40 research outputs found

    Multi-k-ic Depth Three Circuit Lower Bound

    Get PDF
    In a multi-k-ic depth three circuit every variable appears in at most k of the linear polynomials in every product gate of the circuit. This model is a natural generalization of multilinear depth three circuits that allows the formal degree of the circuit to exceed the number of underlying variables (as the formal degree of a multi-k-ic depth three circuit can be kn where n is the number of variables). The problem of proving lower bounds for depth three circuits with high formal degree has gained in importance following a work by Gupta, Kamath, Kayal and Saptharishi [7] on depth reduction to high formal degree depth three circuits. In this work, we show an exponential lower bound for multi-k-ic depth three circuits for any arbitrary constant k

    A Polynomial Degree Bound on Equations for Non-Rigid Matrices and Small Linear Circuits

    Get PDF

    Superpolynomial lower bounds for general homogeneous depth 4 arithmetic circuits

    Full text link
    In this paper, we prove superpolynomial lower bounds for the class of homogeneous depth 4 arithmetic circuits. We give an explicit polynomial in VNP of degree nn in n2n^2 variables such that any homogeneous depth 4 arithmetic circuit computing it must have size nΩ(loglogn)n^{\Omega(\log \log n)}. Our results extend the works of Nisan-Wigderson [NW95] (which showed superpolynomial lower bounds for homogeneous depth 3 circuits), Gupta-Kamath-Kayal-Saptharishi and Kayal-Saha-Saptharishi [GKKS13, KSS13] (which showed superpolynomial lower bounds for homogeneous depth 4 circuits with bounded bottom fan-in), Kumar-Saraf [KS13a] (which showed superpolynomial lower bounds for homogeneous depth 4 circuits with bounded top fan-in) and Raz-Yehudayoff and Fournier-Limaye-Malod-Srinivasan [RY08, FLMS13] (which showed superpolynomial lower bounds for multilinear depth 4 circuits). Several of these results in fact showed exponential lower bounds. The main ingredient in our proof is a new complexity measure of {\it bounded support} shifted partial derivatives. This measure allows us to prove exponential lower bounds for homogeneous depth 4 circuits where all the monomials computed at the bottom layer have {\it bounded support} (but possibly unbounded degree/fan-in), strengthening the results of Gupta et al and Kayal et al [GKKS13, KSS13]. This new lower bound combined with a careful "random restriction" procedure (that transforms general depth 4 homogeneous circuits to depth 4 circuits with bounded support) gives us our final result

    Homomorphism Polynomials Complete for VP

    Get PDF
    The VP versus VNP question, introduced by Valiant, is probably the most important open question in algebraic complexity theory. Thanks to completeness results, a variant of this question, VBP versus VNP, can be succinctly restated as asking whether the permanent of a generic matrix can be written as a determinant of a matrix of polynomially bounded size. Strikingly, this restatement does not mention any notion of computational model. To get a similar restatement for the original and more fundamental question, and also to better understand the class itself, we need a complete polynomial for VP. Ad hoc constructions yielding complete polynomials were known, but not natural examples in the vein of the determinant. We give here several variants of natural complete polynomials for VP, based on the notion of graph homomorphism polynomials

    A PSPACE Construction of a Hitting Set for the Closure of Small Algebraic Circuits

    Full text link
    In this paper we study the complexity of constructing a hitting set for the closure of VP, the class of polynomials that can be infinitesimally approximated by polynomials that are computed by polynomial sized algebraic circuits, over the real or complex numbers. Specifically, we show that there is a PSPACE algorithm that given n,s,r in unary outputs a set of n-tuples over the rationals of size poly(n,s,r), with poly(n,s,r) bit complexity, that hits all n-variate polynomials of degree-r that are the limit of size-s algebraic circuits. Previously it was known that a random set of this size is a hitting set, but a construction that is certified to work was only known in EXPSPACE (or EXPH assuming the generalized Riemann hypothesis). As a corollary we get that a host of other algebraic problems such as Noether Normalization Lemma, can also be solved in PSPACE deterministically, where earlier only randomized algorithms and EXPSPACE algorithms (or EXPH assuming the generalized Riemann hypothesis) were known. The proof relies on the new notion of a robust hitting set which is a set of inputs such that any nonzero polynomial that can be computed by a polynomial size algebraic circuit, evaluates to a not too small value on at least one element of the set. Proving the existence of such a robust hitting set is the main technical difficulty in the proof. Our proof uses anti-concentration results for polynomials, basic tools from algebraic geometry and the existential theory of the reals

    An Almost Cubic Lower Bound for Depth Three Arithmetic Circuits

    Get PDF
    We show an almost cubic lower bound on the size of any depth three arithmetic circuit computing an explicit multilinear polynomial in n variables over any field. This improves upon the previously known quadratic lower bound by Shpilka and Wigderson [CCC, 1999]

    Algebraic Independence over Positive Characteristic: New Criterion and Applications to Locally Low Algebraic Rank Circuits

    Get PDF
    The motivation for this work comes from two problems--test algebraic independence of arithmetic circuits over a field of small characteristic, and generalize the structural property of algebraic dependence used by (Kumar, Saraf CCC\u2716) to arbitrary fields. It is known that in the case of zero, or large characteristic, using a classical criterion based on the Jacobian, we get a randomized poly-time algorithm to test algebraic independence. Over small characteristic, the Jacobian criterion fails and there is no subexponential time algorithm known. This problem could well be conjectured to be in RP, but the current best algorithm puts it in NP^#P (Mittmann, Saxena, Scheiblechner Trans.AMS\u2714). Currently, even the case of two bivariate circuits over F_2 is open. We come up with a natural generalization of Jacobian criterion, that works over all characteristic. The new criterion is efficient if the underlying inseparable degree is promised to be a constant. This is a modest step towards the open question of fast independence testing, over finite fields, posed in (Dvir, Gabizon, Wigderson FOCS\u2707). In a set of linearly dependent polynomials, any polynomial can be written as a linear combination of the polynomials forming a basis. The analogous property for algebraic dependence is false, but a property approximately in that spirit is named as ``functional dependence\u27\u27 in (Kumar, Saraf CCC\u2716) and proved for zero or large characteristic. We show that functional dependence holds for arbitrary fields, thereby answering the open questions in (Kumar, Saraf CCC\u2716). Following them we use the functional dependence lemma to prove the first exponential lower bound for locally low algebraic rank circuits for arbitrary fields (a model that strongly generalizes homogeneous depth-4 circuits). We also recover their quasipoly-time hitting-set for such models, for fields of characteristic smaller than the ones known before. Our results show that approximate functional dependence is indeed a more fundamental concept than the Jacobian as it is field independent. We achieve the former by first picking a ``good\u27\u27 transcendence basis, then translating the circuits by new variables, and finally approximating them by truncating higher degree monomials. We give a tight analysis of the ``degree\u27\u27 of approximation needed in the criterion. To get the locally low algebraic rank circuit applications we follow the known shifted partial derivative based methods

    Functional Lower Bounds for Restricted Arithmetic Circuits of Depth Four

    Get PDF
    Recently, Forbes, Kumar and Saptharishi [CCC, 2016] proved that there exists an explicit dO(1)d^{O(1)}-variate and degree dd polynomial PdVNPP_{d}\in VNP such that if any depth four circuit CC of bounded formal degree dd which computes a polynomial of bounded individual degree O(1)O(1), that is functionally equivalent to PdP_d, then CC must have size 2Ω(dlogd)2^{\Omega(\sqrt{d}\log{d})}. The motivation for their work comes from Boolean Circuit Complexity. Based on a characterization for ACC0ACC^0 circuits by Yao [FOCS, 1985] and Beigel and Tarui [CC, 1994], Forbes, Kumar and Saptharishi [CCC, 2016] observed that functions in ACC0ACC^0 can also be computed by algebraic ΣΣΠ\Sigma\mathord{\wedge}\Sigma\Pi circuits (i.e., circuits of the form -- sums of powers of polynomials) of 2logO(1)n2^{\log^{O(1)}n} size. Thus they argued that a 2ω(logO(1)n)2^{\omega(\log^{O(1)}{n})} "functional" lower bound for an explicit polynomial QQ against ΣΣΠ\Sigma\mathord{\wedge}\Sigma\Pi circuits would imply a lower bound for the "corresponding Boolean function" of QQ against non-uniform ACC0ACC^0. In their work, they ask if their lower bound be extended to ΣΣΠ\Sigma\mathord{\wedge}\Sigma\Pi circuits. In this paper, for large integers nn and dd such that ω(log2n)dn0.01\omega(\log^2n)\leq d\leq n^{0.01}, we show that any ΣΣΠ\Sigma\mathord{\wedge}\Sigma\Pi circuit of bounded individual degree at most O(dk2)O\left(\frac{d}{k^2}\right) that functionally computes Iterated Matrix Multiplication polynomial IMMn,dIMM_{n,d} (VP\in VP) over {0,1}n2d\{0,1\}^{n^2d} must have size nΩ(k)n^{\Omega(k)}. Since Iterated Matrix Multiplication IMMn,dIMM_{n,d} over {0,1}n2d\{0,1\}^{n^2d} is functionally in GapLGapL, improvement of the afore mentioned lower bound to hold for quasipolynomially large values of individual degree would imply a fine-grained separation of ACC0ACC^0 from GapLGapL
    corecore