13,423 research outputs found

    Implementing Open Access Policy: First case studies

    Get PDF
    When implementing open access, policy pioneers and flagship institutions alike have faced considerable challenges in meeting their own aims and achieving a recognized success. Legitimate authority, sufficient resources and the right timing are crucial, but the professionals charged with implementing policy still need several years to accomplish significant progress. This study defines a methodological standard for evaluating the first generation of open access policies. Evaluating implementation establishes evidence, enables reflection, and may foster the emergence of a second generation of open access policies. While the study is based on a small number of cases, these case studies cover most of the pioneer institutions, present the most significant issues and offer an international overview. Each case is reconstructed individually on the basis of public documents and background information, and supported by interviews with professionals responsible for open access implementation. This article presents the highlights from each case study. The results are utilized to indicate how a second generation of policies might define open access as a key component of digital research infrastructures that provide inputs and outputs for research, teaching and learning in real time.</p

    TechMiner: Extracting Technologies from Academic Publications

    Get PDF
    In recent years we have seen the emergence of a variety of scholarly datasets. Typically these capture ‘standard’ scholarly entities and their connections, such as authors, affiliations, venues, publications, citations, and others. However, as the repositories grow and the technology improves, researchers are adding new entities to these repositories to develop a richer model of the scholarly domain. In this paper, we introduce TechMiner, a new approach, which combines NLP, machine learning and semantic technologies, for mining technologies from research publications and generating an OWL ontology describing their relationships with other research entities. The resulting knowledge base can support a number of tasks, such as: richer semantic search, which can exploit the technology dimension to support better retrieval of publications; richer expert search; monitoring the emergence and impact of new technologies, both within and across scientific fields; studying the scholarly dynamics associated with the emergence of new technologies; and others. TechMiner was evaluated on a manually annotated gold standard and the results indicate that it significantly outperforms alternative NLP approaches and that its semantic features improve performance significantly with respect to both recall and precision

    A Statistical Toolbox For Mining And Modeling Spatial Data

    Get PDF
    Most data mining projects in spatial economics start with an evaluation of a set of attribute variables on a sample of spatial entities, looking for the existence and strength of spatial autocorrelation, based on the Moran’s and the Geary’s coefficients, the adequacy of which is rarely challenged, despite the fact that when reporting on their properties, many users seem likely to make mistakes and to foster confusion. My paper begins by a critical appraisal of the classical definition and rational of these indices. I argue that while intuitively founded, they are plagued by an inconsistency in their conception. Then, I propose a principled small change leading to corrected spatial autocorrelation coefficients, which strongly simplifies their relationship, and opens the way to an augmented toolbox of statistical methods of dimension reduction and data visualization, also useful for modeling purposes. A second section presents a formal framework, adapted from recent work in statistical learning, which gives theoretical support to our definition of corrected spatial autocorrelation coefficients. More specifically, the multivariate data mining methods presented here, are easily implementable on the existing (free) software, yield methods useful to exploit the proposed corrections in spatial data analysis practice, and, from a mathematical point of view, whose asymptotic behavior, already studied in a series of papers by Belkin & Niyogi, suggests that they own qualities of robustness and a limited sensitivity to the Modifiable Areal Unit Problem (MAUP), valuable in exploratory spatial data analysis

    How to improve robustness in Kohonen maps and display additional information in Factorial Analysis: application to text mining

    Full text link
    This article is an extended version of a paper presented in the WSOM'2012 conference [1]. We display a combination of factorial projections, SOM algorithm and graph techniques applied to a text mining problem. The corpus contains 8 medieval manuscripts which were used to teach arithmetic techniques to merchants. Among the techniques for Data Analysis, those used for Lexicometry (such as Factorial Analysis) highlight the discrepancies between manuscripts. The reason for this is that they focus on the deviation from the independence between words and manuscripts. Still, we also want to discover and characterize the common vocabulary among the whole corpus. Using the properties of stochastic Kohonen maps, which define neighborhood between inputs in a non-deterministic way, we highlight the words which seem to play a special role in the vocabulary. We call them fickle and use them to improve both Kohonen map robustness and significance of FCA visualization. Finally we use graph algorithmic to exploit this fickleness for classification of words

    Finding co-solvers on Twitter, with a little help from Linked Data

    Get PDF
    In this paper we propose a method for suggesting potential collaborators for solving innovation challenges online, based on their competence, similarity of interests and social proximity with the user. We rely on Linked Data to derive a measure of semantic relatedness that we use to enrich both user profiles and innovation problems with additional relevant topics, thereby improving the performance of co-solver recommendation. We evaluate this approach against state of the art methods for query enrichment based on the distribution of topics in user profiles, and demonstrate its usefulness in recommending collaborators that are both complementary in competence and compatible with the user. Our experiments are grounded using data from the social networking service Twitter.com
    corecore