hence is

Proof. • Terminal Object 1: obtained is the term

| {x : 1 | x = ∗} : P1

Given any term α : PA, the unique arrow α→ 1 is given by

{(x, y) : A× 1 | x ∈ α ∧ y = ∗}.

• The pullback of two maps

α
ϕ

// γ β
ϑoo

is constructed as the term

{(x, y) : A×B | ∃z:C .(x, z) ∈ ϕ ∧ (y, z) ∈ ϑ},

with the obvious projections, much as for sets:

{((x, y), x′) : P (P (A×B)×A) | (x, y) ∈ P ∧ x = x′},

{((x, y), y′) : P (P (A×B)×B) | (x, y) ∈ P ∧ y = y′}.

• Exponentials: For α : PA and β : PB, define

βα ≡ {w : P (A×B) | w : α→ β}.

where w : α→ β is the formula

w = �w ∧�∀x:A(x ∈ α⇒ ∃!y:B[y ∈ β ∧ 〈x, y〉 ∈ w])
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The canonical evaluation map εαβ : βα × α −→ β is given by

{〈w, x〉, y〉 : P (P (A×B)×A)×B | w ∈ βα ∧ 〈x, y〉 ∈ w}

For an arrow h : α× β −→ γ, define its transpose h∗ : α −→ γβ to be
the term

{〈x,w〉 : A× P (B × C) | x ∈ α ∧ w ∈ γβ ∧
�∀y:B(y ∈ β ⇒ ∃z:C(〈〈x, y〉, z〉 ∈ h ∧ 〈y, z〉 ∈ w))}.

We now proceed to show that ET has a subobject classifier. We wil
mainly follow [16]. In order to do this we will need a certain version of
lemma 12.3 in [16], suitably adapted to the present context.

Lemma 4.6. Consider any t : P | ϕ : P such that

t : P | ϕ ` t = �t and t : P | ϕ ` �ϕ.

Suppose, moreover, that ` ∃!t:Pϕ(t). Then

` ∀t:P.(t = ϕ(>))⇔ ϕ(t)).

Proof. For the right-to-left we note first that

ϕ(t) ∧ t ` �t ` t = >,

because �t a` t = >. Hence ϕ(t) ∧ t ` ϕ(>), whence ϕ(t) ` t⇒ ϕ(>). On
the other hand, by the uniqueness assumption on t,

ϕ(t) ∧ ϕ(>) ` t = > ` �t ` t,

and so ϕ(t) ` ϕ(>)⇒ t. Hence ϕ(t) ` ϕ(>)⇔ t. Therefore

�ϕ(t) ` �(ϕ(>)⇔ t) ` ϕ(>) = t,

with modal propositional extensionality. Hence, finally,

ϕ(t) ` ϕ(>) = t,

because ϕ is �-stable by assumption.
The left-to right is exactly as in [16]. Since ϕ(s), for some s : Ω, from

t = ϕ(>) it follows that t = ϕ(>) = s, and hence ϕ(t).

The lemma rests in a sense on a trivialization assumption. For the
assumption that t : P | ϕ ` t = �t and t : P | ϕ ` �ϕ essentially ensures
that the modal operator becomes redundant, so that the argument becomes
much as in the non-modal case.
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Proposition 4.7. The syntactic category ET of a higher-order theory T has
a subobject classifier.

Proof. The subobject classifier is provided by the term

ΩT = {t : P | �t = t},

with generic subobject > : 1→ Ω is

{〈∗, t〉 | t = >}.

Given an arrow ϕ : α → Ω (α : PA), the pullback of > : 1 → ΩE along α
becomes using the previous definition of pullbacks (assuming the notation
from [16]):

Ker ϕ ∼= {(x, ∗) : A× 1 | ∃t:P[(x, t) ∈ ϕ ∧ (∗, t) ∈ >]}
∼= {x : A | (x,>) ∈ ϕ}.

As for any pullback of a monomorphism, the projection to α must be monic
as well and in the present case reads as

kerϕ = {〈x, x′〉 : A×A | x ∈ Ker ϕ ∧ x = x′}
= {〈x, x′〉 : A×A | (x,>) ∈ ϕ ∧ x = x′}.

On the other hand, given a subobject m : β → α, set

char m := {〈x, t〉 : A× P | t = (∃y:B〈y, x〉 ∈ m)}.

Note that since m is �-stable by assumption, the existential formula is so
as well. Hence, this is well-defined as an arrow α → Ω. That is to say, one
can show that

(x, t) ∈ char m ` t = �t.

Since for any formula ϕ we have

t = �ϕ ` t⇔ �ϕ.

Then for any arrow h : α −→ Ω in the syntactic category:

char kerh = {〈x, t〉 : A× P | t = ∃y:A(〈y, x〉 ∈ kerh)}
= {〈x, t〉 : A× P | t = ∃y:A(〈x,>〉 ∈ h & y = x)}
= {〈x, t〉 : A× P | t = 〈x,>〉 ∈ h}
= {〈x, t〉 : A× P | 〈x, t〉 ∈ h}.

The last identity uses lemma 4.6.
On the other hand, in order to show that ker char m ∼= m, for any

subobject m : β → α, define an arrow u : β → ker char m by u ≡ {(y, x) :

100



B×B | (y, x) ∈ m}, i.e. with the same formula as for m. This is well-defined
with codomain Ker char m. Moreover,

(ker char m) ◦ u = {(x, y) : B ×A | ∃x′:A((y, x′) ∈ m ∧ (x′, x) ∈ ker char m)}
{(x, y) : B ×A | ∃x′:A((y, x′) ∈ m ∧ (x′,>) ∈ char m ∧ x = x′)}
{(x, y) : B ×A | ∃x′:A((y, x′) ∈ m ∧ > = ∃y′:B(y′, x′) ∈ m ∧ x = x′)}
{(x, y) : B ×A | ∃x′:A((y, x′) ∈ m ∧ ∃y′:B(y′, x′) ∈ m ∧ x = x′)}
{(x, y) : B ×A | (y, x) ∈ m ∧ ∃y′:B(y′, x) ∈ m}
{(x, y) : B ×A | (y, x) ∈ m}.

In particular u is monic. On the other hand,

u ◦ u−1 = {(x, x) : A×A | ∃y:B(x, y) ∈ m}
= {(x, x) : A×A | (x,>) ∈ char m} = {(x, x) : A×A | x ∈ Ker char m}.

The last term is the identity on Ker char m.

We consider the object {t : P | >} and define an adjunction
We now have to verify that {t : P | >} is a complete Heyting algebra.

Before doing that, we collect a notion of internal order adjunction in ET.

Definition 4.8. Given two objects α, β equipped with preorderings ρ, σ, re-
spectively, we say w.r.t. two order maps ϕ : α� β : ψ that ϕ is left adjoint
to ψ just in case

ϕ(x, y) ` σ(y, y′) iff ψ(y′, x′) ` (x, x′) ∈ ρ.

Also, given a preorder β, with ordering ρ, and any two maps ϕ,ψ : α→
β, for any α, then the pointwise ordering should intuitively be that

ϕ ≤ ψ iff (x, y) ∈ ϕ ∧ (x, y′) ∈ ψ ` (y, y′) ∈ ρ.

This is the ordering in the set

HomET(α, β).

When β ≡ {t : P | >}, then the ordering ρ on β is the subobject

{(p, q) : P× P | p ∧ q = p}.

Proposition 4.9. The object {t : P | >} is a faithful complete Heyting
algebra in ET.

Proof. The finite Heyting structure is defined as in the non-modal case, e.g.
the meet operation is defined by the term

{((p, q), t) : (P× P)× P | t = p ∧ q}.
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The ordering is provability, i.e. the subobject {(p, q) : P× P | p ∧ q = q}.
The map

∆α : {p : P | >} −→ {p : P | >}{x:A|α}

is given by the term

∆α = {(x,w) : P (P× P (A× P)) | w = {(a, q) : P (A× P) | a ∈ α ∧ q = x}}.

Its right adjoint

∀α : {p : P | >}{x:A|α} −→ {p : P | >}

is defined by the term

{(w, t) | [∀x:A(x,>) ∈ w] = t}.

In a similar spirit its left adjoint:

∃α ≡ {(w, t) | [∃x:A(x,>) ∈ w] = t}.

The modal adjunction over the subobject classifier reads

i : {t : P | t = �t}� {t : P | >} : τ

by setting

i = {(t, s) : P× P | t = �t ∧ t = s}

τ = {(t, s) : P× P | �t = s}.

We next define the canonical model of a higher-order modal theory T in
ET.

Definition 4.10. Suppose given a higher-order theory T. We define the
canonical model [−] in ET in the following way.

• Basic types A are interpreted by terms {x : A | >}.

[A] = {x : A | >}.

In particular, the terminal type 1 is interpreted by the terminal object

{x : 1 | x = ∗}.

The type of propositions P is interpreted by the complete Heyting al-
gebra

[P] = {t : P | >}.
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• A term ∅ | t : B is sent to the arrow 1→ [B]

{(∗, t)}.

A basic function symbol f : A1, . . . , An → B is interpreted as the arrow

{(x1, . . . , xn, y) : A1 × · · · ×An ×B | f(x1, . . . , xn) = y}.

The definition for the complex types and terms follows the notion of a
model of a higher-order theory given before, exploiting the topos structure of
ET. In particular a term of the form x : A | �t : P is interpreted by the
composite

{x : A | >} [t]−→ {t : P | >} τ−→ {t : P | t = �t} i−→ {t : P | >}.

It follows that for every x : A | t : B the corresponding arrow [t] :
[A] → [B] in ET is well-defined, i.e. defined through a box-stable formula.
For instance, a term x : A | f(t) : B, for a function symbol f : A→ A′ and
term x : A | t : A′, will be the arrow

{(x′, y) : A′ ×A | f(x) = y} ◦ {(x, x′)×A×A′ | (x, x′) ∈ |t|},

where we assume by hypothesis that |t| is box-stable. Also note that terms
x : A | ϕ : P and x : A | �ϕ : P are in general different, since x : A | �ϕ : P
is interpreted as the arrow

{(s, t) : P× P | t = �s} ◦ ϕ = {(x, p) : A× P | ∃t.(x, t) ∈ |ϕ| ∧ p = �t}

Theorem 4.11 (Completeness). For any two formuals x : A | ϕ : P and
y : B | ψ : P, if

Jx : A | ϕ : PK ≤ Jy : B | ψ : PK

in ET, then

x : A | ϕ ` ψ

Proof. To begin with, consider a single formula x : A | ϕ : P such that

Jx : A | ϕ : PK = {(x, p) : A× P | ϕ = p}

in ET that factors through > : 1→ {p : P | >}. That is to say

{(x, p) : A× P | ϕ(x) = p} = {(x, p) : A× P | p = >}

It follows that

> ` ϕ(x) = > ` �ϕ(x) ` ϕ(x).
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Similarly, suppose the pair

〈Jx : A | ϕ : PK, Jy : B | ψ : PK〉 : {x : A | >} −→ {t : P | >} × {t : P | >}

factors through the partial ordering on {t : P | >}. This entails that

{(x, p) : A× P | p = >} = {(x, p) : A× P | p = (ϕ ∧ ψ = ϕ)}

It the follows as in the first case that

> ` > = (ϕ ∧ ψ = ϕ) ` (ϕ ∧ ψ = ϕ)

and thus

ϕ ` ψ.

Remark 4.12. Note that in contrast to non-modal intuitionistic higher-order
logic it is not in general the case that every functional relation

ϕ : {x : A | α} → {p : P | >}

is of the form f(x) = p, for some term x : A | f : P in T, i.e. lies in
the image of the canonical model. It is only true for those arrows ET that
factor through the subobject classifier. However, every proposition ET that
is internally true in ET, is of such a form, since then it is box-stable.

4.2 Functorial Semantics

In this section we show that the correspondence between logical functors
ET → E and models in a topos E that exists for a higher-order intuitionistic
theory T also works, in a slightly modified form, for modal higher-order
logic.24 Specifically, we intend to show that for any faithful complete Heyting
algebra H in E there is an equivalence

Logτ (ET, (E , H)) ' ModT(E , H)

between the category of suitable logical functors (which we will call τ -logical
later on) and models, or interpretations, of T in a τ -topos (E , H), i.e. in the
structure i : ΩE � H : τ .25 To formulate and prove this in detail, we need
to make some preliminary considerations. To begin with, we need to define
the two categories.

24 For the higher-order intuitionistic case see e.g. [1].
25 For the notion of τ -topos, confer remark 3.4.
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Definition 4.13. Consider a higher-order modal theory T and any two
models J−KM and J−KN in a τ -topos (E , H). An isomorphism of models
h : J−KM → J−KN is a family of isomorphisms

hA : JAKM −→ JAKN ,

indexed by the basic non-logical types in L(T). We extend the family (hA)
to all types as follows:

hA×B = hA × hB,

hAB = ((JAKN )hB )−1 ◦ h(JBKM )
A :

JAKJBKM
M

h
(JBKM )

A // JAKJBKM
N

((JAKN )hB )−1

// JAKJBKN
N ,

h1 = 1E ,

where 1 is the terminal type in T, and 1E is the identity arrow on the
terminal object in E;

hP = 1H .

As for terms, we require that for every constant c : A, the following
commutes:

1E

JcKM

��

JcKN

""

JAKM
hA

// JAKN

For every function symbol f : A1, . . . , An → B, the diagram

JA1KM × · · · × JAnKM
JfKm

//

hA1
×···×hAn

��

JBKM

hB

��

JA1KN × · · · × JAnKN JfKN
// JBKN

is to commute.

105



Lemma 4.14. For every term Γ | t : B the following diagram commutes:

JA1KM × · · · × JAnKM
JtKm

//

hA1
×···×hAn

��

JBKM

hB

��

JA1KN × · · · × JAnKN JtKN
// JBKN

Proof. This is shown by induction. For instance, assume that by induction
hypothesis for any two terms Γ | t1 : A and Γ | t2 : A it holds that hA ◦
JtiKM = JtiKN ◦ hΓ, for i = 1, 2. It follows that

hA×B ◦ J〈t1, t2〉KM = hA × hB ◦ 〈Jt1KM , Jt2K〉
= 〈hA ◦ Jt1KM , hB ◦ Jt2K〉
= 〈Jt1KN ◦ hΓ, Jt2KN ◦ hΓ〉
= 〈Jt1KN , Jt2KN 〉 ◦ hΓ

= J〈t1, t2〉KN ◦ hΓ,

using the rules for interpreting pairing terms and general properties of prod-
ucts in a category. In a similar fashion on shows analogous statements for
the other term constructors connected with products and exponentials. For
propositions the claim follows because hP is a map of complete Heyting
algebras. Thus, for instance, we obtain commutative diagrams

JΓKM
〈JϕKM ,JϕKN 〉

//

hΓ

��

JPKM × JPKM
∧ //

hP×hP

��

JPKM

hP

��

JΓKN
〈JϕKN ,JϕKN 〉

// JPKN × JPKN
∧ // JPKN

and

JΓ[xi : Ai]K
λAi .JΓ|ϕKM

//

hΓ[xi:Ai]

��

JPKJAiKM
M

∀JAiKM //

h
JAiKM
P

��

JPKM

hP

��

JΓ[xi : Ai]K
λAi .JΓ|ϕKN

// JPKJAiKN
N

∀JAiKN // JPKN

where the map hΓ[xi:Ai] is defined in the obvious way by omitting the ith
component of the map hA1 × · · · × hAn . For the modal operator, of course,

τ ′i′hP = hPiτ,
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by the remark after the last definition.

Definition 4.15. For any higher-order modal theory T, and any τ -topos
(E , H), the category ModT(E , H) has as objects all the models of T in (E , H),
and as arrows model isomorphisms in the sense of def. 4.13.

Definition 4.16. A τ -logical functor (E , H) → (F , H ′) between τ -toposes
(E , H) and (F , H) is a logical functor F : E → F equipped with an isomor-
phism of Heyting algebras

ıF : F (H) ∼= H ′

w.r.t. the Heyting structure induced by F .

We note that in order to show that ıF is an isomorphism of Heyting
algebras, it suffices to show that ıF is an isomorphism of the underlying
posets. Thus, since F preserves the top element and is logical it follows that

τ ′ ◦ ıF = Fτ.

We define the category

Logτ (ET, (E , H))

to have objects τ -logical functors ET → (E , H) and arrows natural isomor-
phisms between them. Here, we implicitly regard ET as equipped with the
canonical model structure given by the faithful Heyting algebra {t : P | >}
in ET.

Let F : (E , H) −→ (F ,K) be any τ -logical functor. It follows from the
properties of a τ -logical functor that given any model J−K in (E , H), the
image of F determines a model F J−K in (F ,K). Hence F defines a functor

ModT(F ) : ModT(E , H) −→ ModT(F ,K).

On the other hand, a τ -logical functor F : (E , H) −→ (F ,K) induces a
functor

F ◦ − : Logτ (ET, (E , H)) −→ Logτ (ET, (F ,K))

by composition with F .

Before stating and proving the theorem, we will collect some auxiliary
information.

Lemma 4.17. For any faithful Heyting algebra, and any two arrows ϕ,ψ :
A → H, if ϕ ≤ ψ (in Hom(A,H)), then ϕs ≤ ψs (in SubE(A)), where ϕs

is the pullback of > : 1→ H along ϕ, and similarly for ψ.
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Proof. If ϕ,ψ : A→ H then τϕ ≤ τψ w.r.t. ΩE . Since τϕ and τψ classifies
the pullbacks ϕs and ψs, resp., it immediately follows that ϕs ≤ ψs in
SubE(A).

A translation θ : L → L′ between higher-order modal theories is an
assignment of types an terms satisfying the following requirements. The type
constructors are to be preserved. For instance, θ(A×B) = θ(A)×θ(B), etc.
In particular, the types 1 and P are preserved. We require that θ preserves
closed terms and maps a function symbol f : A1×· · ·×An → B to a function
sumbol θ(f) : θ(A1), . . . , θ(An)→ θ(B). The map θ is then extended to all
terms as usual in such way that it preserves all the cartesian closed term
formers. For instance, a term Γ | πt : A is sent to a term θ(Γ) | πθ(t) : θ(A).
Moreoover, the modal operator must be preserved. Lastly, θ is to preserve
deduction. That is to say, Γ | ϕ ` ψ in L implies θ(Γ) | θ(ϕ) ` θ(ψ) in L′.

Denote by L(E) the theory of the internal language of a topos E . It is a
higher-order modal theory for the trivial modal operator.

Definition 4.18. For any higher-order theory T, and any model J−K in
(E , H), define a translation θ : T → L(E) as follows. On basic types, we
define

θ(1) = p1q,

θ(P) = pΩEq,

θ(A) = pJAKq.

One then recursively extends this definition to all the types in T in the ex-
pected way. For a closed term t : B:

θ(t) ≡ pJtKq

Similarly,
θ(f(t1, . . . , tn)) ≡ pJfKq(θ(t1), . . . , θ(tn))

A term
θ(Γ | ϕ : P) = (pτJϕKq(x1, . . . , xn) : pΩEq),

Lemma 4.19. Suppose x : A | ϕ ` ψ in T. Then x : θ(A) | θ(ϕ) ` θ(ψ) in
L(E).

Proof. Suppose x : A | ϕ ` ψ in T. By soundness of higher-order modal
logic and the previous lemma, we have that JϕKs ≤ JψKs in SubE(JAK). Since
τJϕK and τJψK are the classifying map of JϕKs and JψKs, resp., it follows that
x : θ(A) | θ(ϕ) ` θ(ψ) in L(E).

We use this to carry over the following argument to a higher-order modal
theory. In non-modal higher-order logic, in any interpretation every func-
tional relation

x : A, y : B | θ
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from x : A | ϕ to y : B | ψ determines, by soundness, an arrow Uϕ → Uψ
between the subobjects classified by the maps JϕK : JAK → ΩE and JψK :
JBK→ ΩE , resp. The condition that

x : A, y : B | θ ` ϕ ∧ ψ

implies, that the subobject Uθ classified by JθK : JAK × JBK → ΩE factors
through Uϕ × Uψ, say by a map 〈a, b〉. The condition that

x : A | ϕ ` ∃y:Bθ

implies that a is an epimorphism. Finally, the condition

x : A, y : B, y′ : B | θ ∧ θ[y′/y] ` y = y′

implies that a is a monomorphism. Hence a is an isomorphism. The required
arrow Uϕ → Uψ then is the composite

Uϕ
a−1

// Uθ
b // Uψ.

Moreover, this construction is functorial. If θ is an identity arrow on a
formula x : A | ϕ, then Uϕ → Uϕ is the identity arrow. If θ is a functional
relation from x : A | ϕ to y : B | ψ, determining the subobject

〈a, b〉 : Uθ → Uϕ × Uψ,

and σ is a functional relation from y : B | ψ to z : C | ρ, determining a
subobject

〈c, d〉 : Uσ → Uψ × Uρ

then the arrow determined by the composite

x : A, z : C | ∃y:B(θ ∧ σ)

is precisely the composite dc−1ba−1. Hence the construction preserves com-
positition. The same argument applies to box-stable functional relation in
a higher-order modal theory using lemma 4.19:

Lemma 4.20. For any box-stable formula x : A, y : B | θ that is provably a
functional relation between box-stable formulas x : A | ϕ and y : B | ψ, the
pullback of > : 1→ H along JθK : JAK× JBK→ H factors through JϕK× JψK
and determines a unique arrow JϕK→ JψK.

We are now in a position to state and prove the theorem.
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Theorem 4.21. For any higher-order modal theory T, and any H-topos
(E , H), there exists an equivalence of categories

ModT(E , H) ' Logτ (ET, (E , H)),

where we regard ET w.r.t. to the canonical model structure. Moreover, this
equivalence is natural in (E , H) in that for any τ -logical functor L : (E , H) −→
(F ,K) the following commutes (up to canonical isomorphism):

ModT(E , H)
∼

ModT(F )

��

Logτ (ET, (E , H))

F◦−

��

ModT(F ,K)
∼

Logτ (ET, (F ,K))

Proof. (i) We first define a functor

ModT(E , H)→ Logτ (ET, (E , H)).

Consider any model J−K in (E , H). For an object {x : A | α} in ET, define
M({x : A | α}) to be the object that arises from pulling back > : 1 → H
along JαK : JAK→ H.

M({x : A | α}) //
��

ıα

��

1

>

��

JAK
JαK

// H

For an arrow {x : A | α} −→ {y : B | β} in ET, given by a term {(x, y) :
A×B | γ}, there is, by lemma 4.20, an arrow

M({x : A | α}) −→M({y : B | β})

in E between the subobjects classified by JαK and JβK, resp. This construc-
tion preserves identities and composites as observed earlier.

The functor M is a τ -logical functor. Cartesian closedness mostly follows
the non-modal version. For instance:

• As to the terminal object in ET we note that

{z : 1 | z = ∗} = {z : 1 | >},

since z : 1 | > ` ∗ = z in T. But M({z : 1 | >}) = 1E .
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• Consider a product α × β = {(x, y) : A × B | x ∈ α ∧ y ∈ β} in ET.
The term x ∈ α ∧ y ∈ β is interpreted in E as the composite

JAK× JBK
JαK×JβK−−−−−→ H ×H ∧−→ H.

The pullback of > along this arrow is just

M({x : A | α})×M({y : B | β}),

with projection ıα × ıβ into JAK× JBK.

• Subobject classifier:

M({t : P | t = �t}) = ΩE .

The term t : P | t = �t is interpreted under J−K as the arrow

H
〈1,iτ〉−−−→ H ×H δH−−→ ΩE

i−→ H

in E . The claim now follows from the following sequence of pullbacks:

ΩE
i //

i

��

H //

∆

��

1 //

>

��

1

>

��

H
〈1,iτ〉

// H ×H
δH

// ΩE i
// H

•
M({t : P | >}) = H.

The term t : P | > : P is interpreted under J−K in E as the arrow

H
!−→ 1

>−→ H whose pullback along > : 1 → H is the identity arrow
on H.

• M preserves the partial ordering on {t : P | >}. The latter was defined
as the object

{(p, q) : P× P | p ∧ q = p},

with the canonical inclusion as a subobject into {t : P | >}×{t : P | >}.
The term

p : P, q : P | p ∧ q = p

is interpreted under J−K as the following map:

H ×H
〈π1,∧〉

// H ×H δH // ΩE
i // H

The pullback of > : 1 → H along this map is precisely the equalizer
of π1 and ∧, i.e. the partial ordering of H.
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• The arrow

{p : P | >} {〈t,s〉:P×P|s=�t}−−−−−−−−−−−→ {p : P | p = �p}

in ET is mapped by M to the arrow τ : H → ΩE in E . By the definition
of M we form the pullback of > along the composite

H ×H iτ×1
// H ×H δH // ΩE

i // H.

as follows

H
1 //

〈1,iτ〉

��

H

∆

��

// 1

>

��

H ×H
iτ×1

// H ×H
δH

// ΩE

The subobject 〈1, iτ〉 factors as (1× i)〈1, τ〉. Hence the arrow defined
by the functional relation s = �t is exactly τ .

• In a similar spirit one shows that M({(p, q) : P× P | p = �p ∧ p = q}
is mapped to i : ΩE → H. We need to compute the pullback of
> : 1→ H along

H ×H 〈iδH〈π1,iτπ1〉,iδH〉−−−−−−−−−−−→ H ×H ∧−→ H.

The pullback of 〈>,>〉 along 〈iδH〈π1, iτπ1〉, iδH〉 is computed com-
ponentwise. On the one hand, the pullback of > along iδH is of
course ∆ : H → H × H. On the other hand, the pullback of >
along iδH〈π1, iτπ1〉 can be computed as the pullback

ΩE ×H //

i×1

��

H

∆

��

H ×H
〈π1,iτπ1〉

// H ×H

This can be directly verified since in a pullback of that form the left-
hand vertical projection must be the equalizer of π1 and iτπ1, which
is precisely i× 1.
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The pullback of 〈>,>〉 along 〈iδH〈π1, iτπ1〉, iδH〉 then is the diagonal
composite through the following pullback:

ΩE

〈1,i〉

��

i // H

∆

��

ΩE ×H i×1
// H ×H

That is to say, the map 〈i, i〉 : ΩE −→ H × H. We get that 〈1, i〉 :
ΩE −→ ΩE ×H is the graph of the arrow we are looking for, which is
i.

Consider any isomorphism of models h : J−KM → J−KN . We define a
natural transformation η : M → N as follows. Given any object {x : A | α}
in ET, we first get the following commutative diagram in E , where we write
HM for the complete Heyting algebra JPKM , and similarly for N :

JAKM
JαKM

//

hA

��

HM

hP

��

JAKN JαKN
// HN

Pulling back > : 1→ HN yields a pullback cube the left-hand face of which
is

M({x : A | α})

��

ηα
// N({x : A | α})

��

JAKM
hA

// JAKN

Since this is a pullback and hA is an isomorphism, hence so is ηα.

As for naturality, consider an arrow

{(x, y) : A×B | ϕ} : {x : A | α} −→ {y : B | β}.
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in ET. We construct the following pullback

G

〈a,b〉

��

γ
// G′

〈c,d〉

��

M({x : A | α})×M({x : A | β})
ηα×ηβ

//

ıα×ıβ

��

N({x : A | α})×N({x : A | β})

ı′α×ı′β

��

JAKM × JBKM
hA×hB

// JAKN × JBKN

Here G is the pullback of > : 1 → HM along the arrow J(x, y) : A × B |
ϕ : PKM . Similarly, G′ is the pullback of > : 1 → HM along the arrow
J(x, y) : A × B | ϕ : PKN . The factorization γ : G → G′ is the upper
projection of the back face of a pullback cube around the square

JAKM × JBKM
hA×hB

//

Jx:A,y:B|ϕ:PKM

��

JAKN × JBKN

Jx:A,y:B|ϕ:PKN

��

HM
hP

// HN

From
〈c, d〉γ = (ηα × ηβ)〈a, b〉

it follows that
dγ = ηβb

cγ = ηαa.

Since the projections a and c are isomorphisms, moreover,

γa−1 = c−1cγa−1 = c−1ηαaa
−1 = c−1ηα.

Hence the following commutes:

M({x : A | α})

ηα

��

a−1
// G

γ

��

b //M({x : A | β})

ηβ

��

N({x : A | α}) c−1
// G′

d // N({x : A | β})
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This is precisely the required naturality square.

(ii) We next construct a functor

Log(ET, (E , H))→ ModT(E , H).

Suppose F : ET → (E , H) is a τ -logical functor. So in particular

F ({t : P | >}) = H.

Define a model J−KF as follows. For a basic type A in T set

JAKF = F ({x : A | >}).

The terminal type 1 is of course interpreted by the terminal object of E
which in fact agrees with the definition just given, as {x : 1 | >} is the
terminal object in ET. Moreover,

JPKF = H,

by assumption. The other type formers are interpreted in accordance with
the topos structure of E as described for any model.

As for terms, consider a basic constant c : A. Applying F to the arrow

[c] : 1 −→ {x : A | >}

in the canonical model yields an arrow

F ([c]) : 1 −→ F ({x : A | >}) = JAKF .

in E . Hence we set

Jc : AKF = F ([c]).

If f : A1 × · · · ×An → B is a function symbol, we have in ET the arrow

[f ] : {(x1, . . . , xn) : A1 × · · · ×An | >} −→ {y : B | >}

given by the term

{(x1, . . . , xn, y) : A1 × · · · ×An ×B | f(x1, . . . , xn) = y}.

Thus we define

JfKF = F ([f ]).

By induction over terms x : A | t : B, one obtains

Jx : A | t : BKF = F ([x : A | t : B]),
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where [x : A | t : B] is the interpretation in the canonical model. This
defines the object part of a functor

Log(ET, (E , H))→ ModT(E , H).

Given a natural isomorphism η : F → G between τ -logical functors
F,G : ET → (E , H) we obtain a morphism of models hη : J−KF → J−KG by
setting

(hη)A : JAKF = F ({x : A | >})
η{x:A|>}−−−−−→ G({x : A | >}) = JAKG,

for any basic type. The map (hη)P = η{p:P|>} will in fact be a morphism
of complete Heyting algebras. For the Heyting operations >,⊥,∧,∨,⇒ this
follows because F and G are logical. Writing H for the object {p : P | >},
for conjunction we get

FH × FH ∼

ηH×ηH

��

F (H ×H)
F (∧)

//

ηH×H

��

FH

ηH

��

GH ×GH ∼
G(H ×H)

G(∧)
// GH

For any constant c : A, we have the following naturality square:

1E ∼= F ({x : 1 | >})
η{x:1|>}

∼=
//

F ([c])

��

G({x : 1 | >}) ∼= 1E

G([c])

��

F ({x : A | >}) η{x:A|>}

∼= // G({x : 1 | >}

Similarly for any function symbol f : A1, . . . , An → B, where the analogous
statement follows because F and G preserve products.

(iii) We proceed to show that these two constructions form an equivalence
of categories. We start with a τ -logical functor F : ET → (E , H) from
which we define the model J−KF which in turn is used to define a functor
M : ET → E .

First consider objects in ET of the form {x : A | >}. By definition of the
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functor M , the object M({x : A | >}) is obtained through pullback as in

M({x : A | >}) //

��

1

>

��

JAKF // 1
>

// F ({t : P | >})

Here the lower composite is Jx : A | > : PKF . Hence

M({x : A | >}) ∼= JAKF = F ({x : A | >}).

Next, consider any closed term {x : A | α} : PA, for a box-stable formula
α. The model J−KF provides us with an arrow JαKF : Jx : A | α : PKF → H
in E . To show that M({x : A | α}) ∼= F ({x : A | α}) it suffices to show that
there is a pullback diagram

F ({x : A | α}) //

��

1

>

��

F ({x : A | >})
JαKF

// F ({t : P | >})

as this is how M({x : A | α}) was defined. To prove this, recall that the
following is a pullback in ET:

{x : A | α} //

ıα

��

1

>

��

// 1

>

��

{x : A | >}
char ıα

// {t : P | t = �t}
i

// {t : P | >}

Here,
ıα ≡ {(x, x′) : A×A | α ∧ x = x′}

is the canonical inclusion and char ıα the classifying map of ıα in ET. More-
over:

i ◦ char ıα ≡ i ◦ {(x, t) : A× P | t = ∃x′:A.(x′, x) ∈ ıα}
= i ◦ {(x, t) : A× P | t = ∃x′:A.α ∧ x = x′}
= i ◦ {(x, t) : A× P | t = α}
= [x : A | α],
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where the latter is the interpretation in the canonical model. Hence

Jx : A | αKF = i ◦ F (char ıα),

and the claim follows by applying F to the pullback above. Note, inciden-
tally, that it follows F (ıα) is precisely the left-hand vertical projection in
the pullback

F ({x : A | α}) //

F (ıα)

��

1

>

��

F ({x : A | >})
JαKF

// F ({t : P | >})

To show that the isomorphisms F ({x : A | α}) ∼= M({x : A | α})
are natural, we note that the previous argument holds for any box-stable
formula x1 : A1, . . . , xn : An | α : P. In particular, α may be a functional
relation. So consider an arrow

{x : A | α} {(x,y):A×B|ϕ}−−−−−−−−−→ {y : B | β}

in ET. In the following we will abbreviate the application of F to objects
{x : A | α} in ET by writing F (α). For a functional relation ϕ representing
an arrow in ET, we will write F (ϕ→). This is to distinguish the arrow

F (α)
F (ϕ→)−−−−→ F (β)

in E from the object F (ϕ) which occurs as a subobject of JAKF × JBKF ,
classified by the map

JAKF × JBKF
Jx:A,y:B|ϕKF−−−−−−−−→ F (HT).

As for any model, since ϕ is a functional relation from x : A | α to y : B | β
this object F (ϕ) factors through the monomorphism ıα×ıβ : F (α)×F (β)→
JAKF × JBKF by a map 〈a, b〉 where a is an isomorphism and determines an
arrow ba−1 : F (α)→ F (β). That is to say, ba−1 = F (ϕ→). Equivalently, we
might show that the map JϕKF classifies the monomorphism 〈ıα, ıβF (ϕ→)〉 :
F (α)→ JAKF × JBKF . This is less obvious than it seems, as we don’t really
know much about the arrow F (ϕ→). However, we can use an observation
from before. For recall that JϕKF = i ◦ F (char ϕ), where char ϕ is the
classifying map of the monomorphism

ϕ : {(x, y) : A×B | ϕ} // {x : A | >} × {y : B | >}
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in ET; given by the usual formula

ϕ ≡ {((x, y), (x′, y′)) : (A×B)× (A×B) | ϕ ∧ x = x′ ∧ y′ = y}.

As such it factors as usual

{(x, y) : A×B | ϕ}
〈c,d〉

// {x : A | α} × {y : B | β}

α×β

��

{x : A | >} × {y : B | >},

with
c ≡ {((x, y), x′) | ϕ ∧ x = x′},

and similarly for d. Moreover, c is an isomorphism with inverse

c−1 ≡ {(x′, (x, y)) | ϕ[x′/x] ∧ x = x′}.

It now follows that d ◦ c−1 = ϕ, as arrows in ET. That is to say, the object
{(x, y) : A × B | ϕ} is the graph of the arrow represented by {(x, y) :
A × B | ϕ}. Now any functor G : C → D that preserves finite limits
preserves graphs of arrows in the sense that if 〈m,n〉 is the graph of an
arrow f in C, i.e. f = nm−1, then 〈F (m), F (n)〉 is the graph of the arrow
F (f) in D, i.e. F (f) = F (n)F (m)−1. Hence, for our case it follows that the
monomorphism 〈a, b〉 : F (ϕ) → F (α) × F (β) is graph of the arrow F (ϕ→),
i.e. ba−1 = F (ϕ→).

With this observation we conclude that the arrow

JϕKF : JAKF × JBKF → FHT

classifies the subobject (ıα × ıβ)〈1, F (ϕ→)〉 in E , since of course 〈1, F (ϕ→)〉
is also a graph of F (ϕ→). In diagrams, the following commutes:

F (α)
a−1

//

〈1,F (ϕ→)〉

��

F (ϕ)

〈a,b〉

��

F (α)× F (β)

so that the a−1 is the canonical isomorphism between the two pullbacks.
Now consider again the functor M : ET → E constructed out of the model

J−KF . By definition of M , we obtain isomorphisms

u : F (ϕ) ∼= M(ϕ)
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and

uα : F (α) ∼= M(α) uβ : F (β) ∼= M(β).

Moreover, because M preserves finite limits, M likewise preserves graphs.
That is to say that the monomorphism

〈M(c),M(d)〉 : M(ϕ)→M(α)×M(β)

is a graph of the arrow M(ϕ→). This means in particular that the following
commutes:

F (ϕ)

〈a,b〉

��

u //M(ϕ)

〈M(c),M(d)〉

��

F (α)× F (β)
uα×uβ

//M(α)×M(β)

Putting everything together results in the commutative square

F (α)

1

��

uα //M(α)

M(c)−1

��

F (α)
ua−1

//

F (ϕ)

��

M(ϕ)

M(d)

��

F (β) uβ
//M(β)

This is precisely saying that we have a natural isomorphism F ∼= M .

In the other direction, consider any model J−K in E . We construct the
functor M : ET → E from which we will construct a model J−KM . We then
show that J−K ∼= J−KM in the precise sense that there is an isomorphism of
models.

We need to show that for or any type A

JAK ∼= JAKM ,

and for any term x : A | t : B

JtK ∼= JtKM ;
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where the isomorphism means that the arrows commute with the isomor-
phism of their domain and codomain, resp. as required in def. 4.13.

For any basic type A, the object J−KM is the pullback of > : 1 → H

along the composite JAK→ 1
>−→ H which is JAK itself. Hence

JAKM ∼= JAK.

It is readily checked that this holds for all the types.

For any term x : A | t : B the arrow

Jx : A | t : BKM : JAKM −→ JBKM

is by definition the map

M({(x, y) : A×B | t = y}).

The latter in turn is defined to be the arrow in E whose graph is classified
by the morphism

Jx : A, y : B | t = y : PK : JAK× JBK→ H.

It is now easy to check that the subobject classified by this map is

〈1, Jx : A | t : BK〉 : JAK→ JAK× JBK,

as in the following pullback diagram

JAK
JtK

//

〈1,JtK〉

��

B

∆B

��

// 1

>

��

1

>

��

JAK× JBK
JtK×1

// JBK× JBK
δ

// ΩE i
// H

where the lower composite is spelling out the definition of Jx : A, y : B | t =
y : PK. Hence the arrow we seek is precisely Jx : A | t : BK.

(iv) Lastly, naturality of the equivalence

Logτ (ET, (E , H)) ' ModT(E , H)

w.r.t. τ -logical functors follows since a τ -logical functor F : (E , H)→ (F , H ′)
preserves finite limits and satisfies FH ∼= H ′. Thus, chasing a given model
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J−K of T in E either way around the naturality square results in the pullback

FM({x : A | α}) //

��

1

>

��

FM(JAK)
F (JαK)

// FH ∼= H ′

4.3 Relative Models in Sh(E)

We now study properties of yΩE -relative models in the category Sh(E) of
sheaves on a small topos E for the finite epi topology. We start with the
connection between the sheaf yΩE and the subobject classifier Ω in Sh(E).
Recall that the subobject classifier in the topos of sheaves on a site assigns
to each C in E the set ΩE(C) of closed sieves on C. A sieve σ on C is closed
if it satisfies the following condition: if for any map f : D → C in E the
restriction f∗σ is a covering sieve on D, then f ∈ σ.

Let ı : yΩE → Ω be the classifying map of the top element 1 ∼= y1
y>−−→

yΩE of the Heyting algebra yΩE . The map ı has the property that it is
the (pointwise) ideal completion of yΩE . That is to say, each set Ω(C) is
isomorphic, as a complete Heyting algebra, to the set of all ideals in the
Heyting algebra yΩE(C). Through the isomorphism yΩE(C) ∼= SubE(C),
and denoting the set of ideals by Idl(SubE(C)), the statement reads as fol-
lows.

Fact 4.22. For Ω in Sh(E), and any C in E,

Ω(C) ∼= Id(SubE(C)).

For each C in E, the composite

ıC : yΩE(C)→ Ω(C) ∼= Id(SubE(C))

sends a subobject M of C to ↓M .

In particular, ı : yΩE −→ Ω, at a component C, assigns to any arrow
g : C → ΩE in E the sieve of all those arrows f : X → C such that

X //

f

��

1

>

��

C g
// ΩE
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commutes. In terms of subobjects, for any M ∈ SubE(C):

ıC(M) = {f : X → C | f∗M ∼= X}.

That is to say, it is the set of all those maps f : X → C such that in the
pullback

P //

��

M��

��

X
f

// C

the projection P → X is an isomorphism (i.e. represents the top element
of the subobject lattice SubE(X)). Equivalently, it is the set of all maps
f : X → C that factor through the subobject (represented by) M .

We now wish to shed some more light on potential yΩE -based relative
model structures in Sh(E). The following propositions gives a characteriza-
tion of the yΩE -standard objects in Sh(E).

Proposition 4.23. For any small topos E, and J the finite epi topology on
E, an object A in Sh(E , J) is yΩE -standard if and only if for any E in E and
any map η : yE → A the pullback

P

p

��

// A

∆A

��

yE η
// A×A

is representable; i.e. P ∼= yE′ for some E′ and p = ym for some map
m : E′ → E in E.

Proof. Suppose A is yΩE -standard. Then for any C in E and any pair
a, b ∈ AC, there is a subobject m : (∂A)C(a, b) ↪→ C such that an arrow
f : D → C factors through (∂A)C(a, b) (necessarily uniquely) if and only if
A(f)(a) = A(f)(b). Any natural transformation η : yC → A×A determines
a pair (a, b) ∈ AC ×AC such that for any h : D → C by definition ηD(h) =
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(A(h)(a), A(h)(b)). So there is a commutative square

y∂C(a, b)

ym

��

q
// A

∆A

��

yC η
// A×A

where q is given by qD(h) = A(mh)(a) = A(mh)(b). Hence

(∆A)DqD(h) = (∆A)DA(mh)(a)

= (A(mh)(a), A(mh)(b))

= ηD(mh)

= ηD(ym)D(h).

It is now immediate that for each D the square is a pullback in Sets, i.e. any
f : D → C with A(f)(a) = A(f)(b) lifts uniquely to a map D → (∂A)C(a, b).

Conversely, assume the “small diagonal” condition and consider any pair
(a, b) ∈ AC×AC. There is a corresponding natural transformation η : yC →
A×A and thus a pullback square

yE

ym

��

q
// A

∆A

��

yC η
// A×A

for some E and m. In particular m : E → C must be monic, since ym
is. By definition of pullbacks in Sets, for each pair (f : D → C, c ∈ AD)
such that A(f)(a) = A(f)(b) (i.e. ηD(f) = (∆A)D(c)), there exists a unique
h : D → E such that mh = f . Hence, the inclusion m : E ↪→ C has precisely
the property that defines (∂A)C(a, b).

This really defines a natural transformation ∂A : A×A→ yΩE . Consider
any f : D → C. Just as for a, b ∈ AC, the pair A(f)(a), A(f)(b) ∈ AD
induces by Yoneda a natural transformation η′ : yD → A× A. We need to
show that the map m′ : E′ → D that comes from the pullback ym′ : yE′ →
yD of ∆A along η′ coincides with pullback of the subobject m : E � C
along f . In fact, since the isomorphism Hom(yC,A× A) ∼= AC × AC that
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defines η is natural in C, it follows that η◦yf = η′. Hence there are pullbacks

yE′
��

ym′

��

// yE
��

ym

��

// A

∆A

��

yD
yf

//

η′

55
yC

η
// A×A

Since y reflects pullbacks, this proves the claim.

It turns out that the yΩE -standard objects are precisely the ideals in
Sh(E) that have been studied in [4]. An ideal diagram in E is a functor
F : I → E from a directed poset I such that for any inequality i ≤ j in I,
the map F (i) → F (j) in E is a monomorphism. An ideal in Sh(E) is, by
definition, a colimit of the composite functor

I
F // E y

// Sh(E)

where y is the factorization of the Yoneda embedding through the sheaf
topos, which exists because the finite epi topology is subcanonical. The
following proposition occurs in [4].

Proposition 4.24. The following are equivalent:

• A sheaf A is an ideal

• A satisfies the small diagonal condition from prop. 4.23, i.e. the pull-
back of ∆A along any map yC → A is representable

Hence prop. 4.23 gives a new characterization of ideal sheaves.

As far as yΩE -relative model structures are concerned, it is, however,
the case that yΩE is generally not complete w.r.t. ideals. Nevertheless, it
seems worthwhile to study the connection between ideals and yΩE -relative
modal structures in Sh(E) w.r.t. to the ideal completion ı : yΩE ↪→ Ω.
We give a characterization of those potential Heyting algebras that admit a
yΩE -relative S4 algebra

i : yΩE � H : θ

As it turns out, H must be an ideal as well.

To begin with, for any such potential adjunction i ` τ , the map τ must
pull back the top element of yΩE to the top element of H. For any Heyting
algebra H in Sh(E , J), the top element > : 1 → H has a classifying map
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τ : H → Ω. Hence, for any map h : H → yΩE that preserves the top
element of H, the corresponding square

1

>

��

// 1

>

��

H
h

// yΩE

is a pullback if and only if

ı ◦ h = τ.

where, ı : yΩE → Ω is the ideal completion. Hence, for any potential model
structure

i : yΩE � H : θ,

the right adjoint θ of i must necessarily satisfy ı ◦ θ = τ .

By definition of ı and τ a necessary and sufficient condition for the
existence of θ is that for any C in E , and a ∈ H(C), there exists a map
µ : C → ΩE such that the set

τC(a) = {f : X → C | H(f)(a) = >X},

where >X is the top element of H(X), coincides with the set of all those
morphisms f : X → C such that

X

f

��

// 1

>

��

C µ
// ΩE

commutes. Or, equivalently, with the set of arrows f : X → C that factor
through the subobject classified by µ. The map θ then has components

θC(a) = µ.

The components of θ defined in this way indeed form the components of
a natural transformation, simply because the outer part of the following
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diagram commutes

HC

H(f)

��

θC //

τC

((

yΩE(C)
ıC //

yΩE(f)

��

Ω(C)

Ω(f)

��

HD
θD //

τD

66
yΩE(D)

ıD // Ω(D)

Then the left-hand square commutes, because each component of ı is injec-
tive.

Of course, if H is of the form yH ′, for a complete Heyting algebra H ′ in
E , with its canonical map θ′ : H ′ → ΩE , then a ∈ H(C) is a map a : C → H ′,
and µ is the composite

C
a // H

θ′ // ΩE .

The requirement for the more general case can also be expressed as
follows.

Proposition 4.25. For any Heyting algebra H in Sh(E , J), a map θ : H →
yΩE satisfying

ı ◦ θ = τ

exists if and only if, for any C in E, the pullback of > : 1 → H along
any map a : yC → H is representable. That is to say, there exists a map
m : U → C, necessarily a monomorphism, such that

yU

ym

��

// 1

>

��

yC a
// H

is a pullback.

Proof. The pullback, being a subobject of yC, can be identified with a sieve
on C. Unwinding definitions, in particular the Yoneda lemma, shows that,
for any a ∈ H(C), it is precisely the sieve of arrows f : D → C such that
H(f)(a) = >D. The requirement that it is representable then means that
there is a monomorphism m : U → C such that an arrow is in this sieve if
and ony if it factors through m.
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Specifically, if the condition is satisfied, one may set θC(a) = µ, where
µ : C → ΩE is the classifying map of m in E .

However, note that

yC
a //

yµ

!!

H

θ

��

yΩE

does not commute in general. By contrast, for any D in E and f : D → C,
it holds that

θDaD(f) = (yµ)D(f)

just in case f factors through U . In fact, ym is the equalizer of yµ and θa.
Consider any map η : A→ yC in Sh(E , J). If for any D in E it holds that

θDaDηD(x) = (yµ)DηD(x),

for any x ∈ A(D), then there exists a, necessarily unique, map η′ : A→ yU
such that

ym ◦ η′ = η.

This readily follows by observing that the condition means that for any
x ∈ A(D) the map ηD(x) : D → C factors, necessarily uniquely, through m.
Hence define η′D(x) to be that factorization.

We thus have the following.

Proposition 4.26. For any Heyting algebra H in Sh(E , J), a map θ : H →
yΩE fitting into a pullback diagram

1

>

��

// 1

>

��

H
θ

// yΩE

exists if and only if the sheaf H is an ideal in Sh(E , J).

Proof. If such a θ exists, then H is yΩE -standard, because of the pullbacks

H

∆H

��

// 1

>

��

1

>

��

1

>

��

H ×H ⇔
// H

θ
// yΩE ı

// Ω
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so that the lower composite is a classifying map for ∆H . Hence, by prop.
4.23, H is an ideal. For the converse, suppose the Heyting algebra H is an
ideal in Sh(E , J). The pullback of > : 1→ H along a map a : yC → H can
be constructed as the equalizer of the two composites in (not commutative)
square

yC × 1 ∼= yC

��

u // 1

>

��

yC a
// H

with the evident projections to yC and 1, resp. This equalizer (or rather
the projection to yC) can in turn be expressed as the vertical projection in
the following pullback

E

e

��

// H

∆

��

yC
〈a,>u〉

// H ×H

Since H is an ideal, E ∼= yU , for some U in E , and e is of the form ym for
some monomorphism m : U → C. Hence the following is a pullback:

yU

ym

��

u // 1

>

��

yC a
// H

Hence θ exists by prop. 4.25.

As a result, yΩE -relative S4 algebras really sit in the full subcategory
Idl(E) ↪→ Sh(E) of ideals. One may wonder if yΩE has a universal property
w.r.t. to complete Heyting algebras in Idl(E) similar to the initial frame ΩE
in a topos E . Since yΩE is not itself ideal complete, the question might
be whether there exists a unique adjoint structure yΩE � H whenever
a Heyting algebra H in Idl(E) is complete w.r.t. representable functors.
However, this does not seem to be the case. In fact, it might even be that a
monic left adjoint to θ : H → yΩE exists only if H is representable as well.
This would of course significantly weaken the previous results.
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Remark 4.27. There is an evident necessary condition for i to exist. Suppose
H ∼= lim−→I

yCi is an ideal. Since an ideal colimit is a sheaf, it can be computed
as a colimit of presheaves. That is to say, it is evaluated pointwise, for any
D in E , as a colimit in Sets:

(lim−→
I

yCi)(D) ∼= lim−→
I

yCiD = lim−→
I

HomE(D,Ci).

By construction of directed colimits in Sets, each component of λi at D
maps a map f : D → Ci to its equivalence class containing all those maps
g : D → Cj , for some object Cj in the diagram underlying H, for which
there exists there exist a cospan

Ci
αik−−→ Ck

αjk←−− Cj ,

in the diagram, such that αjkg = αikf . For an arrow f : B → D, the
function

(lim−→
I

yCi)(D)→ (lim−→
I

yCi)(B)

is by precomposition, and it preserves equivalence classes.
Now any map η : yD → lim−→I

yCi, determines, by the Yoneda lemma, an
element η0 ∈ (lim−→I

yCi)(D). That is to say, by the previous, an (equivalence
class of an) arrow η0 : D → C0, for some C0 in the underlying diagram of
the colimit. It follows that λ0 ◦ y(η0) = η, i.e. the following commutes:

yC0
λ0 // lim−→I

yCi

yD

η

<<

η0

OO

Hence, every η factors through the base of lim−→I
yCi. This factorization is

not unique in general. There is a factorization yf : yD → yCi for any arrow
f in the equivalence class of η0.

If a map i, left adjoint to θ, exists, it necessarily factors through a cocone
component λ0 : yC0 → H, as yi0, for a monomorphism i0 : ΩE → C0.
However, no non-trivial sufficient condition is known at that point (non-
trivial in the sense that yH is not assumed to be representable).

4.4 Topological Embeddings

In this section we state the topological completeness theorem. For this we
will need to consider finite limit preserving functors f∗ : E → F between
toposes that preserve the model structure. One motivation to study relative
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model structure in the first place was that most functors of interest F : E →
F between topoi do not preserve the subobject classifier, and thus do not
map an adjunction

i : ΩE � H : τ

to an adjunction
i : ΩF � FH : τ.

Moreover, many functors do not preserve completeness of internal Heyting
algebras. Relative models provide a means to keep the essential algebraic
properties provided by the adjunction over ΩE , while at the same time allow
for a better notion of model-preserving functor, as we will see shortly.

Definition 4.28. For any B-relative model structure H � B ↪→ ΩE in a
topos E, a functor F : E → F is said to preserve the model structure if

• F preserves finite limits

• For any Heyting algebra in E the Heyting algebra FH is F -complete

• The classifying map ı : FΩE −→ ΩF of the top element of the Heyting
algebra FΩE is a monomorphism

Since F preserves finite limits, and thus monomorphisms, it follows that
the composite

FB
Fβ

// FΩE
ı // ΩF

classifies the top element of FB and is moreover monic. Moreover, such
a functor takes an interpretation in E to an interpretation in F respecting
validity.

For instance, the Yoneda embedding y : E → Sh(E) preserves model
structures in this sense, because it is cartesian closed and ı : yΩE → Ω is
monic. Moreover, since y is an embedding, given a faithful complete Heyting
algebra H in E , the resulting yΩE -based structure

yi : yΩE � yH : yτ (19)

derives completely from the original one, and any model essentially derives
from a model in the structure in E . That is to say, any proposition that
holds in any model in the relative structure (19) (when it is understood as
y-relative in the sense that types are interpreted by representables) holds in
the corresponding model in E .

There is another class of functors that has similar properties. Recall that
a connected geometric morphism is one whose inverse image part is full and
faithful.

Fact 4.29. The inverse image of any connected locally connected geometric
morphism f : F → E preserves and reflects (relative) model structures.
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Proof. For any locally connected morphism f : F → E the map τ• : f∗ΩE →
ΩF is a monomorphism,26 hence so is the composite f∗H � f∗ΩE

τ•−→ ΩF .
Moreover, f∗ is cartesian closed and full and faithful.

The next theorem can be found in [8] or [9].

Theorem 4.30. For every Grothendieck topos G with enough points, there
exists a topological space X and a connected, locally connected geometric
morphism

p : Sh(X) −→ G.

Theorem 4.31. There exists a topological space X and a generic relative
model in the topos Sh(X) of sheaves on X.

Proof. Consider the syntactic topos ET of a higher-order rmodal theory T,
and the topos Sh(ET) of sheaves on ET for the finite epi topology. Since
topos ET is coherent, and thus has enough points, by theorem 4.30 it can be
covered by a connected locally connected geometric morphism

p : Sh(XT) −→ Sh(ET).

Hence there is a string of cartesian closed embeddings

E y
// Sh(ET)

p∗
// Sh(XT)

that transports the canonical model in ET to a faithful relative model in
Sh(XT).

26 e.g. [7], [14]
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