38 research outputs found

    Designing Embroidered Electrodes for Wearable Surface Electromyography

    Get PDF
    This work was supported by the UK Crafts Council as part of the Parallel Practices project, by the Seventh Framework Programme of the European Commission under grant agreement 287728 in the framework of EU project STIFF-FLOP and by the Horizon 2020 Research and Innovation Programme under grant agreement 637095 in the framework of EU project FourByThree

    sEMG Sensor Using Polypyrrole-Coated Nonwoven Fabric Sheet for Practical Control of Prosthetic Hand

    Get PDF
    One of the greatest challenges of using a myoelectric prosthetic hand in daily life is to conveniently measure stable myoelectric signals. This study proposes a novel surface electromyography (sEMG) sensor using polypyrrole-coated nonwoven fabric sheet as electrodes (PPy electrodes) to allow people with disabilities to control prosthetic limbs. The PPy electrodes are sewn on an elastic band to guarantee close contact with the skin and thus reduce the contact electrical impedance between the electrodes and the skin. The sensor is highly customizable to fit the size and the shape of the stump so that people with disabilities can attach the sensor by themselves. The performance of the proposed sensor was investigated experimentally by comparing measurements of Ag/AgCl electrodes with electrolytic gel and the sEMG from the same muscle fibers. The high correlation coefficient (0.87) between the two types of sensors suggests the effectiveness of the proposed sensor. Another experiment of sEMG pattern recognition to control myoelectric prosthetic hands showed that the PPy electrodes are as effective as Ag/AgCl electrodes for measuring sEMG signals for practical myoelectric control. We also investigated the relation between the myoelectric signals\u27 signal-to-noise ratio and the source impedances by simultaneously measuring the source impedances and the myoelectric signals with a switching circuit. The results showed that differences in both the norm and the phase of the source impedance greatly affect the common mode noise in the signal

    Embroidered Electromyography: A Systematic Design Guide

    Get PDF

    Electromyographic Assessment of Forearm Muscle Function in Tennis Players With and Without Lateral Epicondylitis

    Get PDF
    "There is no consensus about the main aetiology of Lateral Epicondylitis (LE) or Tennis Elbow. While electromyographic assessment of alterations in neuromuscular control and activation patterns of forearm muscles has received increasing interest as potential intrinsic factors in non-tennis players, there has been insufficient attention in tennis players. The purpose of present review was to search the literature for the electromyographic studies of forearm muscles in tennis players in order to 1) identify related implications for LE, 2) highlight key technical and methodological shortcomings, and 3) suggest potential pathways for future research. An electronic search of PubMed, Scopus, Web of Science, and Google Scholars (1980 to October 2014) was conducted. Titles, abstracts, and full-text articles were screened to identify “peer-reviewed” studies specifically looking into “electromyographic assessment of forearm muscles” in “tennis players”. After screening 104 articles, 13 original articles were considered in the main review involving a total of 216 participants (78% male, 22% female). There were indications of increased extensor activity in all tennis strokes and less experiences single-handed players, however with insufficient evidence to support their relationship with the development of LE. Studies varied widely in study population, sample size, gender, level of tennis skills, electrode type, forearm muscles studied, EMG recording protocol, EMG normalisation, and reported parameters. As a result, it was not possible to present combined results of existing studies and draw concrete conclusions in terms of clinical implications of findings. There is a need for establishment of specific guidelines and recommendations for EMG assessment of forearm musculature in terms of electrode and muscle selection. Further studies of both healthy controls and tennis players suffering from TE with adequate sample sizes and well-defined demographics are warranted.

    Upper Limb Motion Intent Recognition Using Tactile Sensing

    Get PDF

    EMG gait data from indwelling electrodes is attenuated over time and changes independent of any experimental effect

    Get PDF
    The effect of time on the validity of electromyography (EMG) signals from indwelling fine-wire electrodes has not been explored. This is important because experiments using intramuscular electrodes are often long and biochemical and mechanical factors, may impair measurement accuracy over time. Measures over extended periods might therefore be erroneous. Twelve healthy participants (age=33±8 years) walked for 50 minutes at a controlled speed. Fine-wire electrodes were inserted into tibialis anterior and a surface EMG sensor attached near the fine-wire insertion site. EMG signals progressively and significantly decreased with time with the fine-wire electrode, but not the surface electrode. For the fine-wire electrode, after 25 minutes mean amplitude had reduced by 11% (p<0.001) and after 50 minutes by 16% (p<0.001), and peak amplitude reduced 22% at 20 minutes (p=0.006) and 37% at 50 minutes (p<0.001). Reduced amplitude with indwelling EMG without concurrent changes in surface EMG signal suggests an important inconsistency in data from fine-wire EMG electrodes. Changes in EMG signal will occur over time independent of the experimental condition and this questions their use in experiments of more than 30 minutes. These results should impact on experimental study design. They also invite reinterpretation of prior literature and sensor innovation to improve measurement performance

    Extramuscular Recording of Spontaneous EMG Activity and Transcranial Electrical Elicited Motor Potentials in Horses:Characteristics of Different Subcutaneous and Surface Electrode Types and Practical Guidelines

    Get PDF
    Introduction: Adhesive surface electrodes are worthwhile to explore in detail as alternative to subcutaneous needle electrodes to assess myogenic evoked potentials (MEP) in human and horses. Extramuscular characteristics of both electrode types and different brands are compared in simultaneous recordings by also considering electrode impedances and background noise under not mechanically secured (not taped) and taped conditions. Methods: In five ataxic and one non-ataxic horses, transcranial electrical MEPs, myographic activity, and noise were simultaneously recorded from subcutaneous needle (three brands) together with pre-gelled surface electrodes (five brands) on four extremities. In three horses, the impedances of four adjacent-placed surface-electrode pairs of different brands were measured and compared. The similarity between needle and surface EMGs was assessed by cross-correlation functions, pairwise comparison of motor latency times (MLT), and amplitudes. The influence of electrode noise and impedance on the signal quality was assessed by a failure rate (FR) function. Geometric means and impedance ranges under not taped and taped conditions were derived for each brand. Results: High coherencies between EMGs of needle-surface pairs degraded to 0.7 at moderate and disappeared at strong noise. MLTs showed sub-millisecond simultaneous differences while sequential variations were several milliseconds. Subcutaneous MEP amplitudes were somewhat lower than epidermal. The impedances of subcutaneous needle electrodes were below 900 Ω and FR = 0. For four brands, the FR for surface electrodes was between 0 and 80% and declined to below 25% after taping. A remaining brand (27G DSN2260 Medtronic) revealed impedances over 100 kΩ and FR = 100% under not taped and taped conditions. Conclusion: Subcutaneous needle and surface electrodes yield highly coherent EMGs and TES-MEP signals. When taped and allowing sufficient settling time, adhesive surface-electrode signals may approach the signal quality of subcutaneous needle electrodes but still depend on unpredictable conditions of the skin. The study provides a new valuable practical guidance for selection of extramuscular EMG electrodes. This study on horses shares common principles for the choice of adhesive surface or sc needle electrodes in human applications such as in intraoperative neurophysiological monitoring of motor functions of the brain and spinal cord

    Ability-Based Methods for Personalized Keyboard Generation

    Full text link
    This study introduces an ability-based method for personalized keyboard generation, wherein an individual's own movement and human-computer interaction data are used to automatically compute a personalized virtual keyboard layout. Our approach integrates a multidirectional point-select task to characterize cursor control over time, distance, and direction. The characterization is automatically employed to develop a computationally efficient keyboard layout that prioritizes each user's movement abilities through capturing directional constraints and preferences. We evaluated our approach in a study involving 16 participants using inertial sensing and facial electromyography as an access method, resulting in significantly increased communication rates using the personalized keyboard (52.0 bits/min) when compared to a generically optimized keyboard (47.9 bits/min). Our results demonstrate the ability to effectively characterize an individual's movement abilities to design a personalized keyboard for improved communication. This work underscores the importance of integrating a user's motor abilities when designing virtual interfaces.Comment: 20 pages, 7 figure

    Extramuscular recording of spontaneous EMG activity and transcranial electrical elicited motor potentials in horses : characteristics of different subcutaneous and surface electrode types and practical guidelines

    Get PDF
    Introduction Adhesive surface electrodes are worthwhile to explore in detail as alternative to subcutaneous needle electrodes to assess myogenic evoked potentials (MEP) in human and horses. Extramuscular characteristics of both electrode types and different brands are compared in simultaneous recordings by also considering electrode impedances and background noise under not mechanically secured (not taped) and taped conditions. Methods In five ataxic and one non-ataxic horses, transcranial electrical MEPs, myographic activity, and noise were simultaneously recorded from subcutaneous needle (three brands) together with pre-gelled surface electrodes (five brands) on four extremities. In three horses, the impedances of four adjacent-placed surface-electrode pairs of different brands were measured and compared. The similarity between needle and surface EMGs was assessed by cross-correlation functions, pairwise comparison of motor latency times (MLT), and amplitudes. The influence of electrode noise and impedance on the signal quality was assessed by a failure rate (FR) function. Geometric means and impedance ranges under not taped and taped conditions were derived for each brand. Results High coherencies between EMGs of needle-surface pairs degraded to 0.7 at moderate and disappeared at strong noise. MLTs showed sub-millisecond simultaneous differences while sequential variations were several milliseconds. Subcutaneous MEP amplitudes were somewhat lower than epidermal. The impedances of subcutaneous needle electrodes were below 900 omega and FR = 0. For four brands, the FR for surface electrodes was between 0 and 80% and declined to below 25% after taping. A remaining brand (27G DSN2260 Medtronic) revealed impedances over 100 k omega and FR = 100% under not taped and taped conditions. Conclusion Subcutaneous needle and surface electrodes yield highly coherent EMGs and TES-MEP signals. When taped and allowing sufficient settling time, adhesive surface-electrode signals may approach the signal quality of subcutaneous needle electrodes but still depend on unpredictable conditions of the skin. The study provides a new valuable practical guidance for selection of extramuscular EMG electrodes. This study on horses shares common principles for the choice of adhesive surface or sc needle electrodes in human applications such as in intraoperative neurophysiological monitoring of motor functions of the brain and spinal cord
    corecore