11 research outputs found

    Causality-Inspired Taxonomy for Explainable Artificial Intelligence

    Full text link
    As two sides of the same coin, causality and explainable artificial intelligence (xAI) were initially proposed and developed with different goals. However, the latter can only be complete when seen through the lens of the causality framework. As such, we propose a novel causality-inspired framework for xAI that creates an environment for the development of xAI approaches. To show its applicability, biometrics was used as case study. For this, we have analysed 81 research papers on a myriad of biometric modalities and different tasks. We have categorised each of these methods according to our novel xAI Ladder and discussed the future directions of the field

    From Anecdotal Evidence to Quantitative Evaluation Methods:A Systematic Review on Evaluating Explainable AI

    Get PDF
    The rising popularity of explainable artificial intelligence (XAI) to understand high-performing black boxes raised the question of how to evaluate explanations of machine learning (ML) models. While interpretability and explainability are often presented as a subjectively validated binary property, we consider it a multi-faceted concept. We identify 12 conceptual properties, such as Compactness and Correctness, that should be evaluated for comprehensively assessing the quality of an explanation. Our so-called Co-12 properties serve as categorization scheme for systematically reviewing the evaluation practices of more than 300 papers published in the past 7 years at major AI and ML conferences that introduce an XAI method. We find that one in three papers evaluate exclusively with anecdotal evidence, and one in five papers evaluate with users. This survey also contributes to the call for objective, quantifiable evaluation methods by presenting an extensive overview of quantitative XAI evaluation methods. Our systematic collection of evaluation methods provides researchers and practitioners with concrete tools to thoroughly validate, benchmark, and compare new and existing XAI methods. The Co-12 categorization scheme and our identified evaluation methods open up opportunities to include quantitative metrics as optimization criteria during model training to optimize for accuracy and interpretability simultaneously.</p

    From Anecdotal Evidence to Quantitative Evaluation Methods:A Systematic Review on Evaluating Explainable AI

    Get PDF
    The rising popularity of explainable artificial intelligence (XAI) to understand high-performing black boxes, also raised the question of how to evaluate explanations of machine learning (ML) models. While interpretability and explainability are often presented as a subjectively validated binary property, we consider it a multi-faceted concept. We identify 12 conceptual properties, such as Compactness and Correctness, that should be evaluated for comprehensively assessing the quality of an explanation. Our so-called Co-12 properties serve as categorization scheme for systematically reviewing the evaluation practice of more than 300 papers published in the last 7 years at major AI and ML conferences that introduce an XAI method. We find that 1 in 3 papers evaluate exclusively with anecdotal evidence, and 1 in 5 papers evaluate with users. We also contribute to the call for objective, quantifiable evaluation methods by presenting an extensive overview of quantitative XAI evaluation methods. This systematic collection of evaluation methods provides researchers and practitioners with concrete tools to thoroughly validate, benchmark and compare new and existing XAI methods. This also opens up opportunities to include quantitative metrics as optimization criteria during model training in order to optimize for accuracy and interpretability simultaneously.Comment: Link to website added: https://utwente-dmb.github.io/xai-papers

    On explainability of deep neural networks

    Get PDF
    Deep Learning has attained state-of-the-art performance in the recent years, but it is still hard to determine the reasoning behind each prediction. This project will cover the latest advances on interpretability and propose a new method for pixel attribution on image classifiers

    Explainable AI and Interpretable Computer Vision:From Oversight to Insight

    Get PDF
    The increasing availability of big data and computational power has facilitated unprecedented progress in Artificial Intelligence (AI) and Machine Learning (ML). However, complex model architectures have resulted in high-performing yet uninterpretable ‘black boxes’. This prevents users from verifying that the reasoning process aligns with expectations and intentions. This thesis posits that the sole focus on predictive performance is an unsustainable trajectory, since a model can make right predictions for the wrong reasons. The research field of Explainable AI (XAI) addresses the black-box nature of AI by generating explanations that present (aspects of) a model's behaviour in human-understandable terms. This thesis supports the transition from oversight to insight, and shows that explainability can give users more insight into every part of the machine learning pipeline: from the training data to the prediction model and the resulting explanations. When relying on explanations for judging a model's reasoning process, it is important that the explanations are truthful, relevant and understandable. Part I of this thesis reflects upon explanation quality and identifies 12 desirable properties, including compactness, completeness and correctness. Additionally, it provides an extensive collection of quantitative XAI evaluation methods, and analyses their availabilities in open-source toolkits. As alternative to common post-model explainability that reverse-engineers an already trained prediction model, Part II of this thesis presents in-model explainability for interpretable computer vision. These image classifiers learn prototypical parts, which are used in an interpretable decision tree or scoring sheet. The models are explainable by design since their reasoning depends on the extent to which an image patch “looks like” a learned part-prototype. Part III of this thesis shows that ML can also explain characteristics of a dataset. Because of a model's ability to analyse large amounts of data in little time, extracting hidden patterns can contribute to the validation and potential discovery of domain knowledge, and allows to detect sources of bias and shortcuts early on. Concluding, neither the prediction model nor the data nor the explanation method should be handled as a black box. The way forward? AI with a human touch: developing powerful models that learn interpretable features, and using these meaningful features in a decision process that users can understand, validate and adapt. This in-model explainability, such as the part-prototype models from Part II, opens up the opportunity to ‘re-educate’ models with our desired norms, values and reasoning. Enabling human decision-makers to detect and correct undesired model behaviour will contribute towards an effective but also reliable and responsible usage of AI
    corecore