3 research outputs found

    Elliptic curve based zero knowledge proofs and their applicability on resource constrained devices

    No full text
    As the Internet of Things (IOT) arises, the use of low-end devices on a daily basis increases. The wireless nature of communication that these devices provide raises security and privacy issues. For protecting a user's privacy, cryptography offers the tool of zero knowledge proofs (ZKP). In this paper, we study well-established ZKP protocols based on the discrete logarithm problem and we adapt them to the Elliptic Curve Cryptography (ECC) setting, which consists an ideal candidate for embedded implementations. Then, we implement the proposed protocols on Wiselib, a generic and open source algorithmic library. For the first time, we present a thorough evaluation of the protocols on two popular hardware platforms equipped with low end microcontrollers (Jennic JN5139, TI MSP430) and 802.15.4 RF transceivers, in terms of code size, execution time, message size and energy requirements. This work's results can be used from developers who wish to achieve certain levels of privacy in their applications. © 2011 IEEE

    A smartwater metering deployment based on the fog computing paradigm

    Get PDF
    In this paper, we look into smart water metering infrastructures that enable continuous, on-demand and bidirectional data exchange between metering devices, water flow equipment, utilities and end-users. We focus on the design, development and deployment of such infrastructures as part of larger, smart city, infrastructures. Until now, such critical smart city infrastructures have been developed following a cloud-centric paradigm where all the data are collected and processed centrally using cloud services to create real business value. Cloud-centric approaches need to address several performance issues at all levels of the network, as massive metering datasets are transferred to distant machine clouds while respecting issues like security and data privacy. Our solution uses the fog computing paradigm to provide a system where the computational resources already available throughout the network infrastructure are utilized to facilitate greatly the analysis of fine-grained water consumption data collected by the smart meters, thus significantly reducing the overall load to network and cloud resources. Details of the system's design are presented along with a pilot deployment in a real-world environment. The performance of the system is evaluated in terms of network utilization and computational performance. Our findings indicate that the fog computing paradigm can be applied to a smart grid deployment to reduce effectively the data volume exchanged between the different layers of the architecture and provide better overall computational, security and privacy capabilities to the system

    Trade-offs between Distributed Ledger Technology Characteristics

    Get PDF
    When developing peer-to-peer applications on distributed ledger technology (DLT), a crucial decision is the selection of a suitable DLT design (e.g., Ethereum), because it is hard to change the underlying DLT design post hoc. To facilitate the selection of suitable DLT designs, we review DLT characteristics and identify trade-offs between them. Furthermore, we assess how DLT designs account for these trade-offs and we develop archetypes for DLT designs that cater to specific requirements of applications on DLT. The main purpose of our article is to introduce scientific and practical audiences to the intricacies of DLT designs and to support development of viable applications on DLT
    corecore