13,589 research outputs found

    Autonomous real-time surveillance system with distributed IP cameras

    Get PDF
    An autonomous Internet Protocol (IP) camera based object tracking and behaviour identification system, capable of running in real-time on an embedded system with limited memory and processing power is presented in this paper. The main contribution of this work is the integration of processor intensive image processing algorithms on an embedded platform capable of running at real-time for monitoring the behaviour of pedestrians. The Algorithm Based Object Recognition and Tracking (ABORAT) system architecture presented here was developed on an Intel PXA270-based development board clocked at 520 MHz. The platform was connected to a commercial stationary IP-based camera in a remote monitoring station for intelligent image processing. The system is capable of detecting moving objects and their shadows in a complex environment with varying lighting intensity and moving foliage. Objects moving close to each other are also detected to extract their trajectories which are then fed into an unsupervised neural network for autonomous classification. The novel intelligent video system presented is also capable of performing simple analytic functions such as tracking and generating alerts when objects enter/leave regions or cross tripwires superimposed on live video by the operator

    A sub-mW IoT-endnode for always-on visual monitoring and smart triggering

    Full text link
    This work presents a fully-programmable Internet of Things (IoT) visual sensing node that targets sub-mW power consumption in always-on monitoring scenarios. The system features a spatial-contrast 128x64128\mathrm{x}64 binary pixel imager with focal-plane processing. The sensor, when working at its lowest power mode (10μW10\mu W at 10 fps), provides as output the number of changed pixels. Based on this information, a dedicated camera interface, implemented on a low-power FPGA, wakes up an ultra-low-power parallel processing unit to extract context-aware visual information. We evaluate the smart sensor on three always-on visual triggering application scenarios. Triggering accuracy comparable to RGB image sensors is achieved at nominal lighting conditions, while consuming an average power between 193μW193\mu W and 277μW277\mu W, depending on context activity. The digital sub-system is extremely flexible, thanks to a fully-programmable digital signal processing engine, but still achieves 19x lower power consumption compared to MCU-based cameras with significantly lower on-board computing capabilities.Comment: 11 pages, 9 figures, submitteted to IEEE IoT Journa

    Detection of abnormal passenger behaviors on ships, using RGBD cameras

    Get PDF
    El objetivo de este trabajo fin de Máster (TFM) es el diseño, implementación, y evaluación de un sistema inteligente de videovigilancia, que permita la detección, seguimiento y conteo de personas, así como la detección de estampidas, para grandes embarcaciones. El sistema desarrollado debe ser portable, y funcionar en tiempo real. Para ello se ha realizado un estudio de las tecnologías disponibles en sistemas embebidos, para elegir las que mejor se adecúan al objetivo del TFM. Se ha desarrollado un sistema de detección de personas basado en una MobileNet-SSD, complementado con un banco de filtros de Kalman para el seguimiento. Además, se ha incorporado un detector de estampidas basado en el análisis de la entropía del flujo óptico. Todo ello se ha implementado y evaluado en un dispositivo embebido que incluye una unidad VPU. Los resultados obtenidos han permitido validar la propuesta.The aim of this Final Master Thesis (TFM) is the design, implementation and evaluation of an intelligent video surveillance system that allows the detection, monitoring and counting of people, as well as the detection of stampedes, for large ships. The developed system must be portable and work in real time. To this end, a study has been carried out of the technologies available in embedded systems, in order to choose those that best suit the objective of the TFM. A people detection system based on a MobileNetSSD has been developed, complemented by a Kalman filter bank for monitoring. In addition, a stampede detector based on optical flow entropy analysis has been incorporated. All this has been implemented and evaluated in an embedded device that includes a Vision Processing Unit (VPU) unit. The results obtained have allowed the validation of the proposal.Máster Universitario en Ingeniería de Telecomunicación (M125
    corecore