189 research outputs found

    Novel Charging and Discharging Schemes for Electric Vehicles in Smart Grids

    Get PDF
    PhD ThesisThis thesis presents smart Charging and Discharging (C&D) schemes in the smart grid that enable a decentralised scheduling with large volumes of Electric Vehicles (EV) participation. The proposed C&D schemes use di erent strategies to atten the power consumption pro le by manipulating the charging or discharging electricity quantity. The novelty of this thesis lies in: 1. A user-behaviour based smart EV charging scheme that lowers the overall peak demand with an optimised EV charging schedule. It achieves the minimal impacts on users' daily routine while satisfying EV charging demands. 2. A decentralised EV electricity exchange process matches the power demand with an adaptive blockchain-enabled C&D scheme and iceberg order execution algorithm. It demonstrates improved performance in terms of charging costs and power consumption pro le. 3. The Peer-to-Peer (P2P) electricity C&D scheme that stimulates the trading depth and energy market pro le with the best price guide. It also increases the EV users' autonomy and achieved maximal bene ts for the network peers while protecting against potential attacks. 4. A novel consensus-mechanism driven EV C&D scheme for the blockchain-based system that accommodates high volume EV scenarios and substantially reduces the power uctuation level. The theoretical and comprehensive simulations prove that the penetration of EV with the proposed schemes minimises the power uctuation level in an urban area, and also increases the resilience of the smart grid system

    An Efficient and Secure Energy Trading Approach with Machine Learning Technique and Consortium Blockchain

    Get PDF
    In this paper, a secure energy trading mechanism based on blockchain technology is proposed. The proposed model deals with energy trading problems such as insecure energy trading and inefficient charging mechanisms for electric vehicles (EVs) in a vehicular energy network (VEN). EVs face two major problems: finding an optimal charging station and calculating the exact amount of energy required to reach the selected charging station. Moreover, in traditional trading approaches, centralized parties are involved in energy trading, which leads to various issues such as increased computational cost, increased computational delay, data tempering and a single point of failure. Furthermore, EVs face various energy challenges, such as imbalanced load supply and fluctuations in voltage level. Therefore, a demand-response (DR) pricing strategy enables EV users to flatten load curves and efficiently adjust electricity usage. In this work, communication between EVs and aggregators is efficiently performed through blockchain. Moreover, a branching concept is involved in the proposed system, which divides EV data into two different branches: a Fraud Chain (F-chain) and an Integrity Chain (I-chain). The proposed branching mechanism helps solve the storage problem and reduces computational time. Moreover, an attacker model is designed to check the robustness of the proposed system against double-spending and replay attacks. Security analysis of the proposed smart contract is also given in this paper. Simulation results show that the proposed work efficiently reduces the charging cost and time in a VEN.publishedVersio

    Towards Cyber Security for Low-Carbon Transportation: Overview, Challenges and Future Directions

    Full text link
    In recent years, low-carbon transportation has become an indispensable part as sustainable development strategies of various countries, and plays a very important responsibility in promoting low-carbon cities. However, the security of low-carbon transportation has been threatened from various ways. For example, denial of service attacks pose a great threat to the electric vehicles and vehicle-to-grid networks. To minimize these threats, several methods have been proposed to defense against them. Yet, these methods are only for certain types of scenarios or attacks. Therefore, this review addresses security aspect from holistic view, provides the overview, challenges and future directions of cyber security technologies in low-carbon transportation. Firstly, based on the concept and importance of low-carbon transportation, this review positions the low-carbon transportation services. Then, with the perspective of network architecture and communication mode, this review classifies its typical attack risks. The corresponding defense technologies and relevant security suggestions are further reviewed from perspective of data security, network management security and network application security. Finally, in view of the long term development of low-carbon transportation, future research directions have been concerned.Comment: 34 pages, 6 figures, accepted by journal Renewable and Sustainable Energy Review

    ABRIS: Anonymous blockchain based revocable and integrity preservation scheme for vehicle to grid network

    Get PDF
    The upcoming development in vehicle to grid network (V2G) allows for the flow of energy from battery powered Electric Vehicle (EV) to grid as well as the exchange of information between them. However, during the information exchange, the EV's confidential information should be transferred from one charging station to another in a secure manner. Furthermore, the anonymity of the EV and charging station should be preserved. Despite the fact that many works on anonymous authentication and privacy preservation exist, there is an increase in computational cost in existing surveys. In this work, the new charging station authenticates the EV using blockchain technology without the involvement of a trusted entity, resulting in a reduction in computational time. Moreover, an efficient revoking mechanism is suggested to block the misbehaving charging station from the V2G network. In addition, security analysis section proves the resistant of our work against several possible well known attacks. Finally, to evaluate the performance of the work, the simulation is performed using CYGWIN platform and the results are proved to be noteworthy

    Efficient and Secure Energy Trading with Electric Vehicles and Distributed Ledger Technology

    Full text link
    Efficient energy management of Distributed Renewable Energy Resources (DRER) enables a more sustainable and efficient energy ecosystem. Therefore, we propose a holistic Energy Management System (EMS), utilising the computational and energy storage capabilities of nearby Electric Vehicles (EVs), providing a low-latency and efficient management platform for DRER. Through leveraging the inherent, immutable features of Distributed Ledger Technology (DLT) and smart contracts, we create a secure management environment, facilitating interactions between multiple EVs and energy resources. Using a privacy-preserving load forecasting method powered by Vehicular Fog Computing (VFC), we integrate the computational resources of the EVs. Using DLT and our forecasting framework, we accommodate efficient management algorithms in a secure and low-latency manner enabling greater utilisation of the energy storage resources. Finally, we assess our proposed EMS in terms of monetary and energy utility metrics, establishing the increased benefits of multiple interacting EVs and load forecasting. Through the proposed system, we have established the potential of our framework to create a more sustainable and efficient energy ecosystem whilst providing measurable benefits to participating agents.Comment: Accepted at IEEE Virtual Conference on Communications (VCC) 202

    Electric vehicle as a service (EVaaS):applications, challenges and enablers

    Get PDF
    Under the vehicle-to-grid (V2G) concept, electric vehicles (EVs) can be deployed as loads to absorb excess production or as distributed energy resources to supply part of their stored energy back to the grid. This paper overviews the technologies, technical components and system requirements needed for EV deployment. Electric vehicle as a service (EVaaS) exploits V2G technology to develop a system where suitable EVs within the distribution network are chosen individually or in aggregate to exchange energy with the grid, individual customers or both. The EVaaS framework is introduced, and interactions among EVaaS subsystems such as EV batteries, charging stations, loads and advanced metering infrastructure are studied. The communication infrastructure and processing facilities that enable data and information exchange between EVs and the grid are reviewed. Different strategies for EV charging/discharging and their impact on the distribution grid are reviewed. Several market designs that incentivize energy trading in V2G environments are discussed. The benefits of V2G are studied from the perspectives of ancillary services, supporting of renewables and the environment. The challenges to V2G are studied with respect to battery degradation, energy conversion losses and effects on distribution system

    Integration of Blockchain and Auction Models: A Survey, Some Applications, and Challenges

    Get PDF
    In recent years, blockchain has gained widespread attention as an emerging technology for decentralization, transparency, and immutability in advancing online activities over public networks. As an essential market process, auctions have been well studied and applied in many business fields due to their efficiency and contributions to fair trade. Complementary features between blockchain and auction models trigger a great potential for research and innovation. On the one hand, the decentralized nature of blockchain can provide a trustworthy, secure, and cost-effective mechanism to manage the auction process; on the other hand, auction models can be utilized to design incentive and consensus protocols in blockchain architectures. These opportunities have attracted enormous research and innovation activities in both academia and industry; however, there is a lack of an in-depth review of existing solutions and achievements. In this paper, we conduct a comprehensive state-of-the-art survey of these two research topics. We review the existing solutions for integrating blockchain and auction models, with some application-oriented taxonomies generated. Additionally, we highlight some open research challenges and future directions towards integrated blockchain-auction models

    Secure and Efficient Vehicle-to-Grid Energy Trading in Cyber Physical Systems: An Integration of Blockchain and Edge Computing

    Get PDF
    Smart grid has emerged as a successful application of cyber-physical systems in the energy sector. Among numerous key technologies of the smart grid, vehicle-to-grid (V2G) provides a promising solution to reduce the level of demand-supply mismatch by leveraging the bidirectional energy-trading capabilities of electric vehicles. In this paper, we propose a secure and efficient V2G energy trading framework by exploring blockchain, contract theory, and edge computing. First, we develop a consortium blockchain-based secure energy trading mechanism for V2G. Then, we consider the information asymmetry scenario, and propose an efficient incentive mechanism based on contract theory. The social welfare optimization problem falls into the category of difference of convex programming and is solved by using the iterative convex-concave procedure algorithm. Next, edge computing has been incorporated to improve the successful probability of block creation. The computational resource allocation problem is modeled as a two-stage: 1) Stackelberg leader-follower game and 2) the optimal strategies are obtained by using the backward induction approach. Finally, the performance of the proposed framework is validated via numerical results and theoretical analysis
    corecore