7,672 research outputs found

    Ellipsoidal classification via semidefinite programming

    Get PDF
    We propose a classification approach exploiting relationships between ellipsoidal separation and Support-vector Machine (SVM) with quadratic kernel. By adding a (Semidefinite Programming) SDP constraint to SVM model we ensure that the chosen hyperplane in feature space represents a non-degenerate ellipsoid in input space. This allows us to exploit SDP techniques within Support-vector Regression (SVR) approaches, yielding better results in case ellipsoid-shaped separators are appropriate for classification tasks. We compare our approach with spherical separation and SVM on some classification problems

    Darwin-Riemann Problems in Newtonian Gravity

    Get PDF
    In this paper, we have reviewed the present status of the theory of equilibrium configurations of compact binary star systems in Newtonian gravity. Evolutionary processes of compact binary star systems due to gravitational wave emission can be divided into three stages according to the time scales and configurations. The evolution is quasi-stationary until a merging process starts, since the time scale of the orbital change due to gravitational wave emission is longer than the orbital period. In this stage, equilibrium sequences can be applied to evolution of compact binary star systems. Along the equilibrium sequences, there appear several critical states where some instability sets in or configuration changes drastically. We have discussed relations among these critical points and have stressed the importance of the mass overflow as well as the dynamical instability of orbital motions. Concerning the equilibrium sequences of binary star systems, we have summarized classical results of incompressible ellipsoidal configurations. Recent results of compressible binary star systems obtained by the ellipsoidal approximation and by numerical computations have been shown and discussed. It is important to note that numerical computational solutions to {\it exact equations} show that compressibility may lead realistic neutron star binary systems to mass overflows instead of dynamical disruptions for a wide range of parameters.Comment: 17 pages, 10 figures, PTPTeX style files are include

    Selecting a Small Set of Optimal Gestures from an Extensive Lexicon

    Full text link
    Finding the best set of gestures to use for a given computer recognition problem is an essential part of optimizing the recognition performance while being mindful to those who may articulate the gestures. An objective function, called the ellipsoidal distance ratio metric (EDRM), for determining the best gestures from a larger lexicon library is presented, along with a numerical method for incorporating subjective preferences. In particular, we demonstrate an efficient algorithm that chooses the best nn gestures from a lexicon of mm gestures where typically n≪mn \ll m using a weighting of both subjective and objective measures.Comment: 27 pages, 7 figure

    Invariant classification of orthogonally separable Hamiltonian systems in Euclidean space

    Full text link
    The problem of the invariant classification of the orthogonal coordinate webs defined in Euclidean space is solved within the framework of Felix Klein's Erlangen Program. The results are applied to the problem of integrability of the Calogero-Moser model

    Theory and Applications of Robust Optimization

    Full text link
    In this paper we survey the primary research, both theoretical and applied, in the area of Robust Optimization (RO). Our focus is on the computational attractiveness of RO approaches, as well as the modeling power and broad applicability of the methodology. In addition to surveying prominent theoretical results of RO, we also present some recent results linking RO to adaptable models for multi-stage decision-making problems. Finally, we highlight applications of RO across a wide spectrum of domains, including finance, statistics, learning, and various areas of engineering.Comment: 50 page

    On Machine-Learned Classification of Variable Stars with Sparse and Noisy Time-Series Data

    Full text link
    With the coming data deluge from synoptic surveys, there is a growing need for frameworks that can quickly and automatically produce calibrated classification probabilities for newly-observed variables based on a small number of time-series measurements. In this paper, we introduce a methodology for variable-star classification, drawing from modern machine-learning techniques. We describe how to homogenize the information gleaned from light curves by selection and computation of real-numbered metrics ("feature"), detail methods to robustly estimate periodic light-curve features, introduce tree-ensemble methods for accurate variable star classification, and show how to rigorously evaluate the classification results using cross validation. On a 25-class data set of 1542 well-studied variable stars, we achieve a 22.8% overall classification error using the random forest classifier; this represents a 24% improvement over the best previous classifier on these data. This methodology is effective for identifying samples of specific science classes: for pulsational variables used in Milky Way tomography we obtain a discovery efficiency of 98.2% and for eclipsing systems we find an efficiency of 99.1%, both at 95% purity. We show that the random forest (RF) classifier is superior to other machine-learned methods in terms of accuracy, speed, and relative immunity to features with no useful class information; the RF classifier can also be used to estimate the importance of each feature in classification. Additionally, we present the first astronomical use of hierarchical classification methods to incorporate a known class taxonomy in the classifier, which further reduces the catastrophic error rate to 7.8%. Excluding low-amplitude sources, our overall error rate improves to 14%, with a catastrophic error rate of 3.5%.Comment: 23 pages, 9 figure

    Near horizon extremal Myers-Perry black holes and integrability of associated conformal mechanics

    Full text link
    We investigate dynamics of probe particles moving in the near-horizon limit of (2N+1)-dimensional extremal Myers-Perry black hole with arbitrary rotation parameters. We observe that in the most general case with nonequal nonvanishing rotational parameters the system admits separation of variables in N-dimensional ellipsoidal coordinates. This allows us to find solution of the corresponding Hamilton-Jacobi equation and write down the explicit expressions of Liouville constants of motion.Comment: 9 pages, no figures, v2: Minor changes to match the published versio
    • …
    corecore