512 research outputs found

    KALwEN: a new practical and interoperable key management scheme for body sensor networks

    Get PDF
    Key management is the pillar of a security architecture. Body sensor networks (BSNs) pose several challenges–some inherited from wireless sensor networks (WSNs), some unique to themselves–that require a new key management scheme to be tailor-made. The challenge is taken on, and the result is KALwEN, a new parameterized key management scheme that combines the best-suited cryptographic techniques in a seamless framework. KALwEN is user-friendly in the sense that it requires no expert knowledge of a user, and instead only requires a user to follow a simple set of instructions when bootstrapping or extending a network. One of KALwEN's key features is that it allows sensor devices from different manufacturers, which expectedly do not have any pre-shared secret, to establish secure communications with each other. KALwEN is decentralized, such that it does not rely on the availability of a local processing unit (LPU). KALwEN supports secure global broadcast, local broadcast, and local (neighbor-to-neighbor) unicast, while preserving past key secrecy and future key secrecy (FKS). The fact that the cryptographic protocols of KALwEN have been formally verified also makes a convincing case. With both formal verification and experimental evaluation, our results should appeal to theorists and practitioners alike

    An enhanced lossless compression with cryptography hybrid mechanism for ECG biomedical signal monitoring

    Get PDF
    Due to their use in daily life situation, demand for remote health applications and e-health monitoring equipment is growing quickly. In this phase, for fast diagnosis and therapy, information can be transferred from the patient to the distant clinic. Nowadays, the most chronic disease is cardiovascular diseases (CVDs). However, the storage and transmission of the ECG signal, consumes more energy, bandwidth and data security which is faced many challenges. Hence, in this work, we present a combined approach for ECG data compression and cryptography. The compression is performed using adaptive Huffman encoding and encrypting is done using AES (CBC) scheme with a 256-bit key. To increase the security, we include Diffie-Hellman Key exchange to authenticate the receiver, RSA key generation for encrypting and decrypting the data. Experimental results show that the proposed approach achieves better performance in terms of compression and encryption on MIT-BIH ECG dataset

    User Selective Encryption Method for Securing MANETs

    Get PDF
    Security issue is getting important day by day. At present, there are a variety of methodologies to provide protection for data confidentiality. MANETs have lots of security challenges than traditional networks like infrastructureless and self-organizing requirements. As the MANETs are dynamic networks that’s make every transmission in such networks vulnerable to many attacks and improving security level becomes a main issue. This paper introduces a user selective encryption method by operating Data Encryption Standard (DES), Triple DES (3DES), Advanced Encryption Standard (AES) and the Diffie-Hellman Key Exchange (DHKE) protocol for key management in order to improve MANET security. Through the Network Simulator-2 (NS-2), the we investigate the performance of the proposed method in terms of data transfer time and network throughput for different data sizes and different sender-to-receiver number of hops. The results show the superiority of AES over other encryption algorithms. Furthermore, the effectiveness of our proposed method is verified through comparing our results with those obtained from previous studies

    Bloom Filters in Adversarial Environments

    Get PDF
    Many efficient data structures use randomness, allowing them to improve upon deterministic ones. Usually, their efficiency and correctness are analyzed using probabilistic tools under the assumption that the inputs and queries are independent of the internal randomness of the data structure. In this work, we consider data structures in a more robust model, which we call the adversarial model. Roughly speaking, this model allows an adversary to choose inputs and queries adaptively according to previous responses. Specifically, we consider a data structure known as "Bloom filter" and prove a tight connection between Bloom filters in this model and cryptography. A Bloom filter represents a set SS of elements approximately, by using fewer bits than a precise representation. The price for succinctness is allowing some errors: for any xSx \in S it should always answer `Yes', and for any xSx \notin S it should answer `Yes' only with small probability. In the adversarial model, we consider both efficient adversaries (that run in polynomial time) and computationally unbounded adversaries that are only bounded in the number of queries they can make. For computationally bounded adversaries, we show that non-trivial (memory-wise) Bloom filters exist if and only if one-way functions exist. For unbounded adversaries we show that there exists a Bloom filter for sets of size nn and error ε\varepsilon, that is secure against tt queries and uses only O(nlog1ε+t)O(n \log{\frac{1}{\varepsilon}}+t) bits of memory. In comparison, nlog1εn\log{\frac{1}{\varepsilon}} is the best possible under a non-adaptive adversary

    Developed security and privacy algorithms for cyber physical system

    Get PDF
    Cyber-physical system (CPS) is a modern technology in the cyber world, and it integrates with wireless sensor network (WSN). This system is widely used in many applications such as a smart city, greenhouse, healthcare, and power grid. Therefore, the data security and integrity are necessary to ensure the highest level of protection and performance for such systems. In this paper, two sides security system for cyber-physical level is proposed to obtain security, privacy, and integrity. The first side is applied the secure sockets layer (SSL)/transport layer security (TLS) encryption protocol with the internet of things (IoT) based message queuing telemetry transport (MQTT) protocol to secure the connection and encrypt the data exchange between the system's parties. The second side proposes an algorithm to detect and prevent a denial of service (DoS) attack (hypertext transfer protocol (HTTP) post request) on a Web server. The experiment results show the superior performance of the proposed method to secure the CPS by detecting and preventing the cyber-attacks, which infect the Web servers. They also prove the implementation of security, privacy and integrity aspects on the CPS

    Consumo energético de algoritmos criptográficos y protocolos de seguridad en dispositivos móviles Symbian

    Get PDF
    En los últimos años, la telefonía móvil ha redenido la forma de comunicación entre las personas. Los dispositivos electrónicos, a través de los cuales se establece dicha comunicaci ón, han evolucionado vertiginosamente en potencia, rendimiento y sobre todo en nuevas funcionalidades, pero siguen estando limitados por la autonomía que les proporciona la duración de la batería. Mientras la capacidad de procesamiento se incrementa en un 200% cada 18 meses siguiendo la Ley de Moore, el rendimiento de las baterías sólo se ha visto mejorado en un 80% en los últimos 10 años [Fit07]. Esta mejora del rendimiento y la llegada de Internet a estos dispositivos ha hecho posible la comunicación a través de diferentes canales, la búsqueda de información o la posibilidad de realizar compras, todo ello de una forma segura y condencial. Dichas conexiones seguras, bien utilizando conexiones cableadas o inalámbricas, se consiguen mediante la utilización de protocolos de seguridad, basados en algoritmos criptográcos. Estos algoritmos son seleccionados basándose en los objetivos de seguridad denidos en el protocolo de seguridad a utilizar. Entre ellos se incluyen algoritmos de encriptación simétricos y asimétricos, utilizados para proporcionar autenticación y encriptación de los datos, así como algoritmos basados en funciones hash, y, de esa manera, conseguir integridad en los mensajes intercambiados. En la actualidad, el consumo energético en dispositivos móviles es una de los principales preocupaciones de los fabricantes de dispositivos móviles. De la misma manera, la seguridad en las comunicaciones se posiciona como una área muy importante en materia de investigación y desarrollo. El uso de protocolos de seguridad no sólo afecta al rendimiento de las comunicaciones, sino que también representa un fuerte impacto en el consumo energético en estos dispositivos alimentados por baterías. De este modo, uno de los desaf íos más importantes es conseguir un balance entre rendimiento, seguridad y consumo energético, con el n de obtener un buen rendimiento y niveles de seguridad adaptados al usuario con la mínima cantidad de energía. En este contexto, Nokia corporation encargó un proyecto de investigación a la Aalto University School of Science and Technology (Helsinki, Finlandia), para analizar el consumo energético de diferentes protocolos de seguridad y algoritmos criptográcos en la plataforma móvil Symbian
    corecore