106 research outputs found

    A Metastable Modular Structure Approach for Shape Morphing, Property Tuning and Wave Propagation Tailoring

    Full text link
    The emerging concept of reconfigurable mechanical metamaterials has received increasing attention for realizing future advanced multifunctional adaptive structural systems partially due to their advantages over conventional bulk materials that are beneficial and desirable in many engineering applications. However, some of the critical challenges remain unaddressed before the concept can effectively and efficiently achieve real-world impacts. For instance, in the state-of-art, modules of mechanical metamaterials only reconfigure collectively to achieve global topology adaptation. As a result, the structure merely exhibits limited number of configurations that are discretely different from each other, which greatly undermines the benefits and impact of the reconfiguration effect. Additionally, most of the metamaterials investigations are focusing on the “materials” characteristics assuming infinite domain without considering the “structure” aspect of the systems. The effects of having finite domains and boundary conditions will generate new research issues and phenomena that are critical to real-world systems. To address the challenges and fundamentally advance the state of the art of multifunctional adaptive structures, this dissertation seeks to create a paradigm shift by exploiting and harnessing metastable modular mechanics and dynamics. Through developing new analysis and synthesis methodologies and conducting rigorous analytical, numerical, and experimental investigations, this research creates a new class of reconfigurable metastructure that can achieve mechanical property and topology adaptation as well as adaptive non-reciprocal vibration/wave transmission. The intellectual merit of this dissertation lies in introducing metastable modules that can be synergistically assembled and individually tuned to realize near continuous topology and mechanical property adaptation and elucidating the intricate nonlinear dynamics afforded by the metastructure. This research reveals different kinds of nonlinear instabilities that are able to facilitate the onset of supratransmission, a bandgap transmission phenomenon pertained to nonlinear periodic metastructure. In addition, utilizing this novel phenomenon, supratransmission, together with inherent spatial asymmetry of strategically configured constituents, the proposed metastructure is shown to be able to facilitate unprecedented broadband non-reciprocal vibration and wave transmission and on-demand adaptation. Since the proposed approach depends primarily on scale-independent principles, the broader impact of this dissertation is that the proposed metastructure could foster a new generation of reconfigurable structural and material systems with unprecedented adaptation and unconventional vibration control and wave transmission characteristics that are applicable to vastly different length scales for a wide spectrum of applications.PHDMechanical EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttps://deepblue.lib.umich.edu/bitstream/2027.42/147525/1/wuzhen_1.pd

    Space station systems: A bibliography with indexes

    Get PDF
    This bibliography lists 967 reports, articles, and other documents introduced into the NASA scientific and technical information system between January 1, 1987 and June 30, 1987. Its purpose is to provide helpful information to the researcher, manager, and designer in technology development and mission design according to system, interactive analysis and design, structural and thermal analysis and design, structural concepts and control systems, electronics, advanced materials, assembly concepts, propulsion, and solar power satellite systems. The coverage includes documents that define major systems and subsystems, servicing and support requirements, procedures and operations, and missions for the current and future space station

    Ultrasound cleaning of microfilters

    Get PDF

    Technology for large space systems: A bibliography with indexes (supplement 17)

    Get PDF
    This bibliography lists 512 reports, articles, and other documents introduced into the NASA scientific and technical information system between January 1, 1987 and June 30, 1987. Its purpose is to provide helpful information to the researcher, manager, and designer in technology development and mission design according to system, interactive analysis and design, structural and thermal analysis and design, structural concepts and control systems, electronics, advanced materials, assembly concepts, propulsion, and solar power satellite systems

    Vibration-based condition monitoring of wind turbine blades

    Get PDF
    Significant advances in wind turbine technology have increased the need for maintenance through condition monitoring. Indeed condition monitoring techniques exist and are deployed on wind turbines across Europe and America but are limited in scope. The sensors and monitoring devices used can be very expensive to deploy, further increasing costs within the wind industry. The work outlined in this thesis primarily investigates potential low-cost alternatives in the laboratory environment using vibration-based and modal testing techniques that could be used to monitor the condition of wind turbine blades. The main contributions of this thesis are: (1) the review of vibration-based condition monitoring for changing natural frequency identification; (2) the application of low-cost piezoelectric sounders with proof mass for sensing and measuring vibrations which provide information on structural health; (3) the application of low-cost miniature Micro-Electro-Mechanical Systems (MEMS) accelerometers for detecting and measuring defects in micro wind turbine blades in laboratory experiments; (4) development of an in-service calibration technique for arbitrarily positioned MEMS accelerometers on a medium-sized wind turbine blade. This allowed for easier aligning of coordinate systems and setting the accelerometer calibration values using samples taken over a period of time; (5) laboratory validation of low-cost modal analysis techniques on a medium-sized wind turbine blade; (6) mimicked ice-loading and laboratory measurement of vibration characteristics using MEMS accelerometers on a real wind turbine blade and (7) conceptualisation and systems design of a novel embedded monitoring system that can be installed at manufacture, is self-powered, has signal processing capability and can operate remotely. By applying the conclusions of this work, which demonstrates that low-cost consumer electronics specifically MEMS accelerometers can measure the vibration characteristics of wind turbine blades, the implementation and deployment of these devices can contribute towards reducing the rising costs of condition monitoring within the wind industry

    Aeronautical Engineering: A continuing bibliography with indexes, supplement 174

    Get PDF
    This bibliography lists 466 reports, articles and other documents introduced into the NASA scientific and technical information system in April 1984

    Generalized homogenization theory and inverse design of periodic electromagnetic metamaterials

    Get PDF
    textArtificial metamaterials composed of specifically designed subwavelength unit cells can support an exotic material response and present a promising future for various microwave, terahertz and optical applications. Metamaterials essentially provide the concept to microscopically manipulate light through their subwavelength inclusions, and the overall structure can be macroscopically treated as homogeneous bulk material characterized by a simple set of constitutive parameters, such as permittivity and permeability. In this dissertation, we present a complete homogenization theory applicable to one-, two- and three-dimensional metamaterials composed of nonconnected subwavelength elements. The homogenization theory provides not only deep insights to electromagnetic wave propagation among metamaterials, but also allows developing a useful and efficient analysis method for engineering metamaterials. We begin the work by proposing a general retrieval procedure to characterize arbitrary subwavelength elements in terms of a polarizability tensor. Based on this system, we may start the macroscopic analysis of metamaterials by analyzing the scattering properties of their microscopic building blocks. For one-dimensional linear arrays, we present the dispersion relations for single and parallel linear chains and study their potential use as sub-diffractive waveguides and leaky-wave antennas. For two-dimensional arrays, we interpret the metasurfaces as homogeneous surfaces and characterize their properties by a complete six-by-six tensorial effective surface susceptibility. This model also offers the possibility to derive analytical transmission and reflection coefficients for metasurfaces composed of arbitrary nonconnected inclusions with TE and TM mutual coupling. For three-dimensional metamaterials, we present a generalized theory to homogenize arrays by effective tensorial permittivity, permeability and magneto-electric coupling coefficients. This model captures comprehensive anisotropic and bianisotropic properties of metamaterials. Based on this theory, we also modify the conventional retrieval method to extract physically meaningful effective parameters of given metamaterials and fundamentally explain the common non-causality issues associated with parameter retrieval. Finally, we conceptually propose an inverse design procedure for three-dimensional metamaterials that can efficiently determine the geometry of the inclusions required to achieve the anomalous properties, such as double-negative response, in the desired frequency regime.Electrical and Computer Engineerin

    Metamaterials for optical and THz ranges: design and characterization

    Get PDF
    The thesis is devoted to the field of metamaterials (MtMs) - effectively continuous artificial composites with advantageous electromagnetic properties not normally met in nature. The main goal of the work is the engineering of MtMs with new and extreme electromagnetic properties and their electromagnetic characterization.  The first part of the thesis is focused on the artificial magnetism and isotropic negative permittivity and permeability in the near-infrared and visible ranges. Several design solutions based on resonant complex-shaped inclusions are proposed and studied analytically and numerically. In the first design utilization of clusters of plasmonic dimers leads to the negative permeability in the near-infrared range. Next suggested MtM consisting of the clusters of plasmonic triangular nanoprisms possesses isotropic negative permeability on the boundary between the near-infrared and visible ranges. The third design based on core-shell metal-dielectric particles allows for the isotropic negative refractive index in the near-infrared range.  The second part of the thesis is devoted to the problem of characterization of planar and bulk MtMs. At first, the applicability of the so-called Holloway-Kuester method is studied for the planar arrays of complex inclusions. It is shown, that despite the fact that the approach initially was developed for the arrays of solid particles in the quasi-static approximation, it is also applicable for the arrays of rather optically substantial resonant clusters of plasmonic nanoparticles. Then, the method of homogenization of bulk MtMs is suggested, based on the account of electromagnetic interaction between crystal planes forming an orthorhombic lattice. The method reveals the electromagnetic properties not covered by the standard quasi-static homogenization procedures.  The last research problem studied in the thesis is the engineering of planar multifunctional MtMs for the THz range. The suggested MtM consists of resonant metal stripes put on both sides of an elastic polymer film and allows for the combination of polarization transformation properties with sensitivity to the applied strain. The design is studied theoretically, numerically, and experimentally. For the last purpose an original fabrication method is developed, allowing for the rather simple creation of optically large samples. The fabricated sample experimentally demonstrates a high sensitivity to stretching in the transmission coefficient for the co-polarized field

    Bibliography of Lewis Research Center technical publications announced in 1987

    Get PDF
    This compilation of abstracts describes and indexes the technical reporting that resulted from the scientific and engineering work performed and managed by the Lewis Research Center in 1987. All the publications were announced in the 1987 issues of STAR (Scientific and Technical Aerospace Reports) and/or IAA (International Aerospace Abstracts). Included are research reports, journal articles, conference presentations, patents and patent applications, and theses

    5th EUROMECH nonlinear dynamics conference, August 7-12, 2005 Eindhoven : book of abstracts

    Get PDF
    corecore