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Abstract— The increasing number of safety-critical commercial
applications has generated a need for components with high
levels of reliability. As CMOS process sizes continue to shrink,
the reliability of ICs is negatively affected since they become
more sensitive to transient faults. New circuit designs must take
this fact into consideration, and incorporate adequate protection
against the effects of transient faults. This paper presents a
novel method for protecting the pipelined execution unit of an
embedded processor. It is based on a self-configured architecture
with hybrid redundancy that can mask single and multiple
errors, which can occur on storage elements due to transient
or permanent faults. This concept can be easily applied to any
processing architecture of this nature with a high safety integrity
level. Results from error-injection experiments are also reported
that show that this design can maintain a non-interrupted and
failure-free operation under single and double errors with a
probability that exceeds 99.4%.

I. INTRODUCTION

The advances during the last decades in the development
of large scale integrated circuits have encouraged the devel-
opment of many computer-based systems and sub-systems
in commercial products. A typical example is the increased
amount of integrated electronics in modern road vehicles over
the last few years. As this trend continues, electronic control is
taking over safety-critical functions leading to the development
of full authority drive-by-wire systems [1]. These follow the
same concept as electronic fly-by-wire systems employed in
the aerospace industry. However, common practices followed
by the latter in order to guarantee high levels of reliability
(e.g. the use of radiation-hardened components and large scale
redundancy) cannot be applied to the automotive and other
commercial sectors that require low-cost solutions due to large
production volumes. A solution to this problem is the use of
system-on-chip (SoC) fault-tolerant designs [2] that can also
help in significantly reducing the component count.

There are a number of reliability issues associated with
systems-on-chip and electronic systems in general. From the
hardware point of view the most important is the sensitivity of
ICs to radiation-induced soft errors. Radiation sources that can
affect digital circuits include alpha particles from radioactive
impurities contained in IC package materials, and high-energy
neutrons from cosmic rays which constantly bombard the earth
[3]. These errors have been studied thoroughly in the last few
years and until recently the components that were considered
to be most susceptible were memory devices [4]. However,
the continued shrinkage of CMOS process feature sizes, along

with lower voltages and higher operating clock frequencies,
increase the occurrence of transient and intermittent faults that
lead to data errors [5]. This has been demonstrated in experi-
ments on commercial microprocessors [6]. Furthermore, elec-
tromagnetic disturbances within the chip, such as crosstalk,
are becoming more significant due to the smaller distances
between interconnects [7]. Recent experiments show that the
single-event upset (SEU) rate that is caused by radiation
increases with increasing clock frequency, since transients on
combinational logic can overlap clock edge transitions [8].
It is therefore important that circuit designs use intelligent
techniques in order to enable SoCs to tolerate these errors.

Previous research has focused on developing cost-effective
solutions for the protection of memory blocks from soft
errors, trying to achieve minimal performance penalty in the
process. Typical examples can be found in many fault-tolerant
computer systems (e.g. [7], [9], [10]) and vary from simple
parity bits to long error detection and correction (EDAC) codes
[11]. Fewer examples can be found on the protection of other
parts of a processor-based system, such as control logic [7],
[9], [12], [13] which in most cases don’t take into account
transient faults in combinational circuits.

This paper presents a novel architecture for protecting the
execution pipeline of a RISC processor, typically used in
commercial embedded systems and ASICs. The pipeline itself
contains a significant amount of non-programmer-visible state
and combinational logic and since it is a core part of the
processor, it is essential to maintain fault-free operation at
any time, especially when used in safety-critical applications.
The following sections describe the basic features of this
architecture and report some results from the error-injection
experiments that have been performed.

II. PROPOSED PIPELINE ARCHITECTURE

A. On-chip redundancy

The concept of triple modular redundancy (TMR) was first
described by Von Neumann [14] in 1956. Since then, it has
been used in many life-critical applications since it allows
fault-masking, something that is not possible in redundant
systems that only use pairs of components. TMR is considered
an expensive solution because it introduces a large hardware
overhead. It is however possible to implement a TMR system
at a very low level on a single piece of silicon, offering most
of its fault tolerant properties on core functionality of the

0-7803-9333-3/05/$20.00 ©2005 IEEE SIPS 2005188

Authorized licensed use limited to: LOUGHBOROUGH UNIVERSITY. Downloaded on April 29,2010 at 15:58:12 UTC from IEEE Xplore.  Restrictions apply. 



processor. The overhead in this case is not a real issue in state-
of-the-art system-on-chip designs. In our work we enhance the
attributes of TMR in order to make it more robust against
multiple errors. Whilst it is not claimed that a single-chip
redundant configuration could replace a similar system based
on discrete components, there are some clear benefits in using
it as a low-cost, highly reliable unit.
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Fig. 1. The triplicated pipeline architecture

The architecture proposed in this paper (Figure 1) is based
on an open-source configurable, 32-bit processor that imple-
ments the SPARC V8 instruction-set and it is distributed in
synthesisable VHDL. The whole pipelined execution unit is
triplicated and the three replicas work concurrently, executing
the same code on a per-cycle basis, and sharing the same
register file, instruction and data cache. All the outputs of
the pipelines (data and control signals to register file, cache
memories and other parts of the processor) are passed through
checking circuits. The checking circuits do not perform a
traditional majority vote, but only detect disagreements by
producing the following output signals to the control module:

• dis: A signal that indicates whether one or more pipelines
produces different outputs from the others.

• dis vector: A 3-bit vector where each bit corresponds to
one pipeline and becomes ‘high’ when the pipeline in
question disagrees with the other two.

• match vector: A 3-bit vector where each bit represents
one pipeline pair and becomes ‘high’ when the outputs
of the respective pair agree.

Multi-bit signals are not checked on a bit-by-bit basis since
this may lead to an error if a particular bit in two of the three
modules is erroneous, as has been pointed out in [15].

The control module is a simple state machine that changes
the system configuration in the event of a detected error, by
checking the above signals. The exact behavior of the system
is described in detail in the following section.

B. System behavior

The reliability of a TMR system under the presence of a
fault in one of the three modules drops significantly, since an
additional fault will result in the generation of an erroneous
output. In the case of a triple-pipeline system this scenario
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Fig. 2. System’s transitions in the case of single or multiple errors

does not hold because each pipeline replica is a very complex
system which makes the probability of having a common-
mode error in two of them practically zero. Nevertheless the
occurrence of an error could possibly lead to a general system
failure, since the affected component will malfunction. For
that reason, when an error is detected in our system further
action is taken apart from only masking it. The pipeline that
produced the faulty output is temporarily disabled by the
control module while the remaining two pipelines operate
as a self-checking pair [16]. This transition is performed
with virtually no delay (one clock cycle) on the processor’s
operation, by deactivating all the pipelines for one clock cycle
through their hold signal (the hold signal in a RISC processor
is used to cease the pipeline’s operation, so that it can
be synchronized with the cache memories or co-processor).
At the same time the contents of all the registers of the
disabled pipeline are updated with the correct data from one
of the two operating “healthy” pipelines. When this transfer is
completed, the system reintroduces the disabled pipeline on-
the-fly, thus switching back to triple mode. If another error is
detected while in self-checking pair mode, the system activates
a ‘fault’ signal that can optionally be used to generate an
exception which can initiate a system restore process (e.g.
through a trap). During this mode errors cannot be masked
but they can be detected by monitoring the appropriate signal
of the ‘match vector’ that indicates whether the outputs of the
remaining pipelines agree.

In the case of multiple errors in more than one pipeline,
it is not possible to detect whether any of them is error free,
but the presence of errors can still be detected, leading again
to the activation of the ‘fault’ signal. The possible system’s
transitions are shown in Fig. 2. Overall, this architecture can
tolerate any number of errors in one pipeline and can also
remain fail-silent in the case of multiple errors in different
pipelines. Error-masking and recovery is made with minimal
delay making it suitable for hard real-time applications and the
cases where the errors cannot be masked, can be handled with
many different strategies such as a system reset or a roll-back
mechanism. Note that an error on any part of the control logic
(including the checking circuits) can only potentially generate
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unnecessary reconfiguration actions, without any implication
on the overall reliability and safety. Even when considering
multiple errors in both the pipelines and the control logic,
the likelihood of the system not detecting the erroneous
condition is extremely low. This is a unique characteristic of
the proposed architecture.

III. IMPLEMENTATION

We implemented both the default, single pipeline config-
uration as well as the redundant configuration on a high
performance, 8-copper layer silicon process from UMC. Both
designs were read into Synopsys Design Compiler and we
obtained an optimized logical netlist. The netlist was sub-
sequently read into Synopsys Physical Compiler where the
instruction cache, data cache and register file RAMs were
placed and fixed into place in a Minimum-Physical-Constraints
(MPC) flow. The optimized, placed netlist was finally read into
Cadence SoC Encounter where power planning and detailed
routing took place. Fig. 3 and 4 depict the MPC floorplan
and the final routed design of the redundant configuration and
Table I shows the statistics of both VLSI macrocells.

�

Fig. 3. Floorplan of the redundant configuration

�

Fig. 4. VLSI macrocell of the redundant configuration

As can be observed in Table I, the fault-tolerant configura-
tion introduces an area overhead of around 26.6% and also a
performance penalty in the maximum clock frequency com-
pared to the non-fault-tolerant configuration, for the chosen

TABLE I
MACROCELL RESULTS

Parameter Single configuration Redundant configuration
Instances (Macros) 29132 (18) 71718 (18)

Area (µm2) 3586685 4539518
Core util. 64.2% 67.4%

Fmax (MHz) 229.3 174.8

technology. These are expected trade-offs in the design of
fault-tolerant systems and their impact must be considered
according to the specifications of the targeting application.
The following section shows that the reliability and availability
levels of this solution are very high.

IV. SYSTEM VALIDATION

A. Error-injection environment

In order to test the system during the design stages and
also to validate and demonstrate its error-masking capa-
bilities, error-injection experiments are necessary. The use
of software-based error-injection [17], [18] was considered
insufficient since the majority of the pipeline registers are
non-programmer-visible. Based on the idea of ‘saboteurs’
[19], error-injection support was implemented through a non-
synthesisable, transparent VHDL entity that can have access
to all registers and alter their contents at specified times. The
error-injection platform is based on a VHDL simulator and its
Foreign Language Interface (FLI) capability. The basic steps
of an error-injection campaign are the following:

1. Generate a list of errors that define time (clock cycle) and
location (register bit) of the injection.

2. Define the number of errors to be injected in each
simulation and the total number of simulations for the
campaign.

3. Define various parameters that depend on the executed
program with a golden run (a simulation without any error
injection).

4. Run the simulations
4. Analyse the output data.
The output data consist of information about the correctness

of results, the presence of latent errors inside the microarchi-
tecture after the end of the program execution, the status of the
processor at the end of the simulation and the execution time.
Each simulation falls into one of the following categories:

• No Effect: The program terminates normally, the results
are correct and the contents of the pipeline registers and
the register file are the same with those of the golden run.

• Latent: The program terminates normally, the results are
correct but the contents of the pipeline registers and the
register file are not the same with those of the golden
run.

• Wrong Result: The program terminates normally but the
results are wrong.

• Timed Out: The program failed to terminate within a
predefined time limit and the simulation was halted
externally.
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• Exception: The processor detected the error and created
a trap that made it enter in error mode.

• Invalid: The program terminated before reaching its end.

B. Error Model

The error model used in these experiments is a bit-fl ip of
a memory element, which means inverting the logic value
from ‘0’ to ‘1’ or from ‘1’ to ‘0’. This model has been
traditionally used by other researchers when injecting errors
in microprocessor systems. In our error injection platform,
errors are injected on the fl y while the processor executes
the program without stoping the simulation or changing the
processor’s mode, and are synchronous with the clock. This
means that these errors can be seen as modelling transient
faults on combinational circuits during the clock cycle (i-
1) that last long enough to be latched on a register at the
beginning of cycle (i), or as a direct register hit that occurs
during the clock cycle (i), assuming that the error is injected
at the beginning of clock cycle (i).

The bit to be affected by the fault is picked randomly. All
the registers are grouped according to the pipeline stage they
belong to: fetch (fe), decode (de), execute (ex), memory (me),
write (wr) and a group of special state/status registers (sregs).
We performed error-injections in each group separately and
all the bits in each group have equal probability of being
selected. This means the probability of a particular register
being selected for error-injection depends on the number of
bits it contains. The timing of the error-injection is also
randomly selected, using a uniform distribution, making sure
that the error is injected only when the application program
is executed and not during the boot program that is located in
the ROM.

C. Results

1) Single errors: We injected 1000 errors in each of the
register groups in two processor configurations: a normal, non-
fault-tolerant pipeline configuration (referred as ‘Single Core’)
and a fault-tolerant version using the architecture described in
this paper (referred to as ‘Redundant Core’). The application
program used is ‘bitcount’ from the MiBench benchmark suite.
The results are depicted in Fig. 5 (the percentages shown are
rounded to one decimal place). The ‘Invalid’ category has been
omitted from the graphs since it occurred only a few times,
and only in the single core.

As expected, the redundant configuration maintains very
high levels of fault-tolerance compared to the single. One very
important characteristic is that errors are not only detected but
also masked without causing any interruptions to the program
fl ow. Simple error detection, which is represented by the
“Exception” category, needs the use of a recovery mechanism
which introduces delays.

Latent errors in the redundant core are less dangerous
because more than 99% of them were observed in the pipeline
registers only. If they propagate to the pipeline’s output they
will be detected and masked. This means that we can safely
add the “Latent” category to “No Effect”, since in both cases
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Fig. 5. Processor behaviour for single error-injection

the results produced are correct. In this case the system fault
coverage of the redundant configuration reaches almost 99.9%.

The most important class of errors in safety-critical systems
are those where wrong results are generated, since they are
difficult to detect. As it can be seen in Fig. 5, approximately a
quarter of errors in the single core resulted in normal program
termination but generated an incorrect result. In the redundant
core the equivalent percentage is more than two orders of
magnitude lower, although according to the design concept
it should be zero. This problem is mainly associated with
the instruction cache and errors on the program counter. In
particular, errors on low significant bits of the program counter
cause an incorrect reference to an instruction that is inside the
instruction cache. As a result no cache miss is generated, and
the incorrect instruction is passed to the pipeline system in the
next clock cycle since the cache memories have a synchronous
operation and the transition time lasts only one clock cycle.
Similar behaviour is observed in a much smaller extend with
the data cache. There are two different solutions to overcome
this problem. The first is to extend the transition time to two
cycles. The second is the use of a voting circuit for the program
counters. The second solution does not have a negative impact
on the average delay like the first, but introduces further
hardware overhead.

2) Double errors: Under the same conditions described
above, we performed more error injection experiments, this
time by injecting 2000 double errors in each register group.
The results are shown in Fig. 6.

The performance of the single core drops significantly in all
categories. Here the probability of a double error generating a
wrong result rises to more than one out of three. On the other
hand no noticeable difference is observed in the performance
of the redundant core, apart from an increase in the occurrence
of exceptions and latent faults, which have no implication on
the system’s safety. The disproportionate increase in latent
errors for the two configurations happens because in the single
core configuration, the probability of both errors remaining
latent is very small. On the other hand in the redundant
configuration this probability is very high since one latent error
may occur in one replica and another in a different replica.
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Fig. 6. Processor behaviour for double error-injection

Even if both errors occur in the same replica, the simulation
outcome will be a latent error if the first is masked and the
second remains latent. Again, by adding the “ Latent” category
to “ No Effect” but also the “ Exceptions” that signify error
detection but no correction, the system fault coverage of the
redundant configuration becomes again roughly 99.8%. If we
don’t take into account the “ Exceptions” category, in the cases
of which a timing penalty for recovery actions is introduced,
this figure drops only to 99.4%.

V. CONCLUSION

The soft error rate is expected to significantly increase in
near-future CMOS technologies, not only in memory compo-
nents but also in other parts of logic such as latches, fl ip-
fl ops and combinational circuits. This paper presents a fault-
tolerant architecture that protects the execution pipeline of
a RISC processor against soft errors by applying dynamic
redundancy techniques that extend the capabilities of a TMR
architecture. It is based on triplication with low level voting,
and allows dynamic self-reconfiguration in the event of an
error in order to maintain high levels of reliability and avail-
ability. This configuration can be used in processing units of
safety-critical and mission-critical systems. Preliminary results
from error-injection experiments confirm the robustness of this
architecture against not only single but also double errors.

The paper also highlights the trade-offs between the over-
head and the high reliability of this solution by analysing the
results of synthesising the design in an ASIC. This architecture
is a step towards the implementation of an ultra-reliable
microprocessor that can satisfy the very strict failure-rate
requirements for high integrity systems, as defined by relevant
standards. One big advantage of this design is that it can be
easily applied to different processor architectures. Future work
will focus in further validation of the system, by performing
error-injection experiments with different benchmark programs
and fault scenarios through hardware based error-injection on
an FPGA prototype.
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