6 research outputs found

    Computability of a wedge of circles

    Get PDF
    We examine conditions under which a semicomputable set in a computable metric space is computable. In particular, we focus on wedge of circles and prove that each semicomputable wedge of circles is computable

    On Cyclic Timetabling and Cycles in Graphs

    Get PDF
    The cyclic railway timetabling problem (CRTP) essentially is defined by some constraint graph together with a cycle period time. We point out the relevance of cycles of the constraint graph for the CRTP. This covers valid inequalities for a Branch and Cut approach and special cases in that CRTP becomes easy. But emphasis will be put on the problem formulation. The most intuitive model for cyclic timetabling involves node potentials. Modelling the cyclicity appropriately immediately results in an integer variable for every restriction, or arc of the constraint graph. A more sophisticated model regards the corresponding (periodic) tension. This well-established approach only requires an integer variable for every co-tree arc. The latter may be interpreted as representants for the elements of (strictly) fundamental cycle bases. We introduce the more general concept of integral cycle bases for characterizing periodic tensions. Whereas the number of integer variables is still limited to the cyclomatic number of the constraint graph, there is a much wider choice for the cycle basis. One can profit immediately from this, because there are box constraints known for every integer variable that could ever appear

    SAVCBS 2004 Specification and Verification of Component-Based Systems: Workshop Proceedings

    Get PDF
    This is the proceedings of the 2004 SAVCBS workshop. The workshop is concerned with how formal (i.e., mathematical) techniques can be or should be used to establish a suitable foundation for the specification and verification of component-based systems. Component-based systems are a growing concern for the software engineering community. Specification and reasoning techniques are urgently needed to permit composition of systems from components. Component-based specification and verification is also vital for scaling advanced verification techniques such as extended static analysis and model checking to the size of real systems. The workshop considers formalization of both functional and non-functional behavior, such as performance or reliability

    Computability of sets with disconnected complements

    Get PDF
    U ovom doktorskom radu proučavali su se uvjeti koji omogućuju da skupovi s nepovezanim komplementom sadrže izračunljivu točku, odnosno postaju izračunljivi. Štoviše, istraživanje ove disertacije obuhvaća i skupove koji su homeomorfni skupovima s nepovezanim komplementima. Ambijentni prostor nad kojim su dokazivani rezultati ovog rada bio je izračunljiv metrički prostor (X,d,α)(X, d, \alpha), koji predstavlja svojevrsno poopćenje standardnog izračunljivog euklidskog prostora Rn\mathbb{R}^n. U poglavlju 1. definirali su se neki osnovni pojmovi iz izračunljive analize te su istaknuti neki poznati, ali za ovo istraživanje, važni rezultati, koji su se tijekom ove doktorske disertacije koristili. Naglasak ovog poglavlja je posebno bio na doprinosima ove doktorske disertacije. Cilj ovog rada među ostalim je također bio da se još jednom istakne kako postoji uska veza između topologije i same teorije izračunljivosti. Neka topološka svojstva mogu učiniti poluizračunljiv/co-c.e. skup izračunljivim ili barem učiniti da takvi skupovi sadrže izračunljivu točku. Originalni doprinos ovog rada započet je s poglavljem 2 u kojem su proučavani co-c.e. skupovi s nepovezanim komplementima u izračunljivom metričkom prostoru. Pažnja se posebno usmjerila na slučaj kada je izračunljiv metrički prostor (X,d,α)(X, d, \alpha) efektivno lokalno povezan i kada se komponente povezanosti komplementa co-c.e. skupa SXS \subseteq X mogu na efektivan način razlikovati. Opisali su se neki dovoljni uvjeti koji omogućavaju da takav skup SS sadrži izračunljivu točku te neki dovoljni uvjeti uz koje skup SS postaje izračunljiv. Slobodno se može istaknuti da je pojam efektivne lokalne povezanosti zapravo ključ proučavanja ovog poglavlja. Stoga je u potpoglavlju 2.2. dana precizna definicija toga pojma. Budući se definicija efektivne lokalne povezanosti ne treba ograničiti samo na povezane otvorene kugle stvara se potreba za opisom pojma koji bi objašnjavao značenje izračunljivosti niza otvorenih (povezanih) skupova UiU_i u izračunljivom metričkom prostoru (X,d,α)(X, d, \alpha). U tom kontekstu prezentira se definicija koja objašnjava značenje da niz skupova (Ai)(A_i) efektivno profinjuje niz skupova (Bi)(B_i) te značenje kada su dva niza skupova (Ai)(A_i) i (Bi)(B_i) izračunljivo ekvivalentni. U potpoglavlju 2.4. uvodi se pojam efektivne nepovezanosti otvorenog nepovezanog skupa VV u (X,d,α)(X, d, \alpha). Tim pojmom poopćava se situacija koja se odnosi na slučaj kada nepovezan otvoren skup VV u (X,d,α)(X, d, \alpha) ima konačno mnogo komponenti povezanosti. Glavni rezultat ovog poglavlja, čiji je dokaz dan u potpoglavlju 2.4., kaže da ukoliko je (X,d,α)(X, d, \alpha) efektivno lokalno povezan izračunljiv metrički prostor te ukoliko je SS co-c.e. skup u (X,d,α)(X, d, \alpha) takav da je XSX \setminus S efektivno nepovezan i takav da svaka točka skupa SS leži na rubu barem dvije komponente povezanosti od XSX \setminus S, onda skup SS nužno mora biti izračunljiv u (X,d,α)(X, d, \alpha) (vidi teorem 2.4.5 u potpoglavlju 2.4.). Također je dokazano da u efektivno lokalno povezanom izračunljivom metričkom prostoru (X,d,α)(X, d, \alpha), proizvoljan co-c.e. skup SS, sa svojstvom da je XSX \setminus S efektivno nepovezan, nužno sadrži izračunljivu točku ukoliko se dodatno pretpostavi da je metrički prostor (X,d)(X, d) povezan i potpun (korolar 2.4.6). Na kraju tog poglavlja prezentiran je još jedan dovoljan uvjet uz koji co-c.e. skup s efektivno nepovezanim komplementom u potpunom, efektivno lokalno povezanom izračunljivom metričkom prostoru (X,d,α)(X, d, \alpha) sadrži izračunljivu točku. Skup S sadrži izračunljivu točku xx ako postoji neki povezan skup AA koji siječe dvije različite komponente povezanosti skupa XSX \setminus S. Štoviše, takav se xx može naći po volji blizu skupa AA (vidi teorem 2.4.8). Poglavlje 3. je prije svega posvećeno poopćenju takozvane izračunljive verzije Bolzanovog teorema o nultočki. Ukoliko je skup KK izračunljiv i povezan podskup od R2\mathbb{R}^2 koji siječe obje komponente skupa R2S\mathbb{R}^2 \setminus S, gdje je S=R×{0}S = \mathbb{R} \times \{0\}, onda KK nužno siječe SS jer je KK povezan. Postavlja se stoga sljedeće pitanje: mora li nužno KK sijeći skup SS u izračunljivoj točki? Izračunljiva verzija Bolzanovog teorema o nultočki nam kaže da ukoliko za skup KK uzmemo graf izračunljive funkcije f:[0;1]Rf : [0; 1] \to \mathbb{R}, takve da je f(0)0f(0) 0, onda KK mora sijeći SS u izračunljivoj točki. U potpoglavlju 3.3. ovaj rezultat se poopćava na način koji ćemo sada ukratko opisati. Prvo se promatra izračunljiv metrički prostor (X,d,α)(X, d, \alpha) i dva c.e. otvorena skupa UU i VV u XX. Skup SS se definira kao komplement skupa UVU \cup V u XX. Sada se pretpostavi da je KK kontinuum u XX koji je lančast od točke aa do točke bb, gdje je aUa \in U i bVb \in V , te se pretpostavi da je KK izračunljiv skup i da su točke aa i bb izračunljive. Uz dodatnu pretpostavku da je KSK \cap S potpuno nepovezan pokazuje se da skup KSK \cap S sadrži izračunljivu točku (vidi teorem 3.3.3). Ideja koja se je nalazila u pozadini dokaza ovog teorema je bila da se na izvjestan način uspije skup KK prekriti sa (U,V)(U, V )-lancem od točke aa do točke bb, to jest lancem koji ima svojstvo da za svake dvije susjedne karike barem jedna leži u skupu UU ili u skupu VV , te da prva karika ovakvog lanca sadrži točku aa, a posljednja karika sadrži točku bb (vidi potpoglavlje 3.1.). Iako se pretpostavka potpune nepovezanosti skupa KSK \cap S može na prvi pogled učiniti dosta neobičnom i stranom, ona je usko povezana sa samom tehnikom (U,V)(U, V)-lanaca. Također, za potrebe dokaza samog teorema 3.3.3 razvija se koncept separatora, augmentatora i lokatora (potpoglavlje 3.2.) da bi se dobila mogućnost efektivnog načina lociranja tražene izračunljive točke u skupu KSK \cap S. Kao posljedica teorema 3.3.3, dobiva se rezultat koji se odnosi na luk. Ukoliko se promatra izračunljiv metrički prostor (X,d,α)(X, d, \alpha) i dva c.e. otvorena skupa UU i VV u XX, te ukoliko je S:=X(UV)S := X \setminus (U \cup V ), tada svaki izračunljiv luk AA u XX, s krajnjim izračunljivim točkama aUa \in U i bVb \in V , nužno mora sijeći skup SS u izračunljivoj točki (vidi teorem 3.3.4). Ovdje ćemo još jednom naglasiti da u ovom prethodno navedenom teoremu pretpostavka da je skup ASA \cap S potpuno nepovezan iščezava, a ipak se navedeni rezultat dokazuje kao posljedica teorema 3.3.3 u kojem je pretpostavka potpune nepovezanosti neizostavna. U potpoglavlju 3.4. prethodna dva rezultata se poopćavaju na način da se pretpostavi samo da skupovi KK i AA sijeku skupove UU i VV (izostavili smo pretpostavku koja se je odnosila na važnost točaka aUa \in U i bVb \in V). Detalje navedenog poopćenja čitatelj može pratiti kroz teorem 3.4.14. Taj teorem istaknimo kao najveći doprinos ovog poglavlja. Također, u potpoglavlju 3.4. promatra se i slučaj kada KSK \cap S nije potpuno nepovezan. Prvo se u ovom potpoglavlju može uočiti da ukoliko je KK izračunljiv lančasti kontinuum, te SS proizvoljan co-c.e. zatvoren skup, i ukoliko je promatrani skup KSK \cap S povezan, onda je nužno KSK \cap S poluizračunljiv lančasti kontinuum (to je zapravo posljedica propozicije 3.4.2). Stoga je temeljno pitanje koje prožima ovo potpoglavlje 3.4. bilo: što se općenito može kazati o izračunljivim točkama i izračunljivosti poluizračunljivih lančastih kontinuuma? U teoremu 3.4.7 promatra se izračunljiv metrički prostor (X,d,α)(X, d, \alpha) te poluizračunljiv skup SS u ovom prostoru. Ukoliko se pretpostavi da je SS kao potprostor od (X,d(X, d, lančasti kontinuum, te se dodatno pretpostavi da postoje dva potkontinuuma K1K_1 i K2K_2 od SS takva da je S=K1K2S = K_1 \cup K_2, te da postoje neke dvije točke aa i bb sa svojstvom da je aK1K2a \in K_1 \setminus K_2 i bK2K1b \in K_2 \setminus K_1, onda se dokazalo da skup SS sadrži izračunljivu točku. Štoviše, u tom se teoremu dobiva da su izračunljive točke zapravo guste u skupu SS. Kao direktnu posljedicu toga teorema dobiva se sličan rezultat i za luk (vidi korolar 3.4.8). Kroz teorem 3.4.9, koji teorem 3.4.7 opisuje u terminu pojma dekompozabilnosti, uvidjeli smo da svaki dekompozabilan poluizračunljiv lančasti kontinuum SS u izračunljivom metričkom prostoru (X,d,α)(X, d, \alpha) mora sadržavati izračunljivu točku. Nadalje, važan rezultat isprofilirao se je i kroz teorem 3.4.10 koji kaže da u izračunljivom metričkom prostoru (X,d,α)(X, d, \alpha), svaki poluizračunljiv lančasti kontinuum, koji ima izoliranu i dekompozabilnu komponentu povezanosti nužno mora sadržavati izračunljivu točku (štoviše izračunljive točke su guste u toj komponenti povezanosti). Budući se kroz ovo potpoglavlje također htjelo i poopćiti rezultat koji kaže da je svaka poluizračunljiva topološka kružnica SS u izračunljivom metričkom prostoru (X,d,α)(X, d, \alpha) izračunljiva, dokazujemo i teorem 3.4.12. U tom teoremu je dokazano da je proizvoljan poluizračunljiv cirkularno lančasti kontinuum SS u (X,d,α)(X, d, \alpha), koji nije lančast, nužno izračunljiv skup (ovdje, u ovoj disertaciji, ovaj rezultat je dokazan bez korištenja pretpostavke da je (X,d,α)(X, d, \alpha) lokalno izračunljiv). Na kraju samog poglavlja 3. pred čitatelja se stavljaju neka otvorena pitanja koja su se prirodno pojavila pri istraživanju navedenih problema ovog poglavlja. U posljednjem poglavlju ove disertacije, poglavlju 4., nastavljaju se izučavati uvjeti koji bi omogućili da poluizračunljiv skup u izračunljivom metričkom prostoru postane izračunljiv. Topologija igra veoma važnu ulogu pri opisu takvih uvjeta, kao što se do sada moglo uočiti. Glavna motivacija za ovo poglavlje bio je dobro poznati rezultat koji kaže da je poluizračunljiva ćelija izračunljiva uz dodatnu pretpostavku da je njezina rubna sfera izračunljiv skup. U tom kontekstu, kroz cijelo poglavlje 4., proučava se poluizračunljivi varšavski disk i njegova rubna varšavska kružnica. U teoremu 4.4.1 dokazuje se da je poluizračunljiv varšavski disk u izračunljivom metričkom prostoru (X,d,α)(X, d, \alpha) izračunljiv ukoliko je njegova rubna varšavska kružnica poluizračunljiv skup. Glavna ideja dokaza ovog teorema sastojala se je u tome da se nekako aproksimira varšavski disk s 2-ćelijama (vidi potpoglavlje 4.2.) te da se onda nekako iskoristi tehnika 2-lanaca (vidi posebno propoziciju 4.2.1 te lemu 4.2.3). Važnost glavnog rezultat ovog poglavlja (zajedno s tehnikama koje su razvijene u svrhu njegova dokaza) jest u tome što bi on trebao pridonijeti još boljem razumijevanju veze koja se neminovno pojavljuje između topologije i same izračunljivosti, te naposlijetku svakako treba istaknuti da ovaj rezultat pridonosi dubljem shvaćanju važnosti takozvanog „rubnog uvjeta“.In this dissertation we have examined under what conditions sets with disconnected complements contain a computable point, or they become computable. Moreover, we have generalized our research also on sets which are homeomorphic to those sets with disconnected complements. The ambient space for this research was computable metric space (X,d,α)(X, d, \alpha), which represents a kind of generalization of standard computable Euclidean space Rn\mathbb{R}^n.We can say that a computable metric space is a metric space in which we impose computability notions using some fixed dense sequence α)\alpha). In chapter 1. we defined some basic concepts of computable analysis and we referred readers to some important results which we used throughout the whole dissertation. The main part of this chapter 1. was to emphasize the contribution of our research. We strongly believe that this paper has once more showed to us that there is a strong connection between topology and computability. Some topological properties can force a semicomputable/co-c.e. sets to become computable or at least to have computable points We started our main work with chapter 2 in which we have been examining co-c.e. sets with disconnected complements in a computable metric space. We focused on the case when the computable metric space (X,d,α)(X, d, \alpha) is effectively locally connected and when the connected components of the complement of a co-c.e. set SXS \subseteq X can be effectively distinguished. We gave a sufficient condition that such an SS contains a computable point and a sufficient condition that SS is computable. We can say that the notion of effective local connectedness is the key in this chapter. We gave precise definition of that term. Because we did not want to restrict ourselves to connected open balls, we introduced in section 2.2. a certain notion that a sequence of open (connected) sets UiU_i is computable in (X,d,α)(X, d, \alpha). To do this we needed to define when some sequence of sets (Ai)(A_i) effectively refines sequence of sets (Bi)(B_i), and we needed a concept that two sequences of sets (Ai)(A_i) and (Bi)(B_i) are computably equivalent. Also in section 2.4. we introduced the concept which describes when some disconnected open set VV in (X,d,α)(X, d, \alpha) is effectivelly disconnected because we wanted to have a notion which will generalize the situation when disconnected open set VV in (X,d,α)(X, d, \alpha) has finitely many components. The main result that we have proved in chapter 2. says that if (X,d,α)(X, d, \alpha) is an effectively locally connected computable metric space and if SS is a co-c.e. set in (X,d,α)(X, d, \alpha) such that XSX \setminus S is effectivelly disconected and such that each point of SS lies in the boundary of at least two different components of XSX \setminus S, then SS needs to be a computable set in (X,d,α)(X, d, \alpha) (see theorem 2.4.5 in section 2.4.). We have also proved that in effectively locally connected computable metric space (X,d,α)(X, d, \alpha), any co-c.e. set SS, such that XSX \setminus S is effectively disconnected, has to contain a computable point if we additionaly assume that metric space (X,d)(X, d) is connected and complete (see corollary 2.4.6). We gave another sufficient condition that co-c.e. set with effectively disconnected complement in complete effectively locally connected computable metric space (X,d,α)(X, d, \alpha) contains a computable point. We showed that SS contains a computable point xx if there exists a connected set AA which intersects two different components of XSX \setminus S. Moreover, we proved that such xx can be found sufficiently close to AA (see theorem 2.4.8). Chapter 3 was devoted to generalization of computable version of Bolzano’s theorem. If we assume that KK is some computable and connected subset of Euclidean plane R2\mathbb{R}^2 which intersects both components of R2S\mathbb{R}^2 \setminus S, where S=R×{0}S = \mathbb{R} \times \{0\}, then KK certainly intersects SS because KK is connected. The question is does KK needs to intersect SS in a computable point? The computable version of Bolzano’s theorem states that if we take for a set KK to be a graph of a computable function f:[0;1]Rf : [0; 1] \to \mathbb{R}, such that f(0)0f(0) 0, then KK intersects SS in a computable point. In section 3.3. we have generalized this theorem in the following way. First, we observed computable metric space (X,d,α)(X, d, \alpha) and two c.e. open sets UU and VV in XX. We defined set SS to be the complement of the set UVU \cup V in XX. Now, we assumed that KK is a continuum in XX chainable from aa to bb, where a aUa \in U and bVb \in V , and we assumed that KK is a computable set and that points aa and bb are computable. Additionally, we assumed that KSK \cap S is totally disconnected. Then we proved that KSK \cap S contains a computable point (see theorem 3.3.3). The idea of the proof of that theorem was to cover set KK by (U,V)(U, V )-chains, by chains which have the property that for each two adjacent links at least one lies in UU or VV (see section 3.1.). The necessity of the assumption of total disconnectedness of KSK \cap S is closely related to the technique of (U,V)(U, V )-chains. Also to prove the theorem 3.3.3 we needed to develop some techniques of separators, augmentators and locators (section 3.2.) to be able to precisely (effectively) locate the required computable point in the set KSK \cap S. As a consequence of the theorem 3.3.3, we have gotten the result for an arc. If we observe a computable metric space (X,d,α)(X, d, \alpha) and two c.e. open sets UU and VV in XX, and if we define S:=X(UV)S := X \setminus (U \cup V ), then each computable arc AA in XX, with computable endpoints aUa \in U and bVb \in V needs to intersect the set SS in a computable point (see theorem 3.3.4). We have to emphasize again that in this theorem we did not need to assume that the set ASA \cap S is totally disconnected, and yet we have proved this theorem using the theorem 3.3.3. In section 3.4. we have generalized these two results assuming that this two sets KK and AA intersect sets UU and VV (we dropped out the assumption which referred to importance of points aUa \in U and bVb \in V ). The details of this generalization, reader can observe in theorem 3.4.14. Also in section 3.4. we have examined the case when KSK \cap Sis not totally disconnected. First in this section we saw that if KK is a computable chainable continuum and SS is any co-c.e. closed set and if KSK \cap S is connected, then KSK \cap S is a semi-computable chainable continuum (actually this is a consequence of the proposition 3.4.2). So the general question, which we have dealt with in section 3.4. was: what can be in general said about computable points and computability of semi-computable chainable continua? In theorem 3.4.7 we observed computable metric space (X,d,α)(X, d, \alpha) and a semi-computable set SS in that space. We assumed that SS is, as a subspace of (X,d(X, d, chainable continuum and additionally we assumed that there exist two subcontinua K1K_1 and K2K_2 of SS such that S=K1K2S = K_1 \cup K_2 and that there exist two points aa and bb such that aK1K2a \in K_1 \setminus K_2 and bK2K1b \in K_2 \setminus K_1. Then we proved that SS contains a computable point. Moreover, in that theorem we have proved that computable points are dense in SS. As a direct consequence of the theorem 3.4.7 we got the same result for an arc (see corollary 3.4.8). Throughout the theorem 3.4.9 we saw that any decomposable semi-computable chainable continuum SS in computable metric space (X,d,α)(X, d, \alpha) has to contain a computable point (this theorem is closely related to the theorem 3.4.7 and it puts that theorem in the context of decomposability). Also, an important result came out through theorem 3.4.10 which claims that in computable metric space (X,d,α)(X, d, \alpha), any semi-computable chainable continuum, which has isolated and decomposable connected component, has a computable point, moreover computable points are dense in that connected component. Further, we wanted to generalize a result which says that any semi-computable topological circle SS in computable metric space (X,d,α)(X, d, \alpha) has to be a computable set. We did it throughout the theorem 3.4.12. In that theorem we have proved that any semi-computable circulary chainable continuum SS in (X,d,α)(X, d, \alpha), which is not chainable, needs to be a computable set (and we did it without assumption that (X,d,α)(X, d, \alpha) is locally computable). As a conclusion of the chapter 3. we gave some open questions which naturally appeared while we were working on this problems. Last chapter of this dissertation, chapter 4., was dedicated to finding out more some conditions which will allow a semi-computable set in computable metric space to became computable. We know that topology plays an important role in the description of such conditions. The main motivation for this chapter was the well known result which says that a semi-computable cell is computable if its boundary sphere is computable. In that context, throughout the chapter 4, we have been investigating semi-computable Warsaw discs and their boundary Warsaw circles. We proved in theorem 4.4.1 that a semicomputable Warsaw disc in computable metric space (X,d,α)(X, d, \alpha) is computable if its boundary Warsaw circle is semi-computable. The main idea behind the proof of this theorem was to approximate the Warsaw disc by 2-cells (see section 4.2.) and then to adjust somehow the technique of 2-chains (see especially proposition 4.2.1 and lemma 4.2.3). We believe that the main result of this chapter and the techniques that we used in its proof contribute to the better understanding of relationship between topology and computability and also, in particular, to the understanding of the so-called “boundary condition”

    Computability of sets with disconnected complements

    Get PDF
    U ovom doktorskom radu proučavali su se uvjeti koji omogućuju da skupovi s nepovezanim komplementom sadrže izračunljivu točku, odnosno postaju izračunljivi. Štoviše, istraživanje ove disertacije obuhvaća i skupove koji su homeomorfni skupovima s nepovezanim komplementima. Ambijentni prostor nad kojim su dokazivani rezultati ovog rada bio je izračunljiv metrički prostor (X,d,α)(X, d, \alpha), koji predstavlja svojevrsno poopćenje standardnog izračunljivog euklidskog prostora Rn\mathbb{R}^n. U poglavlju 1. definirali su se neki osnovni pojmovi iz izračunljive analize te su istaknuti neki poznati, ali za ovo istraživanje, važni rezultati, koji su se tijekom ove doktorske disertacije koristili. Naglasak ovog poglavlja je posebno bio na doprinosima ove doktorske disertacije. Cilj ovog rada među ostalim je također bio da se još jednom istakne kako postoji uska veza između topologije i same teorije izračunljivosti. Neka topološka svojstva mogu učiniti poluizračunljiv/co-c.e. skup izračunljivim ili barem učiniti da takvi skupovi sadrže izračunljivu točku. Originalni doprinos ovog rada započet je s poglavljem 2 u kojem su proučavani co-c.e. skupovi s nepovezanim komplementima u izračunljivom metričkom prostoru. Pažnja se posebno usmjerila na slučaj kada je izračunljiv metrički prostor (X,d,α)(X, d, \alpha) efektivno lokalno povezan i kada se komponente povezanosti komplementa co-c.e. skupa SXS \subseteq X mogu na efektivan način razlikovati. Opisali su se neki dovoljni uvjeti koji omogućavaju da takav skup SS sadrži izračunljivu točku te neki dovoljni uvjeti uz koje skup SS postaje izračunljiv. Slobodno se može istaknuti da je pojam efektivne lokalne povezanosti zapravo ključ proučavanja ovog poglavlja. Stoga je u potpoglavlju 2.2. dana precizna definicija toga pojma. Budući se definicija efektivne lokalne povezanosti ne treba ograničiti samo na povezane otvorene kugle stvara se potreba za opisom pojma koji bi objašnjavao značenje izračunljivosti niza otvorenih (povezanih) skupova UiU_i u izračunljivom metričkom prostoru (X,d,α)(X, d, \alpha). U tom kontekstu prezentira se definicija koja objašnjava značenje da niz skupova (Ai)(A_i) efektivno profinjuje niz skupova (Bi)(B_i) te značenje kada su dva niza skupova (Ai)(A_i) i (Bi)(B_i) izračunljivo ekvivalentni. U potpoglavlju 2.4. uvodi se pojam efektivne nepovezanosti otvorenog nepovezanog skupa VV u (X,d,α)(X, d, \alpha). Tim pojmom poopćava se situacija koja se odnosi na slučaj kada nepovezan otvoren skup VV u (X,d,α)(X, d, \alpha) ima konačno mnogo komponenti povezanosti. Glavni rezultat ovog poglavlja, čiji je dokaz dan u potpoglavlju 2.4., kaže da ukoliko je (X,d,α)(X, d, \alpha) efektivno lokalno povezan izračunljiv metrički prostor te ukoliko je SS co-c.e. skup u (X,d,α)(X, d, \alpha) takav da je XSX \setminus S efektivno nepovezan i takav da svaka točka skupa SS leži na rubu barem dvije komponente povezanosti od XSX \setminus S, onda skup SS nužno mora biti izračunljiv u (X,d,α)(X, d, \alpha) (vidi teorem 2.4.5 u potpoglavlju 2.4.). Također je dokazano da u efektivno lokalno povezanom izračunljivom metričkom prostoru (X,d,α)(X, d, \alpha), proizvoljan co-c.e. skup SS, sa svojstvom da je XSX \setminus S efektivno nepovezan, nužno sadrži izračunljivu točku ukoliko se dodatno pretpostavi da je metrički prostor (X,d)(X, d) povezan i potpun (korolar 2.4.6). Na kraju tog poglavlja prezentiran je još jedan dovoljan uvjet uz koji co-c.e. skup s efektivno nepovezanim komplementom u potpunom, efektivno lokalno povezanom izračunljivom metričkom prostoru (X,d,α)(X, d, \alpha) sadrži izračunljivu točku. Skup S sadrži izračunljivu točku xx ako postoji neki povezan skup AA koji siječe dvije različite komponente povezanosti skupa XSX \setminus S. Štoviše, takav se xx može naći po volji blizu skupa AA (vidi teorem 2.4.8). Poglavlje 3. je prije svega posvećeno poopćenju takozvane izračunljive verzije Bolzanovog teorema o nultočki. Ukoliko je skup KK izračunljiv i povezan podskup od R2\mathbb{R}^2 koji siječe obje komponente skupa R2S\mathbb{R}^2 \setminus S, gdje je S=R×{0}S = \mathbb{R} \times \{0\}, onda KK nužno siječe SS jer je KK povezan. Postavlja se stoga sljedeće pitanje: mora li nužno KK sijeći skup SS u izračunljivoj točki? Izračunljiva verzija Bolzanovog teorema o nultočki nam kaže da ukoliko za skup KK uzmemo graf izračunljive funkcije f:[0;1]Rf : [0; 1] \to \mathbb{R}, takve da je f(0)0f(0) 0, onda KK mora sijeći SS u izračunljivoj točki. U potpoglavlju 3.3. ovaj rezultat se poopćava na način koji ćemo sada ukratko opisati. Prvo se promatra izračunljiv metrički prostor (X,d,α)(X, d, \alpha) i dva c.e. otvorena skupa UU i VV u XX. Skup SS se definira kao komplement skupa UVU \cup V u XX. Sada se pretpostavi da je KK kontinuum u XX koji je lančast od točke aa do točke bb, gdje je aUa \in U i bVb \in V , te se pretpostavi da je KK izračunljiv skup i da su točke aa i bb izračunljive. Uz dodatnu pretpostavku da je KSK \cap S potpuno nepovezan pokazuje se da skup KSK \cap S sadrži izračunljivu točku (vidi teorem 3.3.3). Ideja koja se je nalazila u pozadini dokaza ovog teorema je bila da se na izvjestan način uspije skup KK prekriti sa (U,V)(U, V )-lancem od točke aa do točke bb, to jest lancem koji ima svojstvo da za svake dvije susjedne karike barem jedna leži u skupu UU ili u skupu VV , te da prva karika ovakvog lanca sadrži točku aa, a posljednja karika sadrži točku bb (vidi potpoglavlje 3.1.). Iako se pretpostavka potpune nepovezanosti skupa KSK \cap S može na prvi pogled učiniti dosta neobičnom i stranom, ona je usko povezana sa samom tehnikom (U,V)(U, V)-lanaca. Također, za potrebe dokaza samog teorema 3.3.3 razvija se koncept separatora, augmentatora i lokatora (potpoglavlje 3.2.) da bi se dobila mogućnost efektivnog načina lociranja tražene izračunljive točke u skupu KSK \cap S. Kao posljedica teorema 3.3.3, dobiva se rezultat koji se odnosi na luk. Ukoliko se promatra izračunljiv metrički prostor (X,d,α)(X, d, \alpha) i dva c.e. otvorena skupa UU i VV u XX, te ukoliko je S:=X(UV)S := X \setminus (U \cup V ), tada svaki izračunljiv luk AA u XX, s krajnjim izračunljivim točkama aUa \in U i bVb \in V , nužno mora sijeći skup SS u izračunljivoj točki (vidi teorem 3.3.4). Ovdje ćemo još jednom naglasiti da u ovom prethodno navedenom teoremu pretpostavka da je skup ASA \cap S potpuno nepovezan iščezava, a ipak se navedeni rezultat dokazuje kao posljedica teorema 3.3.3 u kojem je pretpostavka potpune nepovezanosti neizostavna. U potpoglavlju 3.4. prethodna dva rezultata se poopćavaju na način da se pretpostavi samo da skupovi KK i AA sijeku skupove UU i VV (izostavili smo pretpostavku koja se je odnosila na važnost točaka aUa \in U i bVb \in V). Detalje navedenog poopćenja čitatelj može pratiti kroz teorem 3.4.14. Taj teorem istaknimo kao najveći doprinos ovog poglavlja. Također, u potpoglavlju 3.4. promatra se i slučaj kada KSK \cap S nije potpuno nepovezan. Prvo se u ovom potpoglavlju može uočiti da ukoliko je KK izračunljiv lančasti kontinuum, te SS proizvoljan co-c.e. zatvoren skup, i ukoliko je promatrani skup KSK \cap S povezan, onda je nužno KSK \cap S poluizračunljiv lančasti kontinuum (to je zapravo posljedica propozicije 3.4.2). Stoga je temeljno pitanje koje prožima ovo potpoglavlje 3.4. bilo: što se općenito može kazati o izračunljivim točkama i izračunljivosti poluizračunljivih lančastih kontinuuma? U teoremu 3.4.7 promatra se izračunljiv metrički prostor (X,d,α)(X, d, \alpha) te poluizračunljiv skup SS u ovom prostoru. Ukoliko se pretpostavi da je SS kao potprostor od (X,d(X, d, lančasti kontinuum, te se dodatno pretpostavi da postoje dva potkontinuuma K1K_1 i K2K_2 od SS takva da je S=K1K2S = K_1 \cup K_2, te da postoje neke dvije točke aa i bb sa svojstvom da je aK1K2a \in K_1 \setminus K_2 i bK2K1b \in K_2 \setminus K_1, onda se dokazalo da skup SS sadrži izračunljivu točku. Štoviše, u tom se teoremu dobiva da su izračunljive točke zapravo guste u skupu SS. Kao direktnu posljedicu toga teorema dobiva se sličan rezultat i za luk (vidi korolar 3.4.8). Kroz teorem 3.4.9, koji teorem 3.4.7 opisuje u terminu pojma dekompozabilnosti, uvidjeli smo da svaki dekompozabilan poluizračunljiv lančasti kontinuum SS u izračunljivom metričkom prostoru (X,d,α)(X, d, \alpha) mora sadržavati izračunljivu točku. Nadalje, važan rezultat isprofilirao se je i kroz teorem 3.4.10 koji kaže da u izračunljivom metričkom prostoru (X,d,α)(X, d, \alpha), svaki poluizračunljiv lančasti kontinuum, koji ima izoliranu i dekompozabilnu komponentu povezanosti nužno mora sadržavati izračunljivu točku (štoviše izračunljive točke su guste u toj komponenti povezanosti). Budući se kroz ovo potpoglavlje također htjelo i poopćiti rezultat koji kaže da je svaka poluizračunljiva topološka kružnica SS u izračunljivom metričkom prostoru (X,d,α)(X, d, \alpha) izračunljiva, dokazujemo i teorem 3.4.12. U tom teoremu je dokazano da je proizvoljan poluizračunljiv cirkularno lančasti kontinuum SS u (X,d,α)(X, d, \alpha), koji nije lančast, nužno izračunljiv skup (ovdje, u ovoj disertaciji, ovaj rezultat je dokazan bez korištenja pretpostavke da je (X,d,α)(X, d, \alpha) lokalno izračunljiv). Na kraju samog poglavlja 3. pred čitatelja se stavljaju neka otvorena pitanja koja su se prirodno pojavila pri istraživanju navedenih problema ovog poglavlja. U posljednjem poglavlju ove disertacije, poglavlju 4., nastavljaju se izučavati uvjeti koji bi omogućili da poluizračunljiv skup u izračunljivom metričkom prostoru postane izračunljiv. Topologija igra veoma važnu ulogu pri opisu takvih uvjeta, kao što se do sada moglo uočiti. Glavna motivacija za ovo poglavlje bio je dobro poznati rezultat koji kaže da je poluizračunljiva ćelija izračunljiva uz dodatnu pretpostavku da je njezina rubna sfera izračunljiv skup. U tom kontekstu, kroz cijelo poglavlje 4., proučava se poluizračunljivi varšavski disk i njegova rubna varšavska kružnica. U teoremu 4.4.1 dokazuje se da je poluizračunljiv varšavski disk u izračunljivom metričkom prostoru (X,d,α)(X, d, \alpha) izračunljiv ukoliko je njegova rubna varšavska kružnica poluizračunljiv skup. Glavna ideja dokaza ovog teorema sastojala se je u tome da se nekako aproksimira varšavski disk s 2-ćelijama (vidi potpoglavlje 4.2.) te da se onda nekako iskoristi tehnika 2-lanaca (vidi posebno propoziciju 4.2.1 te lemu 4.2.3). Važnost glavnog rezultat ovog poglavlja (zajedno s tehnikama koje su razvijene u svrhu njegova dokaza) jest u tome što bi on trebao pridonijeti još boljem razumijevanju veze koja se neminovno pojavljuje između topologije i same izračunljivosti, te naposlijetku svakako treba istaknuti da ovaj rezultat pridonosi dubljem shvaćanju važnosti takozvanog „rubnog uvjeta“.In this dissertation we have examined under what conditions sets with disconnected complements contain a computable point, or they become computable. Moreover, we have generalized our research also on sets which are homeomorphic to those sets with disconnected complements. The ambient space for this research was computable metric space (X,d,α)(X, d, \alpha), which represents a kind of generalization of standard computable Euclidean space Rn\mathbb{R}^n.We can say that a computable metric space is a metric space in which we impose computability notions using some fixed dense sequence α)\alpha). In chapter 1. we defined some basic concepts of computable analysis and we referred readers to some important results which we used throughout the whole dissertation. The main part of this chapter 1. was to emphasize the contribution of our research. We strongly believe that this paper has once more showed to us that there is a strong connection between topology and computability. Some topological properties can force a semicomputable/co-c.e. sets to become computable or at least to have computable points We started our main work with chapter 2 in which we have been examining co-c.e. sets with disconnected complements in a computable metric space. We focused on the case when the computable metric space (X,d,α)(X, d, \alpha) is effectively locally connected and when the connected components of the complement of a co-c.e. set SXS \subseteq X can be effectively distinguished. We gave a sufficient condition that such an SS contains a computable point and a sufficient condition that SS is computable. We can say that the notion of effective local connectedness is the key in this chapter. We gave precise definition of that term. Because we did not want to restrict ourselves to connected open balls, we introduced in section 2.2. a certain notion that a sequence of open (connected) sets UiU_i is computable in (X,d,α)(X, d, \alpha). To do this we needed to define when some sequence of sets (Ai)(A_i) effectively refines sequence of sets (Bi)(B_i), and we needed a concept that two sequences of sets (Ai)(A_i) and (Bi)(B_i) are computably equivalent. Also in section 2.4. we introduced the concept which describes when some disconnected open set VV in (X,d,α)(X, d, \alpha) is effectivelly disconnected because we wanted to have a notion which will generalize the situation when disconnected open set VV in (X,d,α)(X, d, \alpha) has finitely many components. The main result that we have proved in chapter 2. says that if (X,d,α)(X, d, \alpha) is an effectively locally connected computable metric space and if SS is a co-c.e. set in (X,d,α)(X, d, \alpha) such that XSX \setminus S is effectivelly disconected and such that each point of SS lies in the boundary of at least two different components of XSX \setminus S, then SS needs to be a computable set in (X,d,α)(X, d, \alpha) (see theorem 2.4.5 in section 2.4.). We have also proved that in effectively locally connected computable metric space (X,d,α)(X, d, \alpha), any co-c.e. set SS, such that XSX \setminus S is effectively disconnected, has to contain a computable point if we additionaly assume that metric space (X,d)(X, d) is connected and complete (see corollary 2.4.6). We gave another sufficient condition that co-c.e. set with effectively disconnected complement in complete effectively locally connected computable metric space (X,d,α)(X, d, \alpha) contains a computable point. We showed that SS contains a computable point xx if there exists a connected set AA which intersects two different components of XSX \setminus S. Moreover, we proved that such xx can be found sufficiently close to AA (see theorem 2.4.8). Chapter 3 was devoted to generalization of computable version of Bolzano’s theorem. If we assume that KK is some computable and connected subset of Euclidean plane R2\mathbb{R}^2 which intersects both components of R2S\mathbb{R}^2 \setminus S, where S=R×{0}S = \mathbb{R} \times \{0\}, then KK certainly intersects SS because KK is connected. The question is does KK needs to intersect SS in a computable point? The computable version of Bolzano’s theorem states that if we take for a set KK to be a graph of a computable function f:[0;1]Rf : [0; 1] \to \mathbb{R}, such that f(0)0f(0) 0, then KK intersects SS in a computable point. In section 3.3. we have generalized this theorem in the following way. First, we observed computable metric space (X,d,α)(X, d, \alpha) and two c.e. open sets UU and VV in XX. We defined set SS to be the complement of the set UVU \cup V in XX. Now, we assumed that KK is a continuum in XX chainable from aa to bb, where a aUa \in U and bVb \in V , and we assumed that KK is a computable set and that points aa and bb are computable. Additionally, we assumed that KSK \cap S is totally disconnected. Then we proved that KSK \cap S contains a computable point (see theorem 3.3.3). The idea of the proof of that theorem was to cover set KK by (U,V)(U, V )-chains, by chains which have the property that for each two adjacent links at least one lies in UU or VV (see section 3.1.). The necessity of the assumption of total disconnectedness of KSK \cap S is closely related to the technique of (U,V)(U, V )-chains. Also to prove the theorem 3.3.3 we needed to develop some techniques of separators, augmentators and locators (section 3.2.) to be able to precisely (effectively) locate the required computable point in the set KSK \cap S. As a consequence of the theorem 3.3.3, we have gotten the result for an arc. If we observe a computable metric space (X,d,α)(X, d, \alpha) and two c.e. open sets UU and VV in XX, and if we define S:=X(UV)S := X \setminus (U \cup V ), then each computable arc AA in XX, with computable endpoints aUa \in U and bVb \in V needs to intersect the set SS in a computable point (see theorem 3.3.4). We have to emphasize again that in this theorem we did not need to assume that the set ASA \cap S is totally disconnected, and yet we have proved this theorem using the theorem 3.3.3. In section 3.4. we have generalized these two results assuming that this two sets KK and AA intersect sets UU and VV (we dropped out the assumption which referred to importance of points aUa \in U and bVb \in V ). The details of this generalization, reader can observe in theorem 3.4.14. Also in section 3.4. we have examined the case when KSK \cap Sis not totally disconnected. First in this section we saw that if KK is a computable chainable continuum and SS is any co-c.e. closed set and if KSK \cap S is connected, then KSK \cap S is a semi-computable chainable continuum (actually this is a consequence of the proposition 3.4.2). So the general question, which we have dealt with in section 3.4. was: what can be in general said about computable points and computability of semi-computable chainable continua? In theorem 3.4.7 we observed computable metric space (X,d,α)(X, d, \alpha) and a semi-computable set SS in that space. We assumed that SS is, as a subspace of (X,d(X, d, chainable continuum and additionally we assumed that there exist two subcontinua K1K_1 and K2K_2 of SS such that S=K1K2S = K_1 \cup K_2 and that there exist two points aa and bb such that aK1K2a \in K_1 \setminus K_2 and bK2K1b \in K_2 \setminus K_1. Then we proved that SS contains a computable point. Moreover, in that theorem we have proved that computable points are dense in SS. As a direct consequence of the theorem 3.4.7 we got the same result for an arc (see corollary 3.4.8). Throughout the theorem 3.4.9 we saw that any decomposable semi-computable chainable continuum SS in computable metric space (X,d,α)(X, d, \alpha) has to contain a computable point (this theorem is closely related to the theorem 3.4.7 and it puts that theorem in the context of decomposability). Also, an important result came out through theorem 3.4.10 which claims that in computable metric space (X,d,α)(X, d, \alpha), any semi-computable chainable continuum, which has isolated and decomposable connected component, has a computable point, moreover computable points are dense in that connected component. Further, we wanted to generalize a result which says that any semi-computable topological circle SS in computable metric space (X,d,α)(X, d, \alpha) has to be a computable set. We did it throughout the theorem 3.4.12. In that theorem we have proved that any semi-computable circulary chainable continuum SS in (X,d,α)(X, d, \alpha), which is not chainable, needs to be a computable set (and we did it without assumption that (X,d,α)(X, d, \alpha) is locally computable). As a conclusion of the chapter 3. we gave some open questions which naturally appeared while we were working on this problems. Last chapter of this dissertation, chapter 4., was dedicated to finding out more some conditions which will allow a semi-computable set in computable metric space to became computable. We know that topology plays an important role in the description of such conditions. The main motivation for this chapter was the well known result which says that a semi-computable cell is computable if its boundary sphere is computable. In that context, throughout the chapter 4, we have been investigating semi-computable Warsaw discs and their boundary Warsaw circles. We proved in theorem 4.4.1 that a semicomputable Warsaw disc in computable metric space (X,d,α)(X, d, \alpha) is computable if its boundary Warsaw circle is semi-computable. The main idea behind the proof of this theorem was to approximate the Warsaw disc by 2-cells (see section 4.2.) and then to adjust somehow the technique of 2-chains (see especially proposition 4.2.1 and lemma 4.2.3). We believe that the main result of this chapter and the techniques that we used in its proof contribute to the better understanding of relationship between topology and computability and also, in particular, to the understanding of the so-called “boundary condition”

    Computability of sets with disconnected complements

    Get PDF
    U ovom doktorskom radu proučavali su se uvjeti koji omogućuju da skupovi s nepovezanim komplementom sadrže izračunljivu točku, odnosno postaju izračunljivi. Štoviše, istraživanje ove disertacije obuhvaća i skupove koji su homeomorfni skupovima s nepovezanim komplementima. Ambijentni prostor nad kojim su dokazivani rezultati ovog rada bio je izračunljiv metrički prostor (X,d,α)(X, d, \alpha), koji predstavlja svojevrsno poopćenje standardnog izračunljivog euklidskog prostora Rn\mathbb{R}^n. U poglavlju 1. definirali su se neki osnovni pojmovi iz izračunljive analize te su istaknuti neki poznati, ali za ovo istraživanje, važni rezultati, koji su se tijekom ove doktorske disertacije koristili. Naglasak ovog poglavlja je posebno bio na doprinosima ove doktorske disertacije. Cilj ovog rada među ostalim je također bio da se još jednom istakne kako postoji uska veza između topologije i same teorije izračunljivosti. Neka topološka svojstva mogu učiniti poluizračunljiv/co-c.e. skup izračunljivim ili barem učiniti da takvi skupovi sadrže izračunljivu točku. Originalni doprinos ovog rada započet je s poglavljem 2 u kojem su proučavani co-c.e. skupovi s nepovezanim komplementima u izračunljivom metričkom prostoru. Pažnja se posebno usmjerila na slučaj kada je izračunljiv metrički prostor (X,d,α)(X, d, \alpha) efektivno lokalno povezan i kada se komponente povezanosti komplementa co-c.e. skupa SXS \subseteq X mogu na efektivan način razlikovati. Opisali su se neki dovoljni uvjeti koji omogućavaju da takav skup SS sadrži izračunljivu točku te neki dovoljni uvjeti uz koje skup SS postaje izračunljiv. Slobodno se može istaknuti da je pojam efektivne lokalne povezanosti zapravo ključ proučavanja ovog poglavlja. Stoga je u potpoglavlju 2.2. dana precizna definicija toga pojma. Budući se definicija efektivne lokalne povezanosti ne treba ograničiti samo na povezane otvorene kugle stvara se potreba za opisom pojma koji bi objašnjavao značenje izračunljivosti niza otvorenih (povezanih) skupova UiU_i u izračunljivom metričkom prostoru (X,d,α)(X, d, \alpha). U tom kontekstu prezentira se definicija koja objašnjava značenje da niz skupova (Ai)(A_i) efektivno profinjuje niz skupova (Bi)(B_i) te značenje kada su dva niza skupova (Ai)(A_i) i (Bi)(B_i) izračunljivo ekvivalentni. U potpoglavlju 2.4. uvodi se pojam efektivne nepovezanosti otvorenog nepovezanog skupa VV u (X,d,α)(X, d, \alpha). Tim pojmom poopćava se situacija koja se odnosi na slučaj kada nepovezan otvoren skup VV u (X,d,α)(X, d, \alpha) ima konačno mnogo komponenti povezanosti. Glavni rezultat ovog poglavlja, čiji je dokaz dan u potpoglavlju 2.4., kaže da ukoliko je (X,d,α)(X, d, \alpha) efektivno lokalno povezan izračunljiv metrički prostor te ukoliko je SS co-c.e. skup u (X,d,α)(X, d, \alpha) takav da je XSX \setminus S efektivno nepovezan i takav da svaka točka skupa SS leži na rubu barem dvije komponente povezanosti od XSX \setminus S, onda skup SS nužno mora biti izračunljiv u (X,d,α)(X, d, \alpha) (vidi teorem 2.4.5 u potpoglavlju 2.4.). Također je dokazano da u efektivno lokalno povezanom izračunljivom metričkom prostoru (X,d,α)(X, d, \alpha), proizvoljan co-c.e. skup SS, sa svojstvom da je XSX \setminus S efektivno nepovezan, nužno sadrži izračunljivu točku ukoliko se dodatno pretpostavi da je metrički prostor (X,d)(X, d) povezan i potpun (korolar 2.4.6). Na kraju tog poglavlja prezentiran je još jedan dovoljan uvjet uz koji co-c.e. skup s efektivno nepovezanim komplementom u potpunom, efektivno lokalno povezanom izračunljivom metričkom prostoru (X,d,α)(X, d, \alpha) sadrži izračunljivu točku. Skup S sadrži izračunljivu točku xx ako postoji neki povezan skup AA koji siječe dvije različite komponente povezanosti skupa XSX \setminus S. Štoviše, takav se xx može naći po volji blizu skupa AA (vidi teorem 2.4.8). Poglavlje 3. je prije svega posvećeno poopćenju takozvane izračunljive verzije Bolzanovog teorema o nultočki. Ukoliko je skup KK izračunljiv i povezan podskup od R2\mathbb{R}^2 koji siječe obje komponente skupa R2S\mathbb{R}^2 \setminus S, gdje je S=R×{0}S = \mathbb{R} \times \{0\}, onda KK nužno siječe SS jer je KK povezan. Postavlja se stoga sljedeće pitanje: mora li nužno KK sijeći skup SS u izračunljivoj točki? Izračunljiva verzija Bolzanovog teorema o nultočki nam kaže da ukoliko za skup KK uzmemo graf izračunljive funkcije f:[0;1]Rf : [0; 1] \to \mathbb{R}, takve da je f(0)0f(0) 0, onda KK mora sijeći SS u izračunljivoj točki. U potpoglavlju 3.3. ovaj rezultat se poopćava na način koji ćemo sada ukratko opisati. Prvo se promatra izračunljiv metrički prostor (X,d,α)(X, d, \alpha) i dva c.e. otvorena skupa UU i VV u XX. Skup SS se definira kao komplement skupa UVU \cup V u XX. Sada se pretpostavi da je KK kontinuum u XX koji je lančast od točke aa do točke bb, gdje je aUa \in U i bVb \in V , te se pretpostavi da je KK izračunljiv skup i da su točke aa i bb izračunljive. Uz dodatnu pretpostavku da je KSK \cap S potpuno nepovezan pokazuje se da skup KSK \cap S sadrži izračunljivu točku (vidi teorem 3.3.3). Ideja koja se je nalazila u pozadini dokaza ovog teorema je bila da se na izvjestan način uspije skup KK prekriti sa (U,V)(U, V )-lancem od točke aa do točke bb, to jest lancem koji ima svojstvo da za svake dvije susjedne karike barem jedna leži u skupu UU ili u skupu VV , te da prva karika ovakvog lanca sadrži točku aa, a posljednja karika sadrži točku bb (vidi potpoglavlje 3.1.). Iako se pretpostavka potpune nepovezanosti skupa KSK \cap S može na prvi pogled učiniti dosta neobičnom i stranom, ona je usko povezana sa samom tehnikom (U,V)(U, V)-lanaca. Također, za potrebe dokaza samog teorema 3.3.3 razvija se koncept separatora, augmentatora i lokatora (potpoglavlje 3.2.) da bi se dobila mogućnost efektivnog načina lociranja tražene izračunljive točke u skupu KSK \cap S. Kao posljedica teorema 3.3.3, dobiva se rezultat koji se odnosi na luk. Ukoliko se promatra izračunljiv metrički prostor (X,d,α)(X, d, \alpha) i dva c.e. otvorena skupa UU i VV u XX, te ukoliko je S:=X(UV)S := X \setminus (U \cup V ), tada svaki izračunljiv luk AA u XX, s krajnjim izračunljivim točkama aUa \in U i bVb \in V , nužno mora sijeći skup SS u izračunljivoj točki (vidi teorem 3.3.4). Ovdje ćemo još jednom naglasiti da u ovom prethodno navedenom teoremu pretpostavka da je skup ASA \cap S potpuno nepovezan iščezava, a ipak se navedeni rezultat dokazuje kao posljedica teorema 3.3.3 u kojem je pretpostavka potpune nepovezanosti neizostavna. U potpoglavlju 3.4. prethodna dva rezultata se poopćavaju na način da se pretpostavi samo da skupovi KK i AA sijeku skupove UU i VV (izostavili smo pretpostavku koja se je odnosila na važnost točaka aUa \in U i bVb \in V). Detalje navedenog poopćenja čitatelj može pratiti kroz teorem 3.4.14. Taj teorem istaknimo kao najveći doprinos ovog poglavlja. Također, u potpoglavlju 3.4. promatra se i slučaj kada KSK \cap S nije potpuno nepovezan. Prvo se u ovom potpoglavlju može uočiti da ukoliko je KK izračunljiv lančasti kontinuum, te SS proizvoljan co-c.e. zatvoren skup, i ukoliko je promatrani skup KSK \cap S povezan, onda je nužno KSK \cap S poluizračunljiv lančasti kontinuum (to je zapravo posljedica propozicije 3.4.2). Stoga je temeljno pitanje koje prožima ovo potpoglavlje 3.4. bilo: što se općenito može kazati o izračunljivim točkama i izračunljivosti poluizračunljivih lančastih kontinuuma? U teoremu 3.4.7 promatra se izračunljiv metrički prostor (X,d,α)(X, d, \alpha) te poluizračunljiv skup SS u ovom prostoru. Ukoliko se pretpostavi da je SS kao potprostor od (X,d(X, d, lančasti kontinuum, te se dodatno pretpostavi da postoje dva potkontinuuma K1K_1 i K2K_2 od SS takva da je S=K1K2S = K_1 \cup K_2, te da postoje neke dvije točke aa i bb sa svojstvom da je aK1K2a \in K_1 \setminus K_2 i bK2K1b \in K_2 \setminus K_1, onda se dokazalo da skup SS sadrži izračunljivu točku. Štoviše, u tom se teoremu dobiva da su izračunljive točke zapravo guste u skupu SS. Kao direktnu posljedicu toga teorema dobiva se sličan rezultat i za luk (vidi korolar 3.4.8). Kroz teorem 3.4.9, koji teorem 3.4.7 opisuje u terminu pojma dekompozabilnosti, uvidjeli smo da svaki dekompozabilan poluizračunljiv lančasti kontinuum SS u izračunljivom metričkom prostoru (X,d,α)(X, d, \alpha) mora sadržavati izračunljivu točku. Nadalje, važan rezultat isprofilirao se je i kroz teorem 3.4.10 koji kaže da u izračunljivom metričkom prostoru (X,d,α)(X, d, \alpha), svaki poluizračunljiv lančasti kontinuum, koji ima izoliranu i dekompozabilnu komponentu povezanosti nužno mora sadržavati izračunljivu točku (štoviše izračunljive točke su guste u toj komponenti povezanosti). Budući se kroz ovo potpoglavlje također htjelo i poopćiti rezultat koji kaže da je svaka poluizračunljiva topološka kružnica SS u izračunljivom metričkom prostoru (X,d,α)(X, d, \alpha) izračunljiva, dokazujemo i teorem 3.4.12. U tom teoremu je dokazano da je proizvoljan poluizračunljiv cirkularno lančasti kontinuum SS u (X,d,α)(X, d, \alpha), koji nije lančast, nužno izračunljiv skup (ovdje, u ovoj disertaciji, ovaj rezultat je dokazan bez korištenja pretpostavke da je (X,d,α)(X, d, \alpha) lokalno izračunljiv). Na kraju samog poglavlja 3. pred čitatelja se stavljaju neka otvorena pitanja koja su se prirodno pojavila pri istraživanju navedenih problema ovog poglavlja. U posljednjem poglavlju ove disertacije, poglavlju 4., nastavljaju se izučavati uvjeti koji bi omogućili da poluizračunljiv skup u izračunljivom metričkom prostoru postane izračunljiv. Topologija igra veoma važnu ulogu pri opisu takvih uvjeta, kao što se do sada moglo uočiti. Glavna motivacija za ovo poglavlje bio je dobro poznati rezultat koji kaže da je poluizračunljiva ćelija izračunljiva uz dodatnu pretpostavku da je njezina rubna sfera izračunljiv skup. U tom kontekstu, kroz cijelo poglavlje 4., proučava se poluizračunljivi varšavski disk i njegova rubna varšavska kružnica. U teoremu 4.4.1 dokazuje se da je poluizračunljiv varšavski disk u izračunljivom metričkom prostoru (X,d,α)(X, d, \alpha) izračunljiv ukoliko je njegova rubna varšavska kružnica poluizračunljiv skup. Glavna ideja dokaza ovog teorema sastojala se je u tome da se nekako aproksimira varšavski disk s 2-ćelijama (vidi potpoglavlje 4.2.) te da se onda nekako iskoristi tehnika 2-lanaca (vidi posebno propoziciju 4.2.1 te lemu 4.2.3). Važnost glavnog rezultat ovog poglavlja (zajedno s tehnikama koje su razvijene u svrhu njegova dokaza) jest u tome što bi on trebao pridonijeti još boljem razumijevanju veze koja se neminovno pojavljuje između topologije i same izračunljivosti, te naposlijetku svakako treba istaknuti da ovaj rezultat pridonosi dubljem shvaćanju važnosti takozvanog „rubnog uvjeta“.In this dissertation we have examined under what conditions sets with disconnected complements contain a computable point, or they become computable. Moreover, we have generalized our research also on sets which are homeomorphic to those sets with disconnected complements. The ambient space for this research was computable metric space (X,d,α)(X, d, \alpha), which represents a kind of generalization of standard computable Euclidean space Rn\mathbb{R}^n.We can say that a computable metric space is a metric space in which we impose computability notions using some fixed dense sequence α)\alpha). In chapter 1. we defined some basic concepts of computable analysis and we referred readers to some important results which we used throughout the whole dissertation. The main part of this chapter 1. was to emphasize the contribution of our research. We strongly believe that this paper has once more showed to us that there is a strong connection between topology and computability. Some topological properties can force a semicomputable/co-c.e. sets to become computable or at least to have computable points We started our main work with chapter 2 in which we have been examining co-c.e. sets with disconnected complements in a computable metric space. We focused on the case when the computable metric space (X,d,α)(X, d, \alpha) is effectively locally connected and when the connected components of the complement of a co-c.e. set SXS \subseteq X can be effectively distinguished. We gave a sufficient condition that such an SS contains a computable point and a sufficient condition that SS is computable. We can say that the notion of effective local connectedness is the key in this chapter. We gave precise definition of that term. Because we did not want to restrict ourselves to connected open balls, we introduced in section 2.2. a certain notion that a sequence of open (connected) sets UiU_i is computable in (X,d,α)(X, d, \alpha). To do this we needed to define when some sequence of sets (Ai)(A_i) effectively refines sequence of sets (Bi)(B_i), and we needed a concept that two sequences of sets (Ai)(A_i) and (Bi)(B_i) are computably equivalent. Also in section 2.4. we introduced the concept which describes when some disconnected open set VV in (X,d,α)(X, d, \alpha) is effectivelly disconnected because we wanted to have a notion which will generalize the situation when disconnected open set VV in (X,d,α)(X, d, \alpha) has finitely many components. The main result that we have proved in chapter 2. says that if (X,d,α)(X, d, \alpha) is an effectively locally connected computable metric space and if SS is a co-c.e. set in (X,d,α)(X, d, \alpha) such that XSX \setminus S is effectivelly disconected and such that each point of SS lies in the boundary of at least two different components of XSX \setminus S, then SS needs to be a computable set in (X,d,α)(X, d, \alpha) (see theorem 2.4.5 in section 2.4.). We have also proved that in effectively locally connected computable metric space (X,d,α)(X, d, \alpha), any co-c.e. set SS, such that XSX \setminus S is effectively disconnected, has to contain a computable point if we additionaly assume that metric space (X,d)(X, d) is connected and complete (see corollary 2.4.6). We gave another sufficient condition that co-c.e. set with effectively disconnected complement in complete effectively locally connected computable metric space (X,d,α)(X, d, \alpha) contains a computable point. We showed that SS contains a computable point xx if there exists a connected set AA which intersects two different components of XSX \setminus S. Moreover, we proved that such xx can be found sufficiently close to AA (see theorem 2.4.8). Chapter 3 was devoted to generalization of computable version of Bolzano’s theorem. If we assume that KK is some computable and connected subset of Euclidean plane R2\mathbb{R}^2 which intersects both components of R2S\mathbb{R}^2 \setminus S, where S=R×{0}S = \mathbb{R} \times \{0\}, then KK certainly intersects SS because KK is connected. The question is does KK needs to intersect SS in a computable point? The computable version of Bolzano’s theorem states that if we take for a set KK to be a graph of a computable function f:[0;1]Rf : [0; 1] \to \mathbb{R}, such that f(0)0f(0) 0, then KK intersects SS in a computable point. In section 3.3. we have generalized this theorem in the following way. First, we observed computable metric space (X,d,α)(X, d, \alpha) and two c.e. open sets UU and VV in XX. We defined set SS to be the complement of the set UVU \cup V in XX. Now, we assumed that KK is a continuum in XX chainable from aa to bb, where a aUa \in U and bVb \in V , and we assumed that KK is a computable set and that points aa and bb are computable. Additionally, we assumed that KSK \cap S is totally disconnected. Then we proved that KSK \cap S contains a computable point (see theorem 3.3.3). The idea of the proof of that theorem was to cover set KK by (U,V)(U, V )-chains, by chains which have the property that for each two adjacent links at least one lies in UU or VV (see section 3.1.). The necessity of the assumption of total disconnectedness of KSK \cap S is closely related to the technique of (U,V)(U, V )-chains. Also to prove the theorem 3.3.3 we needed to develop some techniques of separators, augmentators and locators (section 3.2.) to be able to precisely (effectively) locate the required computable point in the set KSK \cap S. As a consequence of the theorem 3.3.3, we have gotten the result for an arc. If we observe a computable metric space (X,d,α)(X, d, \alpha) and two c.e. open sets UU and VV in XX, and if we define S:=X(UV)S := X \setminus (U \cup V ), then each computable arc AA in XX, with computable endpoints aUa \in U and bVb \in V needs to intersect the set SS in a computable point (see theorem 3.3.4). We have to emphasize again that in this theorem we did not need to assume that the set ASA \cap S is totally disconnected, and yet we have proved this theorem using the theorem 3.3.3. In section 3.4. we have generalized these two results assuming that this two sets KK and AA intersect sets UU and VV (we dropped out the assumption which referred to importance of points aUa \in U and bVb \in V ). The details of this generalization, reader can observe in theorem 3.4.14. Also in section 3.4. we have examined the case when KSK \cap Sis not totally disconnected. First in this section we saw that if KK is a computable chainable continuum and SS is any co-c.e. closed set and if KSK \cap S is connected, then KSK \cap S is a semi-computable chainable continuum (actually this is a consequence of the proposition 3.4.2). So the general question, which we have dealt with in section 3.4. was: what can be in general said about computable points and computability of semi-computable chainable continua? In theorem 3.4.7 we observed computable metric space (X,d,α)(X, d, \alpha) and a semi-computable set SS in that space. We assumed that SS is, as a subspace of (X,d(X, d, chainable continuum and additionally we assumed that there exist two subcontinua K1K_1 and K2K_2 of SS such that S=K1K2S = K_1 \cup K_2 and that there exist two points aa and bb such that aK1K2a \in K_1 \setminus K_2 and bK2K1b \in K_2 \setminus K_1. Then we proved that SS contains a computable point. Moreover, in that theorem we have proved that computable points are dense in SS. As a direct consequence of the theorem 3.4.7 we got the same result for an arc (see corollary 3.4.8). Throughout the theorem 3.4.9 we saw that any decomposable semi-computable chainable continuum SS in computable metric space (X,d,α)(X, d, \alpha) has to contain a computable point (this theorem is closely related to the theorem 3.4.7 and it puts that theorem in the context of decomposability). Also, an important result came out through theorem 3.4.10 which claims that in computable metric space (X,d,α)(X, d, \alpha), any semi-computable chainable continuum, which has isolated and decomposable connected component, has a computable point, moreover computable points are dense in that connected component. Further, we wanted to generalize a result which says that any semi-computable topological circle SS in computable metric space (X,d,α)(X, d, \alpha) has to be a computable set. We did it throughout the theorem 3.4.12. In that theorem we have proved that any semi-computable circulary chainable continuum SS in (X,d,α)(X, d, \alpha), which is not chainable, needs to be a computable set (and we did it without assumption that (X,d,α)(X, d, \alpha) is locally computable). As a conclusion of the chapter 3. we gave some open questions which naturally appeared while we were working on this problems. Last chapter of this dissertation, chapter 4., was dedicated to finding out more some conditions which will allow a semi-computable set in computable metric space to became computable. We know that topology plays an important role in the description of such conditions. The main motivation for this chapter was the well known result which says that a semi-computable cell is computable if its boundary sphere is computable. In that context, throughout the chapter 4, we have been investigating semi-computable Warsaw discs and their boundary Warsaw circles. We proved in theorem 4.4.1 that a semicomputable Warsaw disc in computable metric space (X,d,α)(X, d, \alpha) is computable if its boundary Warsaw circle is semi-computable. The main idea behind the proof of this theorem was to approximate the Warsaw disc by 2-cells (see section 4.2.) and then to adjust somehow the technique of 2-chains (see especially proposition 4.2.1 and lemma 4.2.3). We believe that the main result of this chapter and the techniques that we used in its proof contribute to the better understanding of relationship between topology and computability and also, in particular, to the understanding of the so-called “boundary condition”
    corecore