2,639 research outputs found

    Multi-objective particle swarm optimization algorithm for multi-step electric load forecasting

    Get PDF
    As energy saving becomes more and more popular, electric load forecasting has played a more and more crucial role in power management systems in the last few years. Because of the real-time characteristic of electricity and the uncertainty change of an electric load, realizing the accuracy and stability of electric load forecasting is a challenging task. Many predecessors have obtained the expected forecasting results by various methods. Considering the stability of time series prediction, a novel combined electric load forecasting, which based on extreme learning machine (ELM), recurrent neural network (RNN), and support vector machines (SVMs), was proposed. The combined model first uses three neural networks to forecast the electric load data separately considering that the single model has inevitable disadvantages, the combined model applies the multi-objective particle swarm optimization algorithm (MOPSO) to optimize the parameters. In order to verify the capacity of the proposed combined model, 1-step, 2-step, and 3-step are used to forecast the electric load data of three Australian states, including New South Wales, Queensland, and Victoria. The experimental results intuitively indicate that for these three datasets, the combined model outperforms all three individual models used for comparison, which demonstrates its superior capability in terms of accuracy and stability

    A Survey on Data Mining Techniques Applied to Energy Time Series Forecasting

    Get PDF
    Data mining has become an essential tool during the last decade to analyze large sets of data. The variety of techniques it includes and the successful results obtained in many application fields, make this family of approaches powerful and widely used. In particular, this work explores the application of these techniques to time series forecasting. Although classical statistical-based methods provides reasonably good results, the result of the application of data mining outperforms those of classical ones. Hence, this work faces two main challenges: (i) to provide a compact mathematical formulation of the mainly used techniques; (ii) to review the latest works of time series forecasting and, as case study, those related to electricity price and demand markets.Ministerio de Economía y Competitividad TIN2014-55894-C2-RJunta de Andalucía P12- TIC-1728Universidad Pablo de Olavide APPB81309

    A hybrid LSTM neural network for energy consumption forecasting of individual households

    Get PDF
    Irregular human behaviors and univariate datasets remain as two main obstacles of data-driven energy consumption predictions for individual households. In this study, a hybrid deep learning model is proposed combining an ensemble long short term memory (LSTM) neural network with the stationary wavelet transform (SWT) technique. The SWT alleviates the volatility and increases the data dimensions, which potentially help improve the LSTM forecasting accuracy. Moreover, the ensemble LSTM neural network further enhances the forecasting performance of the proposed method. Verification experiments were performed based on a real-world household energy consumption dataset collected by the 'UK-DALEat project. The results show that, with a competitive training efficiency, the proposed method outperforms all compared state-of-art methods, including the persistent method, support vector regression (SVR), long short term memory (LSTM) neural network and convolutional neural network combining long short term memory (CNN-LSTM), with different step sizes at 5, 10, 20 and 30 minutes, using three error metrics
    corecore