17 research outputs found

    Modified March C - Algorithm for Embedded Memory Testing

    Get PDF
    March algorithms are known for memory testing because March-based tests are all simple and possess good fault coverage hence they are the dominant test algorithms implemented in most modern memory BIST. The proposed march algorithm is modified march c- algorithm which uses concurrent technique. Using this modified march c- algorithm the complexity is reduced to 8n as well as the test time is reduced greatly. Because of concurrency in testing the sequences the test results were observed in less time than the traditional March tests. This technique is applied for a memory of size   256x8 and can be extended to any memory size.DOI:http://dx.doi.org/10.11591/ijece.v2i5.158

    Efficient protection of the pipeline core for safety-critical processor-based systems

    Get PDF
    The increasing number of safety-critical commercial applications has generated a need for components with high levels of reliability. As CMOS process sizes continue to shrink, the reliability of ICs is negatively affected since they become more sensitive to transient faults. New circuit designs must take this fact into consideration, and incorporate adequate protection against the effects of transient faults. This paper presents a novel method for protecting the pipelined execution unit of an embedded processor. It is based on a self-configured architecture with hybrid redundancy that can mask single and multiple errors, which can occur on storage elements due to transient or permanent faults. This concept can be easily applied to any processing architecture of this nature with a high safety integrity level. Results from error-injection experiments are also reported that show that this design can maintain a non-interrupted and failure-free operation under single and double errors with a probability that exceeds 99.4%

    System-level hardware-based protection of memories against soft-errors

    Full text link

    Study of the effects of SEU-induced faults on a pipeline protected microprocessor

    Get PDF
    This paper presents a detailed analysis of the behavior of a novel fault-tolerant 32-bit embedded CPU as compared to a default (non-fault-tolerant) implementation of the same processor during a fault injection campaign of single and double faults. The fault-tolerant processor tested is characterized by per-cycle voting of microarchitectural and the flop-based architectural states, redundancy at the pipeline level, and a distributed voting scheme. Its fault-tolerant behavior is characterized for three different workloads from the automotive application domain. The study proposes statistical methods for both the single and dual fault injection campaigns and demonstrates the fault-tolerant capability of both processors in terms of fault latencies, the probability of fault manifestation, and the behavior of latent faults

    Comparison of a Timing-Error Tolerant Scheme with a Traditional Re-transmission Mechanism for Networks on Chips

    Get PDF
    On-chip wires are becoming unreliable as the effect of various noise sources increases with technology scaling. This leads to unpredictable timing delay variations on the interconnect wires. There is a significant need to mitigate the effect of parasitics on the interconnects, while keeping performance and area overheads at a minimum. In this work, we present a timing error tolerant design methodology, T-error, that provides dynamic recovery from timing delay variations on the interconnects. We validate the functionality of the T-error methodology using cycle-accurate RTL models of a Network-on-Chip (NoC) design, that are integrated onto a multiprocessor virtual platform. Our comparisons with the state-of-the-art error recovery mechanisms show that the T-error system provides error recovery with higher performance than the existing schemes. We also present the synthesis results for the T-error scheme, which show that the scheme has negligible overhead

    Fault-tolerant Semantic Mappings Among Heterogeneous and Distributed Local Ontologies

    Get PDF
    ABSTRACT Overcoming semantic mapping faults, i.e. semantic incompatibility, is a vital issue for the success of semantic-based peer-to-peer systems. There are various research efforts which address the classification and the resolution of the semantic mapping fault problem, i.e. translation errors. All of the precedent research related to semantic mapping faults demonstrates one significant shortcoming. This flaw is the inability to discriminate between non-permanent and permanent semantic mapping faults, i.e. how long do semantic incompatibilities stay effective and are the semantic incompatibilities permanent or temporary? The current research examines the destructive effect of semantic mapping faults on the Emerging Semantics, i.e. bottom-up construction of ontology and proposes a solution to detect temporal semantic mapping faults. The current research also demonstrates that fault-tolerant semantic mapping will result in Emerging Semantics which are more complete and agreeable than those domain ontologies that are built without consideration for fault-tolerant semantic mapping

    Robust and Traffic Aware Medium Access Control Mechanisms for Energy-Efficient mm-Wave Wireless Network-on-Chip Architectures

    Get PDF
    To cater to the performance/watt needs, processors with multiple processing cores on the same chip have become the de-facto design choice. In such multicore systems, Network-on-Chip (NoC) serves as a communication infrastructure for data transfer among the cores on the chip. However, conventional metallic interconnect based NoCs are constrained by their long multi-hop latencies and high power consumption, limiting the performance gain in these systems. Among, different alternatives, due to the CMOS compatibility and energy-efficiency, low-latency wireless interconnect operating in the millimeter wave (mm-wave) band is nearer term solution to this multi-hop communication problem. This has led to the recent exploration of millimeter-wave (mm-wave) wireless technologies in wireless NoC architectures (WiNoC). To realize the mm-wave wireless interconnect in a WiNoC, a wireless interface (WI) equipped with on-chip antenna and transceiver circuit operating at 60GHz frequency range is integrated to the ports of some NoC switches. The WIs are also equipped with a medium access control (MAC) mechanism that ensures a collision free and energy-efficient communication among the WIs located at different parts on the chip. However, due to shrinking feature size and complex integration in CMOS technology, high-density chips like multicore systems are prone to manufacturing defects and dynamic faults during chip operation. Such failures can result in permanently broken wireless links or cause the MAC to malfunction in a WiNoC. Consequently, the energy-efficient communication through the wireless medium will be compromised. Furthermore, the energy efficiency in the wireless channel access is also dependent on the traffic pattern of the applications running on the multicore systems. Due to the bursty and self-similar nature of the NoC traffic patterns, the traffic demand of the WIs can vary both spatially and temporally. Ineffective management of such traffic variation of the WIs, limits the performance and energy benefits of the novel mm-wave interconnect technology. Hence, to utilize the full potential of the novel mm-wave interconnect technology in WiNoCs, design of a simple, fair, robust, and efficient MAC is of paramount importance. The main goal of this dissertation is to propose the design principles for robust and traffic-aware MAC mechanisms to provide high bandwidth, low latency, and energy-efficient data communication in mm-wave WiNoCs. The proposed solution has two parts. In the first part, we propose the cross-layer design methodology of robust WiNoC architecture that can minimize the effect of permanent failure of the wireless links and recover from transient failures caused by single event upsets (SEU). Then, in the second part, we present a traffic-aware MAC mechanism that can adjust the transmission slots of the WIs based on the traffic demand of the WIs. The proposed MAC is also robust against the failure of the wireless access mechanism. Finally, as future research directions, this idea of traffic awareness is extended throughout the whole NoC by enabling adaptiveness in both wired and wireless interconnection fabric
    corecore