29,227 research outputs found

    Persistent Homology Guided Force-Directed Graph Layouts

    Full text link
    Graphs are commonly used to encode relationships among entities, yet their abstractness makes them difficult to analyze. Node-link diagrams are popular for drawing graphs, and force-directed layouts provide a flexible method for node arrangements that use local relationships in an attempt to reveal the global shape of the graph. However, clutter and overlap of unrelated structures can lead to confusing graph visualizations. This paper leverages the persistent homology features of an undirected graph as derived information for interactive manipulation of force-directed layouts. We first discuss how to efficiently extract 0-dimensional persistent homology features from both weighted and unweighted undirected graphs. We then introduce the interactive persistence barcode used to manipulate the force-directed graph layout. In particular, the user adds and removes contracting and repulsing forces generated by the persistent homology features, eventually selecting the set of persistent homology features that most improve the layout. Finally, we demonstrate the utility of our approach across a variety of synthetic and real datasets

    Election Manipulation on Social Networks: Seeding, Edge Removal, Edge Addition

    Full text link
    We focus on the election manipulation problem through social influence, where a manipulator exploits a social network to make her most preferred candidate win an election. Influence is due to information in favor of and/or against one or multiple candidates, sent by seeds and spreading through the network according to the independent cascade model. We provide a comprehensive study of the election control problem, investigating two forms of manipulations: seeding to buy influencers given a social network, and removing or adding edges in the social network given the seeds and the information sent. In particular, we study a wide range of cases distinguishing for the number of candidates or the kind of information spread over the network. Our main result is positive for democracy, and it shows that the election manipulation problem is not affordable in the worst-case except for trivial classes of instances, even when one accepts to approximate the margin of victory. In the case of seeding, we also show that the manipulation is hard even if the graph is a line and that a large class of algorithms, including most of the approaches recently adopted for social-influence problems, fail to compute a bounded approximation even on elementary networks, as undirected graphs with every node having a degree at most two or directed trees. In the case of edge removal or addition, our hardness results also apply to the basic case of social influence maximization/minimization. In contrast, the hardness of election manipulation holds even when the manipulator has an unlimited budget, being allowed to remove or add an arbitrary number of edges.Comment: arXiv admin note: text overlap with arXiv:1902.0377

    Controlling edge dynamics in complex networks

    Get PDF
    The interaction of distinct units in physical, social, biological and technological systems naturally gives rise to complex network structures. Networks have constantly been in the focus of research for the last decade, with considerable advances in the description of their structural and dynamical properties. However, much less effort has been devoted to studying the controllability of the dynamics taking place on them. Here we introduce and evaluate a dynamical process defined on the edges of a network, and demonstrate that the controllability properties of this process significantly differ from simple nodal dynamics. Evaluation of real-world networks indicates that most of them are more controllable than their randomized counterparts. We also find that transcriptional regulatory networks are particularly easy to control. Analytic calculations show that networks with scale-free degree distributions have better controllability properties than uncorrelated networks, and positively correlated in- and out-degrees enhance the controllability of the proposed dynamics.Comment: Preprint. 24 pages, 4 figures, 2 tables. Source code available at http://github.com/ntamas/netctr

    Measuring relative opinion from location-based social media: A case study of the 2016 U.S. presidential election

    Get PDF
    Social media has become an emerging alternative to opinion polls for public opinion collection, while it is still posing many challenges as a passive data source, such as structurelessness, quantifiability, and representativeness. Social media data with geotags provide new opportunities to unveil the geographic locations of users expressing their opinions. This paper aims to answer two questions: 1) whether quantifiable measurement of public opinion can be obtained from social media and 2) whether it can produce better or complementary measures compared to opinion polls. This research proposes a novel approach to measure the relative opinion of Twitter users towards public issues in order to accommodate more complex opinion structures and take advantage of the geography pertaining to the public issues. To ensure that this new measure is technically feasible, a modeling framework is developed including building a training dataset by adopting a state-of-the-art approach and devising a new deep learning method called Opinion-Oriented Word Embedding. With a case study of the tweets selected for the 2016 U.S. presidential election, we demonstrate the predictive superiority of our relative opinion approach and we show how it can aid visual analytics and support opinion predictions. Although the relative opinion measure is proved to be more robust compared to polling, our study also suggests that the former can advantageously complement the later in opinion prediction

    Effectiveness of dismantling strategies on moderated vs. unmoderated online social platforms

    Full text link
    Online social networks are the perfect test bed to better understand large-scale human behavior in interacting contexts. Although they are broadly used and studied, little is known about how their terms of service and posting rules affect the way users interact and information spreads. Acknowledging the relation between network connectivity and functionality, we compare the robustness of two different online social platforms, Twitter and Gab, with respect to dismantling strategies based on the recursive censor of users characterized by social prominence (degree) or intensity of inflammatory content (sentiment). We find that the moderated (Twitter) vs unmoderated (Gab) character of the network is not a discriminating factor for intervention effectiveness. We find, however, that more complex strategies based upon the combination of topological and content features may be effective for network dismantling. Our results provide useful indications to design better strategies for countervailing the production and dissemination of anti-social content in online social platforms
    • …
    corecore