81,344 research outputs found

    Effects of Electrical Stimulation with Different Impulses on Physical Characteristics of Rabbit Meat

    Full text link
    Meat becoming less tender with age. One of the methods to increase the meat tenderness is by electrical simulation. The objective of this study was to investigate the effect of electrical simulation with different level of impulses on physical characteristics of rabbit meat. Twenty carcasses of Flemish Giant rabbit were randomly subjected into four differents treatments (impulse levels), which were control, impulse 25, impulse 50, and impulse 75. Each treatment was repeated 5 times. Measured variables were pH, tenderness, water holding capacity, and cooking lose. The results showed that different levels of electrical stimulation had significant effects on the physical characteristics of rabbit meat. Higher impulse level caused lower ultimate pH and more tender meat. Overall, the best physical characteristics of rabbit meat was obtained from electrical stimulation with impulse level of 50. (Animal Production 12(2): 124-127 (2010

    A functional electrical stimulation system for human walking inspired by reflexive control principles

    Get PDF
    This study presents an innovative multichannel functional electrical stimulation gait-assist system which employs a well-established purely reflexive control algorithm, previously tested in a series of bipedal walking robots. In these robots, ground contact information was used to activate motors in the legs, generating a gait cycle similar to that of humans. Rather than developing a sophisticated closed-loop functional electrical stimulation control strategy for stepping, we have instead utilised our simple reflexive model where muscle activation is induced through transfer functions which translate sensory signals, predominantly ground contact information, into motor actions. The functionality of the functional electrical stimulation system was tested by analysis of the gait function of seven healthy volunteers during functional electrical stimulation–assisted treadmill walking compared to unassisted walking. The results demonstrated that the system was successful in synchronising muscle activation throughout the gait cycle and was able to promote functional hip and ankle movements. Overall, the study demonstrates the potential of human-inspired robotic systems in the design of assistive devices for bipedal walking

    Electrical Stimulation Modulates High γ Activity and Human Memory Performance.

    Get PDF
    Direct electrical stimulation of the brain has emerged as a powerful treatment for multiple neurological diseases, and as a potential technique to enhance human cognition. Despite its application in a range of brain disorders, it remains unclear how stimulation of discrete brain areas affects memory performance and the underlying electrophysiological activities. Here, we investigated the effect of direct electrical stimulation in four brain regions known to support declarative memory: hippocampus (HP), parahippocampal region (PH) neocortex, prefrontal cortex (PF), and lateral temporal cortex (TC). Intracranial EEG recordings with stimulation were collected from 22 patients during performance of verbal memory tasks. We found that high γ (62-118 Hz) activity induced by word presentation was modulated by electrical stimulation. This modulatory effect was greatest for trials with poor memory encoding. The high γ modulation correlated with the behavioral effect of stimulation in a given brain region: it was negative, i.e., the induced high γ activity was decreased, in the regions where stimulation decreased memory performance, and positive in the lateral TC where memory enhancement was observed. Our results suggest that the effect of electrical stimulation on high γ activity induced by word presentation may be a useful biomarker for mapping memory networks and guiding therapeutic brain stimulation

    Chronic Dermal Ulcer Healing Enhanced with Monophasic Pulsed Electrical Stimulation

    Get PDF
    The purposes of this randomized, double-blind, multicenter study were to compare healing of chronic dermal ulcers treated with pulsed electrical stimulation with healing of similar wounds treated with sham electrical stimulation and to evaluate patient tolerance to the therapeutic protocol. Forty-seven patients, aged 29 to 91 years, with 50 stage II, III, and IV ulcers were randomly assigned to either a treatment group (n=26) or a control (sham treatment) group (n=24). Treated wounds received 30 minutes of pulsed cathodal electrical stimulation twice daily at a pulse frequency of 128 pulses per second (pps) and a peak amplitude of 29.2 mA if the wound contained necrotic tissue or any drainage that was not serosanguinous. A saline-moistened nontreatment electrode was applied 30.5 cm (12 in) cephalad from the wound. This protocol was continued for 3 days after the wound was debrided or exhibited serosanguinous drainage. Thereafter, the polarity of the treatment electrode on the wound was changed every 3 days until the wound progressed to a stage II classification. The pulse frequency was then reduced to 64 pps, and the treatment electrode polarity was changed daily until the wound was healed. Patients in the control group were treated with the same protocol, except they received sham electrical stimulation. After 4 weeks, wounds in the treatment and control groups were 44% and 67% of their initial size, respectively. The healing rates per week for the treatment and control groups were 14% and 8.25%, respectively. The results of this study indicate that pulsed electrical stimulation has a beneficial effect on healing stage II, III, and IV chronic dermal ulcers

    Dynamic balance training with sensory electrical stimulation in chronic stroke patients

    Get PDF
    A case study investigating the impact of sensory electrical stimulation during perturbed stance in one chronic stroke patient is presented. A special apparatus called the BalanceTrainer was used. It allows the application of perturbations to neurologically impaired people during standing, while protecting the subject from falling. The subject underwent two different periods of perturbation training, each lasting ten days. During the first period the subject was perturbed in eight different directions. During the second period the subject was also perturbed, but was assisted by sensory electrical stimulation of the soleus, tibialis anterior, tensor fascia latae, and vastus muscles in the impaired leg. After each period of training an assessment was carried out to measure the forces the subject applied on the ground via two force plates. The subject improved his ability to balance throughout the training, with the largest improvements during the final period when electrical stimulation was used

    Electrical Stimulation Technologies for Wound Healing

    Get PDF
    Objective: To discuss the physiological bases for using exogenously applied electric field (EF) energy to enhance wound healing with conductive electrical stimulation (ES) devices. Approach: To describe the types of electrical currents that have been reported to enhance chronic wound-healing rate and closure. Results: Commercial ES devices that generate direct current (DC), and mono and biphasic pulsed current waveforms represent the principal ES technologies which are reported to enhance wound healing. Innovation: Wafer-thin, disposable ES technologies (wound dressings) that utilize mini or micro-batteries to deliver low-level DC for wound healing and antibacterial wound-treatment purposes are commercially available. Microfluidic wound-healing chips are currently being used with greater accuracy to investigate the EF effects on cellular electrotaxis. Conclusion: Numerous clinical trials described in subsequent sections of this issue have demonstrated that ES used adjunctively with standard wound care (SWC), enhances wound healing rate faster than SWC alone

    Pharyngeal electrical stimulation for neurogenic dysphagia following stroke, traumatic brain injury or other causes: Main results from the PHADER cohort study

    Get PDF
    BackgroundNeurogenic dysphagia is common and has no definitive treatment. We assessed whether pharyngeal electrical stimulation (PES) is associated with reduced dysphagia.MethodsThe PHAryngeal electrical stimulation for treatment of neurogenic Dysphagia European Registry (PHADER) was a prospective single-arm observational cohort study. Participants were recruited with neurogenic dysphagia (comprising five groups – stroke not needing ventilation; stroke needing ventilation; ventilation acquired; traumatic brain injury; other neurological causes). PES was administered once daily for three days. The primary outcome was the validated dysphagia severity rating scale (DSRS, score best-worst 0–12) at 3 months.FindingsOf 255 enrolled patients from 14 centres in Austria, Germany and UK, 10 failed screening. At baseline, mean (standard deviation) or median [interquartile range]: age 68 (14) years, male 71%, DSRS 11·4 (1·7), time from onset to treatment 32 [44] days; age, time and DSRS differed between diagnostic groups. Insertion of PES catheters was successfully inserted in 239/245 (98%) participants, and was typically easy taking 11·8 min. 9 participants withdrew before the end of treatment. DSRS improved significantly in all dysphagia groups, difference in means (95% confidence intervals, CI) from 0 to 3 months: stroke (n = 79) –6·7 (–7·8, –5·5), ventilated stroke (n = 98) –6·5 (–7·6, –5·5); ventilation acquired (n = 35) –6·6 (–8·4, –4·8); traumatic brain injury (n = 24) -4·5 (–6·6, –2·4). The results for DSRS were mirrored for instrumentally assessed penetration aspiration scale scores. DSRS improved in both supratentorial and infratentorial stroke, with no difference between them (p = 0·32). In previously ventilated participants with tracheotomy, DSRS improved more in participants who could be decannulated (n = 66) –7·5 (–8·6, –6·5) versus not decannulated (n = 33) –2·1 (–3·2, –1·0) (

    Effects of electrical stimulation in childhood epilepsy

    Get PDF
    Epilepsy affects around 0.5% of children worldwide. At least a third of them are resistant to antiepileptic drugs and may have to undergo surgery. This condition is called refractory epilepsy. Beforehand, many tests have to be carried out to localise where the seizures are originated and whether surgery would damage functional areas. The amount of area that have to be resected by clinicians is called the epileptogenic zone (EZ). Nowadays, invasive and non-invasive tests are used to identify the EZ. In some cases, non-invasive evaluation suggests an uncertainty about where the seizures origin is. For this cases, invasive methods need to be carried out to complete the diagnose. Among the different invasive methods, stereoelectroencephalography (SEEG) has been used. Electrical stimulation using SEEG can aid clinicians in the determination of the EZ. In this study, the SEEG signals during electrical stimulation will be used to elaborate the threedimensional activation maps from a 19-year-old patient suffering from refractory epilepsy. The study will be held out with Matlab and Brainstorm. Firstly, we will segment the signals and we will remove the noise by filtering it. Secondly, we will conduct a time-frequency analysis where the activations at different frequency bands (low and high frequencies) will be taken into account to map the brain activity in the brain cortex. The observations from the conducted work allow narrowing down the epileptogenic zone that was firstly observed with non-invasive tests. The observations at high frequencies provide a more focalized pathological region, suggesting that clinicians should use these frequency bands in order to delimit the EZ
    corecore