107,119 research outputs found

    How to Work with Honest but Curious Judges? (Preliminary Report)

    Get PDF
    The three-judges protocol, recently advocated by Mclver and Morgan as an example of stepwise refinement of security protocols, studies how to securely compute the majority function to reach a final verdict without revealing each individual judge's decision. We extend their protocol in two different ways for an arbitrary number of 2n+1 judges. The first generalisation is inherently centralised, in the sense that it requires a judge as a leader who collects information from others, computes the majority function, and announces the final result. A different approach can be obtained by slightly modifying the well-known dining cryptographers protocol, however it reveals the number of votes rather than the final verdict. We define a notion of conditional anonymity in order to analyse these two solutions. Both of them have been checked in the model checker MCMAS

    A universe of processes and some of its guises

    Full text link
    Our starting point is a particular `canvas' aimed to `draw' theories of physics, which has symmetric monoidal categories as its mathematical backbone. In this paper we consider the conceptual foundations for this canvas, and how these can then be converted into mathematical structure. With very little structural effort (i.e. in very abstract terms) and in a very short time span the categorical quantum mechanics (CQM) research program has reproduced a surprisingly large fragment of quantum theory. It also provides new insights both in quantum foundations and in quantum information, and has even resulted in automated reasoning software called `quantomatic' which exploits the deductive power of CQM. In this paper we complement the available material by not requiring prior knowledge of category theory, and by pointing at connections to previous and current developments in the foundations of physics. This research program is also in close synergy with developments elsewhere, for example in representation theory, quantum algebra, knot theory, topological quantum field theory and several other areas.Comment: Invited chapter in: "Deep Beauty: Understanding the Quantum World through Mathematical Innovation", H. Halvorson, ed., Cambridge University Press, forthcoming. (as usual, many pictures

    A learning experience in the fields of economics and business: creation of student-managed inter-university virtual networks

    Get PDF
    With this article we shall describe the learning experience carried out by our students in the fields of Economics and Business at the Universities of Huelva and University of Seville within an active- and cooperative-learning framework involving creation of virtual networks between our students and others who were attending diverse universities in Spain and abroad, thus allowing us to strengthen interactions and information exchanges among students, also allowing them to apprehend on their own the characteristics of economic and business and entrepreneuring realities in which they are immersed and, very specially, the use of virtual communities in the Internet

    Verifying privacy by little interaction and no process equivalence

    Get PDF
    While machine-assisted verification of classical security goals such as confidentiality and authentication is well-established, it is less mature for recent ones. Electronic voting protocols claim properties such as voter privacy. The most common modelling involves indistinguishability, and is specified via trace equivalence in cryptographic extensions of process calculi. However, it has shown restrictions. We describe a novel model, based on unlinkability between two pieces of information. Specifying it as an extension to the Inductive Method allows us to establish voter privacy without the need for approximation or session bounding. The two models and their latest specifications are contrasted

    Route Planning in Transportation Networks

    Full text link
    We survey recent advances in algorithms for route planning in transportation networks. For road networks, we show that one can compute driving directions in milliseconds or less even at continental scale. A variety of techniques provide different trade-offs between preprocessing effort, space requirements, and query time. Some algorithms can answer queries in a fraction of a microsecond, while others can deal efficiently with real-time traffic. Journey planning on public transportation systems, although conceptually similar, is a significantly harder problem due to its inherent time-dependent and multicriteria nature. Although exact algorithms are fast enough for interactive queries on metropolitan transit systems, dealing with continent-sized instances requires simplifications or heavy preprocessing. The multimodal route planning problem, which seeks journeys combining schedule-based transportation (buses, trains) with unrestricted modes (walking, driving), is even harder, relying on approximate solutions even for metropolitan inputs.Comment: This is an updated version of the technical report MSR-TR-2014-4, previously published by Microsoft Research. This work was mostly done while the authors Daniel Delling, Andrew Goldberg, and Renato F. Werneck were at Microsoft Research Silicon Valle

    A Survey on Continuous Time Computations

    Full text link
    We provide an overview of theories of continuous time computation. These theories allow us to understand both the hardness of questions related to continuous time dynamical systems and the computational power of continuous time analog models. We survey the existing models, summarizing results, and point to relevant references in the literature
    corecore