4,018 research outputs found

    Dependability Analysis of Control Systems using SystemC and Statistical Model Checking

    Get PDF
    Stochastic Petri nets are commonly used for modeling distributed systems in order to study their performance and dependability. This paper proposes a realization of stochastic Petri nets in SystemC for modeling large embedded control systems. Then statistical model checking is used to analyze the dependability of the constructed model. Our verification framework allows users to express a wide range of useful properties to be verified which is illustrated through a case study

    Analysis of signalling pathways using the prism model checker

    Get PDF
    We describe a new modelling and analysis approach for signal transduction networks in the presence of incomplete data. We illustrate the approach with an example, the RKIP inhibited ERK pathway [1]. Our models are based on high level descriptions of continuous time Markov chains: reactions are modelled as synchronous processes and concentrations are modelled by discrete, abstract quantities. The main advantage of our approach is that using a (continuous time) stochastic logic and the PRISM model checker, we can perform quantitative analysis of queries such as if a concentration reaches a certain level, will it remain at that level thereafter? We also perform standard simulations and compare our results with a traditional ordinary differential equation model. An interesting result is that for the example pathway, only a small number of discrete data values is required to render the simulations practically indistinguishable

    CSL model checking of Deterministic and Stochastic Petri Nets

    Get PDF
    Deterministic and Stochastic Petri Nets (DSPNs) are a widely used high-level formalism for modeling discrete-event systems where events may occur either without consuming time, after a deterministic time, or after an exponentially distributed time. The underlying process dened by DSPNs, under certain restrictions, corresponds to a class of Markov Regenerative Stochastic Processes (MRGP). In this paper, we investigate the use of CSL (Continuous Stochastic Logic) to express probabilistic properties, such a time-bounded until and time-bounded next, at the DSPN level. The verication of such properties requires the solution of the steady-state and transient probabilities of the underlying MRGP. We also address a number of semantic issues regarding the application of CSL on MRGP and provide numerical model checking algorithms for this logic. A prototype model checker, based on SPNica, is also described

    Internet enabled modelling of extended manufacturing enterprises using the process based techniques

    Get PDF
    The paper presents the preliminary results of an ongoing research project on Internet enabled process-based modelling of extended manufacturing enterprises. It is proposed to apply the Open System Architecture for CIM (CIMOSA) modelling framework alongside with object-oriented Petri Net models of enterprise processes and object-oriented techniques for extended enterprises modelling. The main features of the proposed approach are described and some components discussed. Elementary examples of object-oriented Petri Net implementation and real-time visualisation are presented

    Dependability checking with StoCharts: Is train radio reliable enough for trains?

    Get PDF
    Performance, dependability and quality of service (QoS) are prime aspects of the UML modelling domain. To capture these aspects effectively in the design phase, we have recently proposed STOCHARTS, a conservative extension of UML statechart diagrams. In this paper, we apply the STOCHART formalism to a safety critical design problem. We model a part of the European Train Control System specification, focusing on the risks of wireless communication failures in future high-speed cross-European trains. Stochastic model checking with the model checker PROVER enables us to derive constraints under which the central quality requirements are satisfied by the STOCHART model. The paper illustrates the flexibility and maturity of STOCHARTS to model real problems in safety critical system design

    Structural characterization of decomposition in rate-insensitive stochastic Petri nets

    Get PDF
    This paper focuses on stochastic Petri nets that have an equilibrium distribution that is a product form over the number of tokens at the places. We formulate a decomposition result for the class of nets that have a product form solution irrespective of the values of the transition rates. These nets where algebraically characterized by Haddad et al.~as SΠ2S\Pi^2 nets. By providing an intuitive interpretation of this algebraical characterization, and associating state machines to sets of TT-invariants, we obtain a one-to-one correspondence between the marking of the original places and the places of the added state machines. This enables us to show that the subclass of stochastic Petri nets under study can be decomposed into subnets that are identified by sets of its TT-invariants

    Performance modeling of e-procurement workflow using Generalised Stochastic Petri net (GSPN)

    Get PDF
    This paper proposes a Generalised Stochastic Petri net (GSPN) model representing a generic e-procurement workflow process. The model displays the dynamic behaviour of the system and shows the inter relationship of process activities. An analysis based on matrix equation approach enabled users to analyse the critical system's states, and thus justify the process performance. The results obtained allow users for better decision making in improving e-procurement workflow performance

    Model-based dependability analysis : state-of-the-art, challenges and future outlook

    Get PDF
    Abstract: Over the past two decades, the study of model-based dependability analysis has gathered significant research interest. Different approaches have been developed to automate and address various limitations of classical dependability techniques to contend with the increasing complexity and challenges of modern safety-critical system. Two leading paradigms have emerged, one which constructs predictive system failure models from component failure models compositionally using the topology of the system. The other utilizes design models - typically state automata - to explore system behaviour through fault injection. This paper reviews a number of prominent techniques under these two paradigms, and provides an insight into their working mechanism, applicability, strengths and challenges, as well as recent developments within these fields. We also discuss the emerging trends on integrated approaches and advanced analysis capabilities. Lastly, we outline the future outlook for model-based dependability analysis
    corecore