185 research outputs found

    Passive and Active Electrical Balance Duplexers

    Get PDF

    Dynamic Performance of Electrical Balance Duplexing in a Vehicular Scenario

    Get PDF

    How Stability of Hybrid Coupler Characteristic Affects Front-End Isolation of In-Band Full Duplex System

    Get PDF

    A Passive STAR Microwave Circuit for 1-3 GHz Self-Interference Cancellation

    Full text link
    Simultaneous transmit and receive (STAR) allows full-duplex operation of a radio, which leads to doubled capacity for a given bandwidth. A circulator with high-isolation between transmit and receive ports, and low-loss from the antenna to receive port is typically required for achieving STAR. Conventional circulators do not offer wideband performance. Although wideband circulators have been proposed using parametric, switched delay-line/capacitor, and N-path filter techniques using custom integrated circuits, these magnet-free devices have non-linearity, noise, aliasing, and switching noise injection issues. In this paper, a STAR front-end based on passive linear microwave circuit is proposed. Here, a dummy antenna located inside a miniature RF-silent absorption chamber allows circulator-free STAR using simple COTS components. The proposed approach is highly-linear, free from noise, does not require switching or parametric modulation circuits, and has virtually unlimited bandwidth only set by the performance of COTS passive microwave components. The trade-off is relatively large size of the miniature RF-shielded chamber, making this suitable for base-station side applications. Preliminary results show the measured performance of Tx/Rx isolation between 25-60 dB in the 1.0-3.0 GHz range, and 50-60 dB for the 2.4-2.7 GHz range.Comment: 4 figures, 4 page

    Novel High Isolation Antennas for Simultaneous Transmit and Receive (STAR) Applications

    Get PDF
    Radio frequency (RF) spectrum congestion is a major challenge for the growing need of wireless bandwidth. Notably, in 2015, the Federal Communications Commission (FCC) auctioned just 65 MHz (a bandwidth smaller than that used for WiFi) for more than $40 billion, indicating the high value of the microwave spectrum. Current radios use one-half of their bandwidth resource for transmission, and the other half for reception. Therefore, by enabling radios to transmit and receive across their entire bandwidth allocation, spectral efficiency is doubled. Concurrently, data rates for wireless links also double. This technology leads to a new class of radios and RF frontends. Current full-duplex techniques resort to either time- or frequency-division duplexing (TDD and FDD respectively) to partition the transmit and receive functions across time and frequency, respectively, to avoid self-interference. But these approaches do not translate to spectral efficiency. Simultaneous transmit and receive (STAR) radios must isolate the transmitter from the receiver to avoid self-interference (SI). This SI prevents reception and must therefore be cancelled. Self-interference may be cancelled with one or more stages involving the antenna, RF or analog circuits, or digital filters. With this in mind, the antenna stage is the most critical to reduce the SI level and avoid circuit saturation and total system failure. This dissertation presents techniques for achieving STAR radios. The initial sections of the dissertation provide the general approach of stage to stage cancellation to achieve as much as 100 dB isolation between the receiver and transmitter. The subsequent chapters focus on different antennas to achieve strong transmit/receive isolation. As much as 35 dB isolation is shown using a new spiral antenna array with operation across a 2:1 bandwidth. Also, a new antenna feed is presented showing 42 dB isolation across a 250 MHz bandwidth. Reflections in the presence of a dynamic environment are also considered
    corecore