89,873 research outputs found
Respiration monitoring by combining EMG and bioimpedance measurements
Full abstract in the manuscript
An Investigation Into the Electrical Activity of Tender, Resting Paraspinal Muscles Using Surface Electromyography: A Pilot Study
Abnormal resting paraspinal muscle activity has been claimed to be responsible for changes in spinal tissue texture which are detectible by manual palpation. This pilot study investigated whether there was significant electrical activity in paraspinal musculature that was tender and that appeared to have altered tissue texture on palpation. Sixteen healthy volunteers between 18 and 35 years of age had their thoracic erector spinae mass palpated bilaterally from spinal levels T3 to T10 to identify paraspinal regions exhibiting altered tissue texture relative to the contralateral muscle mass. Surface electromyography (sEMG) was used to measure electrical activity in the muscle mass at the selected levels. No significant differences in electrical activity were observed between the tender and non-tender muscle masses, although a large difference existed in the one symptomatic subject. All muscle sites displayed EMG activity at rest, although the source of activity is not clear. A number of methodological problems with the EMG recording were encountered and are discussed. Future research is recommended using symptomatic participants
Single fibre action potentials in skeletal muscle related to recording distances
Single muscle fibre action potentials (SFAPs) are considered to be functions of a bioelectrical source and electrical conductivity parameters of the medium. In most model studies SFAPs are computed as a convolution of the bioelectrical source with a transfer function. Calculated peak-to-peak amplitudes of SFAPs decrease with increasing recording distances. In this paper an experimental validation of model results is presented. Experiments were carried out on the m. extensor digitorum longus (EDL) of the rat. Using a method including fluorescent labelling of the active fibre, the distance between the active fibre and the recording electrode was derived. With another method, the decline of the peak-to-peak amplitude of SFAPs detected along a multi-electrode was obtained. With both experimental methods, in general peak-to-peak amplitudes of SFAPs decreased with increasing recording distances, as was found in model results with present volume conduction theory. However, this behaviour was not found in all experiments. The rate of decline of the peak-to-peak amplitudes with recording distance was always less than in models
Repeatability of innervation zone identification in the external anal sphincter muscle
Knowledge of the distribution of the innervation zones (IZs) of the external anal sphincter (EAS) may be useful for preventing anal sphincter incompetence during vaginal delivery. A method proposed for the automatic estimation of the distribution of IZs of EAS from high-density surface electromyography (EMG) was evaluated for repeatability in continent volunteers. Methods: In 13 healthy female subjects (age: 35 11 years) surface EMG signals were acquired using an anal probe with three circumferential electrode arrays (of 16 contacts each) at different depths within the anal canal (15mm distance between the centers of adjacent arrays), during four independent experimental sessions. Three maximal voluntary contractions (MVCs) of 10 sec were performed for each session for a total of 12 contractions per subject. Repeatability of the estimation of the distribution of IZ was tested by evaluating the coefficient of multiple correlations (CMC) between the IZ distributions estimated from the signals recorded from each subject. Results: A high repeatability (CMC > 0.8) was found comparing IZ distributions estimated from signals recorded by each array within the same session. A slightly lower value was obtained considering signals recorded during different sessions (CMC > 0.7), but a higher value (CMC > 0.8) was obtained after aligning the estimated IZ distributions. The realignment compensates for the operator's error in repositioning the probe in the same position during different sessions. Conclusion: This result justifies clinical studies using high-density surface EMG in routine examinations, providing information about IZs of EAS and assessing the possibilities of preventing neuronal trauma during vaginal delivery
Insights gained into the interpretation of surface electromyograms from the gastrocnemius muscles: A simulation study
- …
