3 research outputs found

    Block transformation of hybrid cellular automata

    Get PDF
    By introducing the sequence-block transformation and vector-block transformation, a discussion of symbolic dynamics of hybrid cellular automation (HCA) and hybrid cellular automation with memory (HCAM) is presented in this paper. As the local evolution rules of HCA and HCAM are not uniform, the new uniform cellular automata (CAs) with multiple states can be constructed by specific block transformations. It is proved that the new CA rules are topologically conjugate with the originals. Furthermore, the complex dynamics of the HCA and HCAM rules can be investigated via the new CA rules

    Designing complex dynamics in cellular automata with memory

    Get PDF
    Since their inception at Macy conferences in later 1940s, complex systems have remained the most controversial topic of interdisciplinary sciences. The term "complex system" is the most vague and liberally used scientific term. Using elementary cellular automata (ECA), and exploiting the CA classification, we demonstrate elusiveness of "complexity" by shifting space-time dynamics of the automata from simple to complex by enriching cells with memory. This way, we can transform any ECA class to another ECA class - without changing skeleton of cell-state transition function - and vice versa by just selecting a right kind of memory. A systematic analysis displays that memory helps "discover" hidden information and behavior on trivial - uniform, periodic, and nontrivial - chaotic, complex - dynamical systems. © World Scientific Publishing Company
    corecore