296 research outputs found

    Exploiting Prior Knowledge in Compressed Sensing Wireless ECG Systems

    Full text link
    Recent results in telecardiology show that compressed sensing (CS) is a promising tool to lower energy consumption in wireless body area networks for electrocardiogram (ECG) monitoring. However, the performance of current CS-based algorithms, in terms of compression rate and reconstruction quality of the ECG, still falls short of the performance attained by state-of-the-art wavelet based algorithms. In this paper, we propose to exploit the structure of the wavelet representation of the ECG signal to boost the performance of CS-based methods for compression and reconstruction of ECG signals. More precisely, we incorporate prior information about the wavelet dependencies across scales into the reconstruction algorithms and exploit the high fraction of common support of the wavelet coefficients of consecutive ECG segments. Experimental results utilizing the MIT-BIH Arrhythmia Database show that significant performance gains, in terms of compression rate and reconstruction quality, can be obtained by the proposed algorithms compared to current CS-based methods.Comment: Accepted for publication at IEEE Journal of Biomedical and Health Informatic

    A Physiological Signal Processing System for Optimal Engagement and Attention Detection.

    Get PDF
    In today’s high paced, hi-tech and high stress environment, with extended work hours, long to-do lists and neglected personal health, sleep deprivation has become common in modern culture. Coupled with these factors is the inherent repetitious and tedious nature of certain occupations and daily routines, which all add up to an undesirable fluctuation in individuals’ cognitive attention and capacity. Given certain critical professions, a momentary or prolonged lapse in attention level can be catastrophic and sometimes deadly. This research proposes to develop a real-time monitoring system which uses fundamental physiological signals such as the Electrocardiograph (ECG), to analyze and predict the presence or lack of cognitive attention in individuals during task execution. The primary focus of this study is to identify the correlation between fluctuating level of attention and its implications on the physiological parameters of the body. The system is designed using only those physiological signals that can be collected easily with small, wearable, portable and non-invasive monitors and thereby being able to predict well in advance, an individual’s potential loss of attention and ingression of sleepiness. Several advanced signal processing techniques have been implemented and investigated to derive multiple clandestine and informative features. These features are then applied to machine learning algorithms to produce classification models that are capable of differentiating between the cases of a person being attentive and the person not being attentive. Furthermore, Electroencephalograph (EEG) signals are also analyzed and classified for use as a benchmark for comparison with ECG analysis. For the study, ECG signals and EEG signals of volunteer subjects are acquired in a controlled experiment. The experiment is designed to inculcate and sustain cognitive attention for a period of time following which an attempt is made to reduce cognitive attention of volunteer subjects. The data acquired during the experiment is decomposed and analyzed for feature extraction and classification. The presented results show that to a fairly reasonable accuracy it is possible to detect the presence or lack of attention in individuals with just their ECG signal, especially in comparison with analysis done on EEG signals. The continual work of this research includes other physiological signals such as Galvanic Skin Response, Heat Flux, Skin Temperature and video based facial feature analysis

    Central and peripheral autonomic influences : analysis of cardio-pulmonary dynamics using novel wavelet statistical methods

    Get PDF
    The development and implementation of novel signal processing techniques, particularly with regard to applications in the clinical environment, is critical to bringing computer-aided diagnoses of disease to reality. One of the most confounding factors in the field of cardiac autonomic response (CAR) research is the influence of the coupling of respiratory oscillations with cardiac oscillations. This research had three objectives. The first was the assessment of central autonomic influence over heart rate oscillations when the pulmonary system is damaged. The second was to assess the link between peripheral and central autonomic control schema by evaluating the heart rate variability (HRV) of people who were able or unable to adapt to the use of integrated lenses for vision, specifically acconrrmodation, correction (adaptive and non-adaptive presbyopes). The third objective was the development of a wavelet-based toolset by which the first two objectives could be achieved. The first tool is a wavelet based entropy measure that quantifies the level of information by assessing not only the entropy levels, but also the distribution of the entropy across frequency bands. The second tool is a wavelet source separation (WayS) method used to separate the respiratory component from the cardiac component, thereby allowing for analysis of the dynamics of the cardiac signal without the confounding influence of the respiratory signal that occurs when the body is perturbed. With regard to hypothesis one, the entropy method was used to separate the COPD study populations with 93% classification accuracy at rest, and with 100% accuracy during exercise. Changes in COPD and control autonomic markers were evident after respiration is removed. Specifically, the LF/HF ratio slightly decreased on average from pre to post reconstruction for controls, increased on average for COPD. In healthy controls, respiration frequency is distributed across multiple bandwidths, causing large decreases in both LF and HF when removed. With respiration effect removed from COPD population, LE dominates autonomic response, indicating that the frequency is concentrated in the HF autonomic region. Decrease in variance of data set increases probability tat smaller changes can be detected in values. The theory set forth in hypothesis two was validated by the quantification of a correlation between peripheral and central autonomic influences, as evidenced by differences in oculomotor adaptability correlating with differences in HRV. Standard Deviation varies with grouping, not with age. Increasing controlled respiration frequencies resulted in adaptive presbyopes and controls displaying similar sympathetic responses, diverging from non-adaptive group. WayS reduced frequency content in ranges concurrent with breathing rate, indicating a robust analysis. The outcome of hypothesis three was the confirmation that wavelet statistical methods possess significant potential for applications in HRV. Entropy can be used in conjunction with cluster analysis to classify patient populations with high accuracy. Using the WayS analysis, the respiration effect can be removed from HRV data sets, providing new insights into autonomic alterations, both central and peripheral, in disease

    Signal And Image Compression Using Discrete Wavelet Transform

    Get PDF
    Wavelet and Fourier transform are the common methods used in signal and image compression. Wavelet transform (WT) are very powerful compared to Fourier transform (FT) because its ability to describe any type of signals both in time and frequency domain simultaneously while for FT, it describes a signal from time domain to frequency domain

    Improving Maternal and Fetal Cardiac Monitoring Using Artificial Intelligence

    Get PDF
    Early diagnosis of possible risks in the physiological status of fetus and mother during pregnancy and delivery is critical and can reduce mortality and morbidity. For example, early detection of life-threatening congenital heart disease may increase survival rate and reduce morbidity while allowing parents to make informed decisions. To study cardiac function, a variety of signals are required to be collected. In practice, several heart monitoring methods, such as electrocardiogram (ECG) and photoplethysmography (PPG), are commonly performed. Although there are several methods for monitoring fetal and maternal health, research is currently underway to enhance the mobility, accuracy, automation, and noise resistance of these methods to be used extensively, even at home. Artificial Intelligence (AI) can help to design a precise and convenient monitoring system. To achieve the goals, the following objectives are defined in this research: The first step for a signal acquisition system is to obtain high-quality signals. As the first objective, a signal processing scheme is explored to improve the signal-to-noise ratio (SNR) of signals and extract the desired signal from a noisy one with negative SNR (i.e., power of noise is greater than signal). It is worth mentioning that ECG and PPG signals are sensitive to noise from a variety of sources, increasing the risk of misunderstanding and interfering with the diagnostic process. The noises typically arise from power line interference, white noise, electrode contact noise, muscle contraction, baseline wandering, instrument noise, motion artifacts, electrosurgical noise. Even a slight variation in the obtained ECG waveform can impair the understanding of the patient's heart condition and affect the treatment procedure. Recent solutions, such as adaptive and blind source separation (BSS) algorithms, still have drawbacks, such as the need for noise or desired signal model, tuning and calibration, and inefficiency when dealing with excessively noisy signals. Therefore, the final goal of this step is to develop a robust algorithm that can estimate noise, even when SNR is negative, using the BSS method and remove it based on an adaptive filter. The second objective is defined for monitoring maternal and fetal ECG. Previous methods that were non-invasive used maternal abdominal ECG (MECG) for extracting fetal ECG (FECG). These methods need to be calibrated to generalize well. In other words, for each new subject, a calibration with a trustable device is required, which makes it difficult and time-consuming. The calibration is also susceptible to errors. We explore deep learning (DL) models for domain mapping, such as Cycle-Consistent Adversarial Networks, to map MECG to fetal ECG (FECG) and vice versa. The advantages of the proposed DL method over state-of-the-art approaches, such as adaptive filters or blind source separation, are that the proposed method is generalized well on unseen subjects. Moreover, it does not need calibration and is not sensitive to the heart rate variability of mother and fetal; it can also handle low signal-to-noise ratio (SNR) conditions. Thirdly, AI-based system that can measure continuous systolic blood pressure (SBP) and diastolic blood pressure (DBP) with minimum electrode requirements is explored. The most common method of measuring blood pressure is using cuff-based equipment, which cannot monitor blood pressure continuously, requires calibration, and is difficult to use. Other solutions use a synchronized ECG and PPG combination, which is still inconvenient and challenging to synchronize. The proposed method overcomes those issues and only uses PPG signal, comparing to other solutions. Using only PPG for blood pressure is more convenient since it is only one electrode on the finger where its acquisition is more resilient against error due to movement. The fourth objective is to detect anomalies on FECG data. The requirement of thousands of manually annotated samples is a concern for state-of-the-art detection systems, especially for fetal ECG (FECG), where there are few publicly available FECG datasets annotated for each FECG beat. Therefore, we will utilize active learning and transfer-learning concept to train a FECG anomaly detection system with the least training samples and high accuracy. In this part, a model is trained for detecting ECG anomalies in adults. Later this model is trained to detect anomalies on FECG. We only select more influential samples from the training set for training, which leads to training with the least effort. Because of physician shortages and rural geography, pregnant women's ability to get prenatal care might be improved through remote monitoring, especially when access to prenatal care is limited. Increased compliance with prenatal treatment and linked care amongst various providers are two possible benefits of remote monitoring. If recorded signals are transmitted correctly, maternal and fetal remote monitoring can be effective. Therefore, the last objective is to design a compression algorithm that can compress signals (like ECG) with a higher ratio than state-of-the-art and perform decompression fast without distortion. The proposed compression is fast thanks to the time domain B-Spline approach, and compressed data can be used for visualization and monitoring without decompression owing to the B-spline properties. Moreover, the stochastic optimization is designed to retain the signal quality and does not distort signal for diagnosis purposes while having a high compression ratio. In summary, components for creating an end-to-end system for day-to-day maternal and fetal cardiac monitoring can be envisioned as a mix of all tasks listed above. PPG and ECG recorded from the mother can be denoised using deconvolution strategy. Then, compression can be employed for transmitting signal. The trained CycleGAN model can be used for extracting FECG from MECG. Then, trained model using active transfer learning can detect anomaly on both MECG and FECG. Simultaneously, maternal BP is retrieved from the PPG signal. This information can be used for monitoring the cardiac status of mother and fetus, and also can be used for filling reports such as partogram

    Measurement of the effectiveness of enhanced external counterpulsation on heart rate variability for patients with myocardial ischemia

    Get PDF
    This thesis is a study to measure the changes in heart rate variability due to the activity of the autonomic nervous system caused by the Enhanced External Counterpulsation treatment. The treatment is a non surgical, mechanical procedure that can reduce the symptoms of angina or Congestive Heart Failure, presumably by stimulating the opening, or formation of, small branches of blood vessels (collaterals) to create a natural bypass around narrowed or blocked arteries. It has been proved that rhythms can be markers of normal functional states. Even in the absence of external perturbations, the normal heartbeat is not characterized by clockwise regularity. This fluctuation around the mean heart rate is called heart rate variability. The study was conducted on patients who had myocardial ischemia and had been prescribed enhanced external counterpulsation treatment by the physician. One of the patients was a non-ischemic heart failure patient who had heart failure secondary to dilated cardiomyopathy. Myocardial ischemia is a condition in which oxygen deprivation to the heart muscle is accompanied by inadequate removal of metabolites because of reduced blood flow or perfusion. The study was conducted on three subject groups - 7 patients, 5 controls and 3 normals. Normals had no history of myocardial ischemia, but underwent the EECP treatment while controls were healthy and did not undergo the treatment. The subjects followed paced breathing at the rate of 12 breaths per minute. The data were collected during five minute paced breathing before and after the EECP treatment except for the controls. The waveforms of ECG, respiration and blood pressure were collected as data from the subjects. Frequency domain-power spectral analysis was performed on the data obtained using the LabVIEW 5.0 software. The time domain-SDNN analysis was also performed using MATLAB. The results of this study fail to indicate conclusively that the EECP treatment affects the heart rate variability of the patient in a significant way. This was evidenced by conducting Power Spectral Analysis and Standard Deviation of Normal to Normal intervals on the analyzed data for the research

    Biomedical Signal and Image Processing

    Get PDF
    Written for senior-level and first year graduate students in biomedical signal and image processing, this book describes fundamental signal and image processing techniques that are used to process biomedical information. The book also discusses application of these techniques in the processing of some of the main biomedical signals and images, such as EEG, ECG, MRI, and CT. New features of this edition include the technical updating of each chapter along with the addition of many more examples, the majority of which are MATLAB based

    Automated Classification for Electrophysiological Data: Machine Learning Approaches for Disease Detection and Emotion Recognition

    Get PDF
    Smart healthcare is a health service system that utilizes technologies, e.g., artificial intelligence and big data, to alleviate the pressures on healthcare systems. Much recent research has focused on the automatic disease diagnosis and recognition and, typically, our research pays attention on automatic classifications for electrophysiological signals, which are measurements of the electrical activity. Specifically, for electrocardiogram (ECG) and electroencephalogram (EEG) data, we develop a series of algorithms for automatic cardiovascular disease (CVD) classification, emotion recognition and seizure detection. With the ECG signals obtained from wearable devices, the candidate developed novel signal processing and machine learning method for continuous monitoring of heart conditions. Compared to the traditional methods based on the devices at clinical settings, the developed method in this thesis is much more convenient to use. To identify arrhythmia patterns from the noisy ECG signals obtained through the wearable devices, CNN and LSTM are used, and a wavelet-based CNN is proposed to enhance the performance. An emotion recognition method with a single channel ECG is developed, where a novel exploitative and explorative GWO-SVM algorithm is proposed to achieve high performance emotion classification. The attractive part is that the proposed algorithm has the capability to learn the SVM hyperparameters automatically, and it can prevent the algorithm from falling into local solutions, thereby achieving better performance than existing algorithms. A novel EEG-signal based seizure detector is developed, where the EEG signals are transformed to the spectral-temporal domain, so that the dimension of the input features to the CNN can be significantly reduced, while the detector can still achieve superior detection performance
    • …
    corecore