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Abstract

By introducing the sequence-block transformation and vector-block trans-
formation, a discussion of symbolic dynamics of hybrid cellular automa-
tion (HCA) and hybrid cellular automation with memory (HCAM) is
presented in this paper. As the local evolution rules of HCA and HCAM
are not uniform, the new uniform cellular automata (CAs) with multiple
states can be constructed by specific block transformations. It is proved
that the new CA rules are topologically conjugate with the originals. Fur-
thermore, the complex dynamics of the HCA and HCAM rules can be
investigated via the new CA rules.

Keywords: Hybrid cellular automata, minority memory, block transform, sym-
bolic dynamics, chaos.

1 Introduction

Cellular automata (CAs) are a class of spatially and temporally discrete dy-
namical systems characterized by local interactions [1]. As a significant renewal
of interest in CAs, S. Wolfram introduced spatio-temporal representations of
one-dimensional CAs and informally classified them into four classes by using
dynamical concepts such as periodicity, stability, chaos and complex [2-5]. He
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proposed a scheme of elementary CAs (ECAs) with simple local rules which has
drawn a great deal of attentions from various scientific communities. Based on
previous work, L. O. Chua et al provided a nonlinear dynamics perspective to
Wolfram’s empirical observations, and grouped ECAs into six classes hinging
on the quantitative analysis of the orbits [6-10]. These six classes are estab-
lished as period-1, period-2, period-3, Bernoulli-shift, complex Bernoulli-shift
and hyper Bernoulli-shift rules. It is worth mentioning that some of their work
is consistent with previous related studies.

For an one-dimensional CA, when the evolution of all its cells is only depen-
dent on the unique global function, it is called uniform, otherwise it is called
hybrid, i.e. hybrid cellular automata (HCAs) [11,12]. For instance, denoted by
HCA(N ,M). HCA rule, composed of ECA rule N and ECA rule M , is specified
to obey the rule of ECA N at odd sites of the cell array and obey the rule
M at even sites of the cell array. A growing number of researches on HCAs
have been applied in secure communication, see [13-15] and references therein.
Furthermore, the local rule is denoted as HCA(N1, N2, · · · , Nt) when the HCA
is composed of t ECA rules. Though HCAs possess simple hybrid rules and
act on the same square tile structures, the evolution of HCAs may exhibit rich
dynamical behavior through local interactions.

In the 2000s, R. Alonso-Sanz originally proposed ECA with memory whose
each output cell is allowed to remember its previous states during a certain fixed
period of evolution [16-18]. In this way, memory functions help to “discover”
hidden information in dynamical systems from simple functions (or rules), and
“transform” simple and chaotic rules to complex rules or vice versa. For in-
stance, under particular majority memory functions, the ECA rule 30 and rule
126 are endowed with gliders phenomena. Their morphological complexity and
glider dynamics are analyzed in [19,20]. Meanwhile, a classification of ECA
based on memory functions is proposed in [21] as strong, moderate and weak
rules.

In this paper, we take into account the particular evolution rule which is
composed of the minority memory function and the HCA rule—denoted by
HCAM. With respect to the memory function, the number of the cells that
perform memory is three; that is, the memory values are determined by the
last three states of each instantaneous cell. More specifically, minority memory
function implies the ability of recording the values that have the minimum
number of the corresponding last three states of each cell. In particular, if all
the last three-state values are identical, the recorded value is taken as the minus
one. For the instantaneous cells, a line of memory values can be calculated.
Then, a row of cell states at the next moment can be obtained via implementing
the original HCA rules.

The rest of this article is organized as follows: Section 2 presents the def-
initions of chaos and topological entropy. By introducing the sequence-block
transformation and vector-block transformation, Section 3 and Section 4 car-
ries out the discussion of symbolic dynamics of HCA and HCAM respectively.
Finally, Section 4 highlights the main results.
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2 The Preliminaries

Let X be a metric space and Ψ : X → X be a continuous map and distance d
is defined on X.

Ψ is chaotic on X in the sense of Li-Yorke if (1) lim
n→∞

sup d(Ψn(x),

Ψn(y)) > 0, ∀x, y ∈ X, x 6= y; (2) lim
n→∞

inf d(Ψn(x),Ψn(y)) = 0, ∀x, y ∈ X.

x ∈ X is a n-period point of Ψ if there exists the integer n > 0 such
that Ψn(x) = x. Let P (Ψ) stands for the set of all n-period points, that is,
P (Ψ) = {x ∈ X| ∃n > 0,Ψn(x) = x}. In particular, if Ψ(x) = x for several
x ∈ X , x is fixed point. Then, Ψ is said to be topologically transitive if for any
non-empty open subsets U and V of X there exists a natural number n such
that Ψn(U)

⋂
V 6= ∅. P (Ψ) is called a dense subset of X if, for any x ∈ X and

any constant ε > 0, there exists a y ∈ P (Ψ) such that d(x, y) < ε. Ψ is sensitive
to initial conditions if there exists a δ > 0 such that, for x ∈ X and for any
neighborhood B(x) of x, there exists a y ∈ B(x) and a natural number n such
that d(Ψn(x),Ψn(y)) > δ , where d is a distance defined on X.

Ψ is chaotic on X in the sense of Devaney if (1) Ψ is transitive; (2) P (Ψ) is
a dense subset of X; (3)Ψ is sensitive to initial conditions.

Let R ⊂ X is called a (n, ε)-spanning set iff for any x ∈ X and any con-
stant n > 0, ε > 0, there exists a y ∈ R such that d(Ψi(x),Ψi(y)) ≤ ε, i =
0, 1, · · · , n− 1. Thus, rn(ε,X,Ψ) stands for the infimum of cardinal number of
(n, ε)-spanning set with Ψ. The Bowen’s topological entropy is defined as fol-
low: ent(Ψ) = lim

ε→∞
lim
n→∞

sup 1
n log rn(ε,X,Ψ). In addition, Ψ is topologically

mixing if there exists a natural number N such that Ψn(U)
⋂
V 6= ∅ for the

entire n ≥ N .
(1)Ψ is both chaos in the sense of Li-Yorke can be deduced from positive

topological entropy.
(2)Ψ is both chaos in the sense of Devaney and Li-Yorke can be deduced from
topologically mixing.

3 Block transformation in HCA

First and foremost, several terminology and notations are the necessary pre-
requisite to the rigorous consideration of this subject. The set of bi-infinite
configurations is denoted by SZ = · · ·S × S × S · · · and a metric d on SZ is

defined as d(x, x) =
∑+∞
i=−∞

d̃(xi,xi)
2|i|

, where S = {0, 1, · · · , k − 1} , x, x ∈ SZ

and d̃(·, ·) is the metric on S defined as d̃(xi, xi) = 0, if xi = xi; otherwise,

d̃(xi, xi) = 1.
As for S, a word over S is finite sequence a = α0, · · · , αn of elements of

S. In SZ , the cylinder set of a word a ∈ SZ is [a]k = {x ∈ SZ |x[k,k+n] = a},
where k ∈ Z. Such a set is manifestly both open and closed (called clopen).
The cylinder sets generate a topology on SZ and form a countable basis for this
topology. Therefore, every open set is a countable union of cylinder sets. In
addition, SZ is a Cantor space.
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A set X ⊆ SZ is F -invariant if F (X) ⊆ X and strongly F -invariant if
F (X) = X. If X is closed and F -invariant, (X,F ) or simply X is called a
subsystem of F . For instance, let A denote a set of some finite words over S,
and Λ = ΛA is the set which consists of the bi-infinite configurations made up
of all the words in A. Subsequently, ΛA is a subsystem of (SZ , σ), where A is
said to be the determinative block system of Λ. For a closed invariant subset
Λ ⊆ SZ , the subsystem (Λ, σ) or simply Λ is called a subshift of σ [25,26].

The classical left-shift map σL : SZ → SZ is defined by [σL(x)]i = xi+1; the
classical right-shift map σR : SZ → SZ is defined by [σR(x)]i = xi−1. A map
F : SZ → SZ is a CA if and only if it is continuous and commutes with σ, i.e.,
σ ◦ F = F ◦ σ, where σ is a left-shift or right-shift. For any CA, there exists a
radius r ≥ 0 and a local rule N : S2r+1 → S such that [F (x)]i = N(x[i−r,i+r]).
Moreover, (SZ , F ) is a compact dynamical system. ECA rules in Wolfram’s
system of identification has captured special attention ever since its publication,
and each local rule FECA rule : S3 → S, S = {0, 1} can be represented by a
boolean function [22]. For instance, the Boolean function of ECA rule 9 is
expressed as N9(x[i−1,i+1]) = xi−1xixi+1 ⊕ xi−1xixi+1,∀i ∈ Z, where xi ∈ S,
“·”, “⊕” and “−” denote “AND”, “XOR” and “NOT” logical operations,
respectively. Then, the Boolean functions of HCA are represented as

[f(x)]i =



[fECA rule 1(x)]i, (i mod t)≡ 1

[fECA rule 2(x)]i, (i mod t)≡ 2

· · ·
[fECA rule t−1(x)]i, (i mod t)≡ t-1

[fECA rule t(x)]i, (i mod t)≡ 0

.

When the t ECA rules are identical, it is simplified as a special ECA rule.
Whilst we pay close attention on particular subsystems, many of the topo-

logical properties are decidable, such as topological entropy, sensitivity and
topologically mixing of the compact systems. In particular, under several cer-
tain conditions, the compact systems may be only related to subshift σ in the
subset X ⊆ SZ . Thus, we could seek out the finite type subshift σ to analyze
the asymptotic behavior of the system by the directed graph representation
and transition matrix. Because the local rules of HCA are non-uniform, we
can not construct graph and matrix of the HCA rules. As the coarse-grained
preprocessing, we treat n adjacent cells as a new smallest unit. The HCA can
be transformed to a new uniform CA by sequence-block transformation B〈n〉,
which is defined as

yi = [B〈n〉(x)]i =
∑n
v=1 xn(i−1)+v · 2−v, xn(i−1)+v ∈ S

Let Ŝ = {yi} be a new symbolic set. ŜZ is introduced as the space of bi-

infinite configurations over Ŝ and the metric d∗ on ŜZ is d∗(y, y) =
∑+∞
i=−∞

d̂(yi,yi)

2|in|
,

where y, y ∈ ŜZ and d̂(·, ·) is the metric on Ŝ defined as d̂(yi, yi) = |yi − yi|.
Obviously, the new uniform CA has 2n-states and 3-neighbors. Let T stands for
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the new evolution function. It is easy to prove that the sequence-block trans-
formation B is a homeomorphism and the evolution function T is topologically
conjugate with f . Moreover, following the form of Boolean truth table touching
upon ECA rules, when the input string is the 3-bit sequences (yi−1, yi, yi+1)
of the whole different values respectively, 23n evolution results [T (y)]i can be
obtained to identify the particular evolution rule tout court.

Notably, a real CA can be obtained as follow: In bi-infinite symbolic space,
let t→ +∞, then Ŝ = [0, 1] and each yi = [B〈t〉(x)]i ∈ Ŝ. There are an infinitely
number of states in the real CA, and the state of each cell is a real number in
Ŝ. Roughly speaking, a corresponding binary CA can be constructed for each
real CA, and they are mutually topologically conjugate. What is more, the
dynamics of real CA can be investigated through the binary CA equivalently.
In this article, we try to provide a concise way which is only at an early stage
of feasibility exploration for the real CA.

Cite a concrete case, the symbolic dynamics of HCA(45,5,232,138,166,138)
is analyzed in the following. Then, ECA rule 232 belongs to the period-1 rules,
ECA rule 5 belongs to the period-2 rules, ECA rule 138 belongs to the Bernoulli-
shift rules, and ECA rule 45 and rule 166 belong to the hyper Bernoulli-shift
rules. The Boolean function of HCA(45,5,232,138,166,138) is induced as

[f(x)]i =



N45(x[i−1,i+1]), (i mod 6)≡ 1

N5(x[i−1,i+1]), (i mod 6)≡ 2

N232(x[i−1,i+1]), (i mod 6)≡ 3

N138(x[i−1,i+1]), (i mod 6)≡ 4

N166(x[i−1,i+1]), (i mod 6)≡ 5

N138(x[i−1,i+1]), (i mod 6)≡ 0

.

The sequence-block transformation B〈6〉 can be defined as

yi = [B〈6〉(x)]i =
∑6
v=1 x6(i−1)+v · 2−v, xv ∈ S.

Let Ŝ = {yi} be a new symbolic set, and ŜZ is the space of bi-infinite configura-

tions over Ŝ. The new uniform CA have 26-states and 3-neighbors. Therefore,
218 evolution results [T (y)]i can be obtained as the input string (yi−1, yi, yi+1) of
the whole different values respectively. To name only a few, [T ( 1

2 ,
1
4 ,

17
64 )]i = 1

4 ,
[T ( 27

32 ,
9
16 ,

11
16 )]i = 33

64 , and [T ( 9
64 ,

35
64 ,

3
64 )]i = 1

64 . And, crucially, sequence-block
transformation B〈6〉 is a homeomorphism and T is topologically conjugate with
f .

For illustration, a special subset
∑

(I) ⊂ SZ is introduced to account for
the periodic boundary conditions, where

∑
(I) , {x ∈ SZ |x[kI,(1+k)I−1] =

x[0,I−1],∀k ∈ Z}. Let I = 100, and under random initial string, the spatio-
temporal patterns of HCA(45,5,232,138,166,138) and the new CA are illustrated
in Fig.1.
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Fig. 1: (a) Spatio-temporal pattern of HCA(45,5,232,138,166,138), where white
pixels are cells with state 0, and black pixels are cells with state 1. (b) Spatio-
temporal pattern of the new uniform CA, 26-states are displayed by different
grey levels.

The spatio-temporal patterns presented in Fig.1 implies that two rules in
their subsystems, aka attractors, are endowed with Bernoulli-shift dynamical
behaviours. In the following, we present an analytical characterization of com-
plex asymptotic dynamics of T [23,24].

For T , there exists a subset ΛA of ŜZ , such that T 6(y)|ΛA = σL(y)|ΛA , where
ΛA = {y ∈ SZ |y[i,i+2] ∈ A,∀i ∈ Z} and A = {( 1

4 ,
3
8 ,

1
4 ), ( 3

8 ,
1
4 ,

1
4 ),

( 1
4 ,

1
4 ,

1
4 ), ( 1

4 ,
1
4 ,

1
2 ), ( 1

4 ,
1
2 ,

3
8 ), ( 1

2 ,
3
8 ,

1
4 ), ( 3

8 ,
1
4 ,

19
64 ), ( 1

4 ,
19
64 , 0), ( 19

64 , 0,
1
4 ), (0, 1

4 ,
1
2 ), ( 1

4 ,
1
2 ,

1
4 ), ( 1

2 ,
1
4 ,

1
4 ), ( 1

4 ,
1
4 ,

5
16 ), ( 1

4 ,
5
16 ,

17
64 ), ( 1

4 ,
1
8 ,

1
4 ), ( 1

8 ,
1
4 ,

1
4 ), ( 1

4 ,
1
4 ,

17
64 ), ( 1

4 ,
17
64 ,

1
2 ), ( 17

64 ,
1
2 ,

1
8

), ( 1
2 ,

1
8 ,

1
4 ), ( 1

8 ,
1
4 ,

5
16 ), ( 1

4 ,
5
16 ,

1
4 ), ( 5

16 ,
1
4 ,

17
64 ), ( 17

64 ,
1
2 ,

1
4 ), ( 1

4 ,
1
4 ,

3
8 ), ( 1

4 ,
3
8 ,

19
64 ), ( 1

4 ,
1
4 ,

19
64 ),

( 19
64 , 0,

1
2 ), (0, 1

2 ,
1
4 ), ( 1

2 ,
1
4 ,

3
8 ), (0, 1

4 ,
1
4 ), ( 1

4 ,
1
4 ,

1
8 ), ( 1

4 ,
1
8 ,

5
16 ), ( 5

16 ,
17
64 ,

1
2 ), ( 1

2 ,
1
4 ,

1
8 ), ( 5

16 ,
1
4 ,

1
4 ), ( 3

8 ,
19
64 , 0), ( 1

8 ,
5
16 ,

1
4 ), ( 19

64 , 0,
17
64 ), ( 5

16 ,
1
4 ,

19
64 ), ( 3

8 ,
1
4 ,

5
16 ), ( 1

8 ,
1
4 ,

3
8 ), ( 1

2 ,
1
4 ,

1
2 ), (0, 17

64 ,
1
2 )}. Moreover, ΛA is a subshift of finite type of (ŜZ , σL).

The y[i,i+2] stands for a 3-bit sequence (yi, yi+1, yi+2) over Ŝ. Each yi stands
for a 6-bit sequence (x6i, x6i+1, ..., x6i+5) over S = {0, 1}. For instance, (1/4,
3/8, 1/4) refers to the 18-bit sequence (010000, 011000, 010000). A is called

the determinative system of ΛA, which is a 3-sequence set in ŜZ . In addition,
we can obtain the determinative system A′ and the subsystem ΛA′ of f .
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Fig. 2: Graph representation for the subsystem ΛA.

In a nutshell, directed graph theory provides a powerful tool for studying
the infinite strings. A fundamental method for constructing finite shifts starts
with a finite, directed graph and produces the collection of all bi-infinite walks
(i.e., strings of edges) on the graph. A graph G(V,E) consists of a finite set
V of vertices (or states) together with a finite set E of edges. A finite path
P = V1 → V2 → · · · → Vm on a graph G(V,G) is a finite string of vertices Vi
from G. The length of P is |P | = m. A cycle is a path that starts and terminates
at the same vertex. It is addressed that ΛA can be described by a finite directed
graph GA = G(A, E), where each vertex is a string in A. Each edge e ∈ E
starts at a string denoted by a = (a0, a1, a2) ∈ A and terminates at the string
b = (b0, b1, b2) ∈ A if and only if ak = bk−1, k = 1, 2. One can represent
each element of ΛA as a certain path on the graph GA. Figure 2 displays the
finite directed graph GA where each vertex stands for the element of A by
order, i.e., V1 = ( 1

4 ,
3
8 ,

1
4 ), V2 = ( 3

8 ,
1
4 ,

1
4 ), V3 = ( 1

4 ,
1
4 ,

1
4 ), · · · , V43 = ( 1

2 ,
1
4 ,

1
2 ),
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V44 = (0, 17
64 ,

1
2 ). The entire bi-infinite walks on the graph constitute the closed

invariant subsystem ΛA.
(· · · , 1

4
1
4

1
4 , · · · ) a string of period-1 point (fixed point) on ΛA. In the GA,

the vertex a = ( 1
4 ,

1
4 ,

1
4 ) has a self-cycle. Then, T 6(· · · , 1

4
1
4

1
4 ,

· · · ) = (· · · , 1
4

1
4

1
4 , · · · ). However, according to the spatio-temporal patterns, we

can gain T (· · · , 1
4

1
4

1
4 , · · · ) = (· · · , 1

4
1
4

1
4 , · · · ).

The diversiform strings of period-6t points are enumerated by the irreducible
cycles on GA, where 2 ≤ t ≤ 27 and t = 29. When one cycle has repeating
vertices, it is called the reducible cycle; otherwise, it is called the irreducible
cycle. By and large, as any cycle can be compounded by irreducible cycle, we
seek out the irreducible cycles in the finite directed graph GA. For instance,
x = (· · · , 1

4
5
16

17
64

1
2

1
4 · · · ) is a string of 30-period point, which is the irreducible

closed cycle ( 1
4

5
16

17
64 ) → ( 5

16
17
64

1
2 ) → ( 17

64
1
2

1
4 ) → ( 1

2
1
4

1
4 ) → ( 1

2
1
4

5
16 ) → ( 1

4
5
16

17
64 )

in GA. x = (· · · , 19
640 1

4
1
2

1
4

1
8

1
4

1
4

3
8 , · · · ) is one string of 54-period point, which is

the irreducible closed cycle (19
640 1

4 ) → (0 1
4

1
2 ) → ( 1

4
1
2

1
4 ) → ( 1

2
1
4

1
8 ) → ( 1

4
1
8

1
4 ) →

( 1
8

1
4

1
4 )→ ( 1

4
1
4

3
8 )→ ( 1

4
3
8

19
64 )→ ( 3

8
19
640)→ ( 19

640 1
4 ) in GB.

The periodic points set of T is dense on ΛA. For any x ∈ ΛA and ε > 0,
there exists a positive integer M > 1 such that Σ∞i=M+1( 1

2 )i < ε
2 , and for any

(a−M , · · · , aM ) ∈ A, it is clear that (a−M , · · · aM ) = x[−M,M ] ≺ x ∈ ΛA. As
σL is topologically transitive on ΛA, there exists a closed cycle in the finite di-
rected graph GA: c = (a−M , · · · , aM , c0, c1, · · · , ck, a−M , · · · , aM ), where each
2M + 1-length string in c is belong to A. Thus, let b = (a−M , · · · , aM ,
c0, c1, · · · , ck) and y = (· · · , b, b, b, · · · ). Obviously, for any y ∈ ΛA, σk+2M+1

L (y) =

y, where k+2M+1 = |b| is the length of b. T 4(k+2M+1)(y) = σ
2(k+2M+1)
L (y) = y

is meaning that y is a periodic point of T and x[−M,M ] = y[−M,M ], so d(x, y) ≤
2Σ∞i=M+1( 1

2 )i < ε.

Let S = {r0, r1, · · · , r42, r43} be a new symbolic set, where ri, i = 0, · · · , 43,
stand for elements of A respectively. Then, one can construct a new symbolic

space S
Z

on S. Denote by A = {(rr′)|r = (b0b1b2), r′ = (b′0b
′
1b
′
2) ∈ S,∀1 ≤ j ≤

2 such that bj = b′j−1}. Further, the two-order subshift ΛA of σL is defined

by ΛA = {r = (· · · , r−1, r
∗
0 , r1, · · · ) ∈ S

Z |ri ∈ S, (ri, ri+1) ≺ A,∀i ∈ Z}. De-
fine a map from ΛA to ΛA as follows: π : ΛA → ΛA, x = (..., x−1, x

∗
0, x1, ...) 7→

(..., r−1, r
∗
0 , r1, ...), where ri = (x[i,i+2]),∀i ∈ Z. Then, it follows from the defini-

tion of ΛA that for any x ∈ ΛA, one has π(x) ∈ ΛA; namely, π(ΛA) ⊆ ΛA. One
can easily check that π is a homeomorphism and π ◦σL = σL ◦π. Therefore, the
topologically conjugate relationship between (ΛA, σL) and a two-order subshift
of finite type (ΛA, σL) is established [25,26]. Therefore, it is relatively trivial to
calculate the transition matrix D of the subshift ΛA, i.e.,
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

0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 1 1 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 1 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 1 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 1 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 1 0
0 0 1 1 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 1 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 1 1 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 1 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 1 0
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 1 0
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 1 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 1 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 1 1 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 1 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0


The matrix D is positive if all of its entries are non-negative, irreducible if

∀i, j, there exist n such that Dnij > 0, aperiodic if there exists N , such that
Dnij > 0, n > N,∀i, j. If ΛA is a two-order subshift of finite type, then it is
topologically mixing if and only if D is irreducible and aperiodic. Then, the
topological dynamics of f on ΛA is largely determined by the properties of D.

T is topologically transitive on ΛA. σL is topologically transitive on ΛA
if the transition matrix D is irreducible. Further, D is irreducible if D + I is
aperiodic, where I is the 44×44 identity matrix. Meanwhile, it is easy to verify
that (D+I)n is positive for n ≥ 7. The matrix is positive if all elements in this
matrix is positive. Hence, T is topologically transitive on ΛA.

The topological entropy of T |ΛA is log(ρ(D)) = log(2.55282) = 0.937198 as
ρ(D) is the spectral radius of D. ρ(D) is the maximum positive real root λ∗

of characteristic equation in transition matrix. The characteristic equation is
2λ28 − 6λ29 + 3λ31 + 5λ32 + 7λ33 − 15λ34 − 14λ35 − 31λ36 − 22λ37 − 15λ38 −
8λ39 − 4λ40 − 3λ41 − λ42 − λ43 + λ44 = 0.

T is topologically mixing on ΛA. As a matter of fact, Dnij > 0, n ≥ 7
for 1 ≤ i, j ≤ 44, D is aperiodic accordingly. Thus, the subshift of finite type
(ΛA, σL) is mixing, and T 6(y)|ΛA also is mixing. Then, it is easy to prove
T (y)|ΛA also is mixing.

9



In conclusion, the mathematical analysis presented above provides the rig-
orous foundation for the following theorem.

T is chaotic in the sense of both Li-Yorke and Devaney on the subsystem
ΛA. T is topologically mixing on ΛA. The topological entropy of T |ΛA is
positive. It follows from [25,26] that the chaos in the sense of Li-York can be
deduced from positive topological entropy. Suffice it to say that the chaos in
the sense of Devaney and Li-Yorke can be deduced from topologically mixing.
According to the same way, we can easily get the same dynamical properties of
f on its subsystem ΛA′ . Meanwhile, f is chaotic in the sense of both Li-Yorke
and Devaney on its corresponding subsystem ΛA′ .

For HCA(45,5,232,138,166,138), if we treat 6n(n ∈ N) adjacent cells as a
new smallest unit, and the sequence-block transformation B〈6n〉 can be defined
as

yi = [B〈6n〉(x)]i =
∑6n
v=1 x6n(i−1)+v · 2−v, x6n(i−1)+v ∈ S.

Furthermore, a myriad of new uniform CA of 26n-states and 3-neighbors can be
constructed, which are topologically conjugate with each other. According to
the different B〈6n〉, we denote the new evolution function as T〈6n〉 ad infinitum,
and the corresponding bi-infinite space as SZ〈6n〉. In particular, T〈6〉 is remarked

as T and SZ〈6〉 = ŜZ .

In order to identify the particular evolution rule, 218n evolution results of
T〈6n〉 can be obtained for the input string (yi−1, yi, yi+1) of the whole different
values respectively. The all T〈6n〉 are endowed with Bernoulli-shift dynamics.
On their corresponding subsystems Λ, T 6n

〈6n〉(y)|Λ = σL(y)|Λ; that is, T〈6n〉 is
chaotic in the sense of both Li-Yorke and Devaney. More importantly though,
let n → ∞, one can capture a concrete CA with real states, whose dynamics
is identical with HCA(45,5,232,138,166,138). For clarity, the following diagram
commutes:

SZ

f

��

B〈6n〉 // SZ〈6n〉

T〈6n〉

��

B〈∞〉 // SZ〈∞〉

T〈∞〉

��
SZ

B〈6n〉

// SZ〈6n〉
B〈∞〉 // SZ〈∞〉

4 Block transformation in HCAM

According to the description in [21], the memory function φ is implemented
as sti = φi(x

t−τ+1
i , · · · , xt−1

i , xti)
T , where t ∈ Z is the instantaneous time step.

Here, 1 ≤ τ ≤ t determines the degree of memory and φi denotes the i-th symbol
of global memory function φ. Thus, τ = 1 means conventional evolution of HCA
rules, whereas τ = t means unlimited trailing memory. Each cell trait sti ∈ S is
a state function of the states of cell i with memory backward up to the value τ .
The memory implementation begins to act as soon as t reaches the τ time-step.

10



Initially, i.e. t < τ , the automata evolves in the conventional way. Furthermore,
the original rule is applied on the cell states s to get an evolution with memory
as: f(· · · , sti−1, s

t
i, s

t
i+1, · · · ) = xt+1

i . In particular, the simplified expression of f

is f ◦φ(xt−τ+1, · · · , xt−1, xt)T = xt+1, where xt+k = (· · · , xt+ki−1 , x
t+k
i , xt+ki+1 , · · · ),

k=-τ+1,. . . ,-1,0,1. In this paper, we consider the new evolution rule of HCAM
are composed of the memory function and the HCA rule.

Assume that the initial configurations of original stipulation should be ap-
plicable, mutatis mutandis, to the mathematical definition of HCAM. The first
τ lines of cell array of HCAM rule are all regarded as the random initial con-
figurations; that is, the lines of cell array from second to τ − th are not re-
garded as the evolution results according to the original HCA rule. When
t > τ , it evolves following the above way. Consequently, the symbolic vector
map of HCAM rule F will be conformed to the mathematical definition of the
function. Here, we introduce the symbolic vector space and exploit the math-
ematical definition of HCAM. Firstly, symbolic vector space is introduced as

SZm = {X = (x(1)T , x(2)T , · · · , x(m)T )T |x(j)T ∈ SZ , j = 1, 2, · · · ,m}, where T
refers to the transposed operation. Thus, the metric d∗ on SZm is defined as
d∗(X,X) = (

∑n
j=1 d(x(j),

x(j)))
1
n . Consequently, the definition of symbolic vector map F : SZm → SZm is

F


x(1)

x(2)

· · ·
x(m)

 =


f(x(1))
f(x(2))
· · ·

f(x(m))

 , where f : SZ → SZ is the symbolic sequence map.

Then the vector-block transformation B〈m×n〉 can be defined as

Yi = [B〈m×n〉(X)]i =
∑m
j=1

∑n
v=1 x

(j)
n(i−1)+v · 2

−(j−1)n−v.

By introducing the extended space S̃Z and distance d̃, it is demonstrated that
the new uniform CA has 2mn-states and 3-neighbors. Let U be the new symbolic
sequence map. It could be easily proved that B〈m×n〉 is a homeomorphism and
the evolution function U is topologically conjugate with F . Moreover, following
the form of Boolean truth table, when the input string is the 3-bit sequences
(Yi−1, Yi, Yi+1) of the whole different values respectively, 23mn evolution results
[U(Y )]i can be obtained to identify the particular evolution rule.

In this paper, the memory function φ is set as the minority memory and

τ = 3; that is, φ(xt−2
i , xt−1

i , xti) = (xt−2
i ⊕ xt−1

i ) · (xt−1
i ⊕ xti)·(xti ⊕ x

t−2
i ). ECA

rule 105 belongs to the complex Bernoulli-shift rules, and ECA rule 60 belongs
to the hyper Bernoulli-shift rules. The Boolean function of HCAM(105,60) is
induced as

f(x[i−1,i+1]) =

{
N105(x[i−1,i+1]), (i mod 2)≡ 1

N60(x[i−1,i+1]), (i mod 2)≡ 0
.

Let S̃ = {Yi} be a new symbolic set. S̃Z is introduced as the space of

bi-infinite configurations over S̃. Then we define vector-block transformation
B〈4×2〉 as

11



Yi = [B〈4×2〉(X)]i =
∑4
j=1

∑2
v=1 x

(j)
2(i−1)+v · 2

−(j−1)2−v.

It is demonstrated that the new uniform CA has 28-states and 3-neighbors. The
224 evolution results [U(Y )]i can be obtained as to the input string (Yi−1, Yi, Yi+1)
of the whole different values respectively. For instance, [U( 11

32 ,
141
256 ,

1
16 )]i = 5

16 ,
[U( 51

128 ,
125
256 ,

157
256 )]i = 93

128 , and [U( 85
128 ,

255
256 ,

5
8 )]i = 85

128 . Vector-block transfor-
mation B〈4×2〉 is a homeomorphism and the evolution function U of the new
uniform CA is topologically conjugate with F . An example of spatio-temporal
pattern of HCAM(105,60) and the new CA with random initial configurations
is illustrated in Fig.2.

Fig. 3: (a) Spatio-temporal pattern of HCAM(105,60), where white pixels are
cells with state 0, and black pixels are cells with state 1. (b) Spatio-temporal
pattern of the new uniform CA, 28-states are displayed by different grey levels.

For U , there exists a subset ΛB of S̆Z , such that U(Y )|ΛB = σR(Y )|ΛB ,
where ΛB = {Y ∈ S̆Z |Y[i,i+2] ∈ B,∀i ∈ Z} and B = {( 5

8 ,
85
128 ,

175
256 ), ( 85

128 ,
175
256 ,

5
16 ), ( 175

256 ,
5
16 ,

165
256 ), ( 5

16 ,
165
256 , 0), ( 165

256 , 0, 0), (0, 0, 21
64 ), (0, 21

64 ,
41
256 ), ( 21

64 ,
41
256 , 0), ( 41

256 ,
0, 0), (0, 0, 5

256 ), (0, 5
256 ,

125
128 ), ( 5

256 ,
125
128 ,

95
256 ), ( 125

128 ,
95
256 ,

95
256 ), ( 95

256 ,
95
256 ,

15
256 ), ( 95

256 ,
15
256 ,

125
128 ), ( 15

256 ,
125
128 ,

5
128 ), ( 125

128 ,
5

128 ,
5
16 ), ( 5

128 ,
5
16 ,

15
16 ), ( 5

16 ,
15
16 ,

45
128 ), ( 15

16 ,
45
128 ,

15
16 ), ( 45

128 ,
15
16 ,

37
128 ), ( 15

16 ,
37
128 ,

129
256 ), ( 37

128 ,
129
256 ,

127
128 ), ( 129

256 ,
127
128 ,

131
256 ), ( 127

128 ,
131
256 ,

85
128 ), ( 131

256 ,
85
128 ,

125
128 ), ( 85

128 ,
125
128 ,

5
128 ), ( 125

128 ,
5

128 , 0), ( 5
128 , 0, 0), ( 21

64 ,
41
256 ,

5
16 ), ( 41

256 ,
5
16 ,

5
8 ), ( 5

16 ,
5
8 ,

117
128 ), ( 5

8 ,
117
128 ,

43
256 ),

( 117
128 ,

43
256 , 0), ( 43

256 , 0,
5
16 ), (0, 5

16 ,
15
16 ), ( 5

16 ,
15
16 ,

15
256 ), ( 15

16 ,
15
256 ,

85
128 ), ( 15

256 ,
85
128 ,

85
128 ), ( 85

128 ,
85
128 ,

175
256 ), ( 85

128 ,
175
256 ,

21
64 ), ( 175

256 ,
21
64 ,

61
256 ), ( 21

64 ,
61
256 ,

31
32 ), ( 61

256 ,
31
32 ,

45
128 ), ( 31

32 ,
45
128 ,

5
8 ), ( 45

128 ,
5
8 ,

127
128 ), ( 5

8 ,
127
128 ,

151
256 ), ( 127

128 ,
151
256 ,

1
128 ), ( 151

256 ,
1

128 ,
5
16 ), ( 1

128 ,
5
16 ,

15
16 ), ( 15

16 ,
45
128 ,

5
8 ), ( 45

128 ,
5
8 ,

85
128 ), ( 5

8 ,
85
128 ,

127
128 ), ( 85

128 ,
127
128 ,

131
256 ), ( 127

128 ,
131
256 ,

125
128 ), ( 131

256 ,
125
128 ,

95
256 ), ( 125

128 ,
95
256 ,

5
128 ), ( 95

256 ,
5

128 ,
1
4 ), ( 5

128 ,
1
4 ,

213
256 ), ( 1

4 ,
213
256 ,

151
256 ), ( 213

256 ,
151
256 ,

1
128 ), ( 151

256 ,
1

128 , 0), ( 1
128 , 0,

21
64 ), ( 41

256 , 0,
17
64

), (0, 17
64 ,

55
64 ), ( 17

64 ,
55
64 ,

131
256 ), ( 55

64 ,
131
256 ,

85
128 ), ( 131

256 ,
85
128 ,

85
128 ), ( 85

128 ,
85
128 ,

127
128 ), ( 85

128 ,
127
128 ,

151
256

), ( 127
128 ,

151
256 ,

35
128 ), ( 151

256 ,
35
128 ,

51
64 ), ( 35

128 ,
51
64 ), 51

128 ), ( 51
64 ), 51

128 ,
55
64 ), ( 51

128 ,
55
64 ,

131
256 ), ( 55

64 ,
131
256 ,

125
128 ), ( 131

256 ,
125
128 ,

15
256 ), ( 125

128 ,
15
256 ,

125
128 ), ( 15

256 ,
125
128 ,

45
128 ), ( 125

128 ,
45
128 ,

245
256 ), ( 45

128 ,
245
256 ,

7
8 ), ( 245

256 ,
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7
8 ,

63
256 ), ( 7

8 ,
63
256 ,

31
32 ), ( 63

256 ,
31
32 ,

5
128 ), ( 31

32 ,
5

128 ,
1
16 ), ( 5

128 ,
1
16 ,

113
256 ), ( 1

16 ,
113
256 ,

45
128 ), ( 113

256 ,
45
128 ,

5
8 )}. Moreover, ΛB is a subshift of finite type of (S̃Z , σR). Each Y[i,i+2] stands

for a 3-bits sequence (Yi, Yi+1, Yi+2) over S̃. Each Yi stands for a 4× 2 config-

uration


x

(1)
2i−1 x

(1)
2i

x
(2)
2i+1 x

(2)
2i

x
(3)
2i−1 x

(3)
2i

x
(4)
2i−1 x

(4)
2i

 over S = {0, 1}. For instance, (5/8, 85/128, 175/256)

refers to the 4× 6 configuration
1 0 1 0 1 0
1 0 1 0 1 0
0 0 1 0 1 1
0 0 1 0 1 1


.
B is called the determinative system of ΛB, which is a 4 × 6 configuration

set. Thus, for F , the determinative system B′ and the subsystem ΛB′ also can
be easily obtained.

Following the similar method presented above, if we calculate the finite
directed graph GB and the transition matrix E , the problem becomes more
tractable. In addition, the transition matrices E is relatively large. Therefore,
we only list the indices (i, j) of nonzero elements.
E = {(1, 2), (1, 41), (2, 3), (3, 4), (4, 5), (5, 6), (5, 10), (6, 7), (7, 8), (7, 30),
(8, 9), (8, 64), (9, 6), (9, 10), (10, 11), (11, 12), (12, 13), (12, 57), (13, 14), (14, 15),
(15, 16), (15, 79), (16, 17), (16, 28), (17, 18), (18, 19), (18, 37), (19, 20), (19, 51),
(20, 21), (21, 22), (22, 23), (23, 24), (24, 25), (24, 55), (25, 26), (25, 68), (26, 27),
(27, 17), (27, 28), (28, 29), (29, 6), (29, 10), (30, 31), (31, 32), (32, 33), (33, 34),
(34, 35), (35, 36), (36, 19), (36, 37), (37, 38), (38, 39), (39, 40), (39, 69), (40, 2),
(40, 41), (41, 42), (42, 43), (43, 44), (44, 45), (45, 46), (45, 52), (46, 47), (47, 48),
(47, 71), (48, 49), (48, 62), (49, 50), (50, 19), (50, 37), (51, 46), (51, 52), (52, 1),
(52, 53), (53, 54), (53, 70), (54, 25), (54, 55), (55, 56), (55, 77), (56, 13), (56, 57),
(57, 58), (58, 59), (59, 60), (60, 61), (61, 49), (61, 62), (62, 63), (63, 7), (64, 65),
(65, 66), (66, 67), (66, 76), (67, 26), (67, 68), (68, 40), (68, 69), (69, 54), (69, 70),
(70, 48), (70, 71), (71, 72), (72, 73), (73, 74), (74, 75), (75, 67), (75, 76), (76, 56),
(76, 77), (77, 78), (78, 16), (78, 79), (79, 80), (80, 81), (81, 82), (82, 83), (83, 84),
(84, 85), (85, 86), (86, 87), (87, 88), (88, 46), (88, 52)}.

Then, the diversiform strings of period-t points are enumerated by the ir-
reducible cycles on GB, where 7 ≤ t ≤ 52 and t ∈ {4, 54, 55, 56, 59}. In
addition, the periodic points set of U is dense on ΛB. As a matter of fact,
(E + I)nij > 0, n ≥ 24 for 1 ≤ i, j ≤ 88, so E is irreducible. U(Y )|ΛB is topo-
logically transitive on ΛB. And Enij > 0, n ≥ 30 for 1 ≤ i, j ≤ 88, so E is
aperiodic. Thus, U(Y )|ΛB also is mixing. Furthermore, the topological entropy
ent(U(Y )|ΛB) = ent(σR(Y )|ΛB), and ent(σR(Y )|ΛB) = log λ∗

.
= log(1.42351) =

0.353125, where λ∗ is the maximum positive real root of the characteristic equa-
tion of E. In particular, the chaos in the sense of Li-York can be deduced from
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positive topological entropy. Both the chaos in the sense of Devaney and in the
sense of Li-York can be deduced from topologically mixing.
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Fig. 4: Graph representation for the subsystem ΛB.

U is chaotic in the sense of both Li-Yorke and Devaney on the subsystem ΛB.
According to the same way, we can easily get the same dynamical properties of
F on its subsystem ΛB′ . Meanwhile, F is chaotic in the sense of both Li-Yorke
and Devaney on its corresponding subsystem ΛB′ .

For HCAM(105,60), we treat 4n×2n(n ∈ N) adjacent cells as a new smallest
unit, and define vector-block transformation B〈4n×2n〉 as

Yi = [B〈4n×2n〉(X)]i =
∑4n
j=1

∑2n
v=1 x

(j)
2n(i−1)+v · 2

−(j−1)2n−v, v ∈ Z.

Then a series of new uniform CA of 28n2

-states and 3-neighbors can be con-
structed, which are topologically conjugate with each other. According to the
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different B〈4n×2n〉, we denote the new evolution function as U〈4n×2n〉, and the

corresponding bi-infinite space as S̃Z〈4n×2n〉. In this article, U〈4×2〉 is remarked

as U and S̃Z〈4×2〉 refers to S̃Z .

In order to identify the particular evolution rule, 224n2

evolution results of
U〈4n×2n〉 can be obtained for the input string (Yi−1, Yi, Yi+1) assigning differ-
ent values in order. All U〈4n×2n〉 are endowed with Bernoulli shift dynamics.
On their corresponding subsystems Λ′, U〈4n×2n〉(Y )|Λ′ = σR(Y )|Λ′ ; that is,
U〈4n×2n〉 is chaotic in the sense of both Li-Yorke and Devaney. As n→∞, it is
conceivable that a real CA can be obtained, and its dynamics is identical with
HCAM(105,60). For clarity, the following diagram commutes:

SZ4n

F

��

B〈4n×2n〉// S̃Z〈4n×2n〉

U〈4n×2n〉

��

B〈∞〉 // S̃Z〈∞〉

U〈∞〉

��
SZ4n B〈4n×2n〉

// S̃Z〈4n×2n〉
B〈∞〉 // S̃Z〈∞〉

5 Conclusion and discussion

In this paper, the chaotic dynamics of HCA and HCAM rules are examined un-
der the framework of symbolic dynamics. By the special block transformations,
HCA and HCAM can be transformed to the new uniform and topologically con-
jugate CAs. Therefore, their dynamical properties on their subsystems can be
decided by the directed graph representation and transition matrix of the uni-
form CAs. As examples, HCA(45,5,232,138,166,138) and HCAM(105,60) here
are topologically mixing and possess the positive topological entropy on the con-
crete subsystems. Therefore, it is concluded that they are chaotic in the sense
of both Li-Yorke and Devaney.

The block transforms build the potential bridge between the CAs with real
states and the CA with states of 0 and 1 by topological conjugation. It implies
that the dynamics of each real CA can be detailedly explored via the corre-
sponding binary CAs. Hence, the investigation of the relationship between real
CAs and binary CAs is of great interest in the future work.
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