446 research outputs found

    Nanomaterials for Healthcare Biosensing Applications

    Get PDF
    In recent years, an increasing number of nanomaterials have been explored for their applications in biomedical diagnostics, making their applications in healthcare biosensing a rapidly evolving field. Nanomaterials introduce versatility to the sensing platforms and may even allow mobility between different detection mechanisms. The prospect of a combination of different nanomaterials allows an exploitation of their synergistic additive and novel properties for sensor development. This paper covers more than 290 research works since 2015, elaborating the diverse roles played by various nanomaterials in the biosensing field. Hence, we provide a comprehensive review of the healthcare sensing applications of nanomaterials, covering carbon allotrope-based, inorganic, and organic nanomaterials. These sensing systems are able to detect a wide variety of clinically relevant molecules, like nucleic acids, viruses, bacteria, cancer antigens, pharmaceuticals and narcotic drugs, toxins, contaminants, as well as entire cells in various sensing media, ranging from buffers to more complex environments such as urine, blood or sputum. Thus, the latest advancements reviewed in this paper hold tremendous potential for the application of nanomaterials in the early screening of diseases and point-of-care testing

    Graphene Quantum Dot-Based Electrochemical Immunosensors for Biomedical Applications

    Get PDF
    In the area of biomedicine, research for designing electrochemical sensors has evolved over the past decade, since it is crucial to selectively quantify biomarkers or pathogens in clinical samples for the efficacious diagnosis and/or treatment of various diseases. To fulfil the demand of rapid, specific, economic, and easy detection of such biomolecules in ultralow amounts, numerous nanomaterials have been explored to effectively enhance the sensitivity, selectivity, and reproducibility of immunosensors. Graphene quantum dots (GQDs) have garnered tremendous attention in immunosensor development, owing to their special attributes such as large surface area, excellent biocompatibility, quantum confinement, edge effects, and abundant sites for chemical modification. Besides these distinct features, GQDs acquire peroxidase (POD)-mimicking electro-catalytic activity, and hence, they can replace horseradish peroxidase (HRP)-based systems to conduct facile, quick, and inexpensive label-free immunoassays. The chief motive of this review article is to summarize and focus on the recent advances in GQD-based electrochemical immunosensors for the early and rapid detection of cancer, cardiovascular disorders, and pathogenic diseases. Moreover, the underlying principles of electrochemical immunosensing techniques are also highlighted. These GQD immunosensors are ubiquitous in biomedical diagnosis and conducive for miniaturization, encouraging low-cost disease diagnostics in developing nations using point-of-care testing (POCT) and similar allusive techniques.TU Berlin, Open-Access-Mittel - 201

    Applications of Graphene Quantum Dots in Biomedical Sensors

    Get PDF
    Due to the proliferative cancer rates, cardiovascular diseases, neurodegenerative disorders, autoimmune diseases and a plethora of infections across the globe, it is essential to introduce strategies that can rapidly and specifically detect the ultralow concentrations of relevant biomarkers, pathogens, toxins and pharmaceuticals in biological matrices. Considering these pathophysiologies, various research works have become necessary to fabricate biosensors for their early diagnosis and treatment, using nanomaterials like quantum dots (QDs). These nanomaterials effectively ameliorate the sensor performance with respect to their reproducibility, selectivity as well as sensitivity. In particular, graphene quantum dots (GQDs), which are ideally graphene fragments of nanometer size, constitute discrete features such as acting as attractive fluorophores and excellent electro-catalysts owing to their photo-stability, water-solubility, biocompatibility, non-toxicity and lucrativeness that make them favorable candidates for a wide range of novel biomedical applications. Herein, we reviewed about 300 biomedical studies reported over the last five years which entail the state of art as well as some pioneering ideas with respect to the prominent role of GQDs, especially in the development of optical, electrochemical and photoelectrochemical biosensors. Additionally, we outline the ideal properties of GQDs, their eclectic methods of synthesis, and the general principle behind several biosensing techniques.DFG, 428780268, Biomimetische Rezeptoren auf NanoMIP-Basis zur Virenerkennung und -entfernung mittels integrierter AnsÀtz

    Using nanomaterials as excellent immobilisation layer for biosensor design

    Get PDF
    The endless development in nanotechnology has introduced new vitality in device fabrication including biosensor design for biomedical applications. With outstanding features like suitable biocompatibility, good electrical and thermal conductivity, wide surface area and catalytic activity, nanomaterials have been considered excellent and promising immobilisation candidates for the development of high-impact biosensors after they emerged. Owing to these reasons, the present review deals with the efficient use of nanomaterials as immobilisation candidates for biosensor fabrication. These include the implementation of carbon nanomaterials—graphene and its derivatives, carbon nanotubes, carbon nanoparticles, carbon nanodots—and MXenes, likewise their synergistic impact when merged with metal oxide nanomaterials. Furthermore, we also discuss the origin of the synthesis of some nanomaterials, the challenges associated with the use of those nanomaterials and the chemistry behind their incorporation with other materials for biosensor design. The last section covers the prospects for the development and application of the highlighted nanomaterials

    A cellulose-based bioassay for the colorimetric detection of pathogen DNA

    Get PDF
    Cellulose-paper-based colorimetric bioassays may be used at the point of sampling without sophisticated equipment. This study reports the development of a colorimetric bioassay based on cellulose that can detect pathogen DNA. The detection was based on covalently attached single-stranded DNA probes and visual analysis. A cellulose surface functionalized with tosyl groups was prepared by the N,N-dimethylacetamide-lithium chloride method. Tosylation of cellulose was confirmed by scanning electron microscopy, Fourier transform infrared spectroscopy and elemental analysis. Sulfhydryl-modified oligonucleotide probes complementary to a segment of the DNA sequence IS6110 of Mycobacterium tuberculosis were covalently immobilized on the tosylated cellulose. On hybridization of biotin-labelled DNA oligonucleotides with these probes, a colorimetric signal was obtained with streptavidin-conjugated horseradish peroxidase catalysing the oxidation of tetramethylbenzamidine by H2O2. The colour intensity was significantly reduced when the bioassay was subjected to DNA oligonucleotide of randomized base composition. Initial experiments have shown a sensitivity of 0.1 ÎŒM. A high probe immobilization efficiency (more than 90 %) was observed with a detection limit of 0.1 ÎŒM, corresponding to an absolute amount of 10 pmol. The detection of M. tuberculosis DNA was demonstrated using this technique coupled with PCR for biotinylation of the DNA. This work shows the potential use of tosylated cellulose as the basis for point-of-sampling bioassays.Peer reviewedFinal Accepted Versio

    A review on impedimetric immunosensors for pathogen and biomarker detection

    Get PDF
    Since the discovery of antibiotics in the first quarter of the twentieth century, their use has been the principal approach to treat bacterial infection. Modernized medicine such as cancer therapy, organ transplantation or advanced major surgeries require effective antibiotics to manage bacterial infections. However, the irresponsible use of antibiotics along with the lack of development has led to the emergence of antimicrobial resistance which is considered a serious global threat due to the rise of multidrug-resistant bacteria (Wang et al. in Antibiotic resistance: a rundown of a global crisis, pp. 1645–1658, 2018). Currently employed diagnostics techniques are microscopy, colony counting, ELISA, PCR, RT-PCR, surface-enhanced Raman scattering and others. These techniques provide satisfactory selectivity and sensitivity (Joung et al. in Sens Actuators B Chem 161:824–831, 2012). Nevertheless, they demand specialized personnel and expensive and sophisticated machinery which can be labour-intensive and time-consuming, (Malvano et al. in Sensors (Switzerland) 18:1–11, 2018; Mantzila et al. in Anal Chem 80:1169–1175, 2008). To get around these problems, new technologies such as biosensing and lab-on-a-chip devices have emerged in the last two decades. Impedimetric immunosensors function by applying electrochemical impedance spectroscopy to a biosensor platform using antibodies or other affinity proteins such as Affimers (Tiede et al. in Elife 6(c):1–35, 2017) or other binding proteins (Weiss et al. in Electrochim Acta 50:4248–4256, 2005) as bioreceptors, which provide excellent sensitivity and selectivity. Pre-enrichment steps are not required and this allows miniaturization and low-cost. In this review different types of impedimetric immunosensors are reported according to the type of electrode and their base layer materials, either self-assembled monolayers or polymeric layers, composition and functionalization for different types of bacteria, viruses, fungi and disease biomarkers. Additionally, novel protein scaffolds, both antibody derived and non-antibody derived, used to specifically target the analyte are considered

    NANOTECHNOLOGY FOR DETECTION OF DISEASES CAUSED BY VIRUSES-CURRENT OVERVIEW

    Get PDF
    Nanotechnology is having a high impact on the development of a novel class of biosensors called nanobiosensors. This technology has utilized some extremely exciting elements for sensing phenomenon improvement. The utilization of nano-materials, nano-rods, nano-particles, nano-tubes have aided rapid, reliable reproducibility and its detection in a much better way. The unique properties of nanobiosensors and its varied applications have influenced biosensing research. Since longtime, nanobiosensors have been utilized worldwide for the diagnosis of diseases co-related with molecular detection of biomarkers. This paper highlights the use of such nanobiosensors for the detection of the virus, infections, fungal pathogens, Human Immunodeficiency Virus (HIV) related diseases such as Cardiovascular diseases (CDVs), Renal Arthritis (RA) through different techniques including electrochemical biosensing, optical biosensing, point of care-diagnostics etc

    Nanocellulose-based sensors in medical/clinical applications: The state-of-the-art review

    Get PDF
    In recent years, the considerable importance of healthcare and the indispensable appeal of curative issues, particularly the diagnosis of diseases, have propelled the invention of sensing platforms. With the development of nanotechnology, the integration of nanomaterials in such platforms has been much focused on, boosting their functionality in many fields. In this direction, there has been rapid growth in the utilisation of nanocellulose in sensors with medical applications. Indeed, this natural nanomaterial benefits from striking features, such as biocompatibility, cytocompatibility and low toxicity, as well as unprecedented physical and chemical properties. In this review, different classifications of nanocellulose-based sensors (biosensors, chemical and physical sensors), alongside some subcategories manufactured for health monitoring, stand out. Moreover, the types of nanocellulose and their roles in such sensors are discussed.This work was supported by the University of the Basque Country (Training of Researcher Staff, PIF 20/197)

    Aptamers for Diagnostics with Applications for Infectious Diseases

    Get PDF
    Aptamers are in vitro selected oligonucleotides (DNA, RNA, oligos with modified nucleotides) that can have high affinity and specificity for a broad range of potential targets with high affinity and specificity. Here we focus on their applications as biosensors in the diagnostic field, although they can also be used as therapeutic agents. A small number of peptide aptamers have also been identified. In analytical settings, aptamers have the potential to extend the limit of current techniques as they offer many advantages over antibodies and can be used for real-time biomarker detection, cancer clinical testing, and detection of infectious microorganisms and viruses. Once optimized and validated, aptasensor technologies are expected to be highly beneficial to clinicians by providing a larger range and more rapid output of diagnostic readings than current technologies and support personalized medicine and faster implementation of optimal treatments
    • 

    corecore