9,172 research outputs found

    Elastic Multi-resource Network Slicing: Can Protection Lead to Improved Performance?

    Full text link
    In order to meet the performance/privacy requirements of future data-intensive mobile applications, e.g., self-driving cars, mobile data analytics, and AR/VR, service providers are expected to draw on shared storage/computation/connectivity resources at the network "edge". To be cost-effective, a key functional requirement for such infrastructure is enabling the sharing of heterogeneous resources amongst tenants/service providers supporting spatially varying and dynamic user demands. This paper proposes a resource allocation criterion, namely, Share Constrained Slicing (SCS), for slices allocated predefined shares of the network's resources, which extends the traditional alpha-fairness criterion, by striking a balance among inter- and intra-slice fairness vs. overall efficiency. We show that SCS has several desirable properties including slice-level protection, envyfreeness, and load driven elasticity. In practice, mobile users' dynamics could make the cost of implementing SCS high, so we discuss the feasibility of using a simpler (dynamically) weighted max-min as a surrogate resource allocation scheme. For a setting with stochastic loads and elastic user requirements, we establish a sufficient condition for the stability of the associated coupled network system. Finally, and perhaps surprisingly, we show via extensive simulations that while SCS (and/or the surrogate weighted max-min allocation) provides inter-slice protection, they can achieve improved job delay and/or perceived throughput, as compared to other weighted max-min based allocation schemes whose intra-slice weight allocation is not share-constrained, e.g., traditional max-min or discriminatory processor sharing

    Middleware Technologies for Cloud of Things - a survey

    Get PDF
    The next wave of communication and applications rely on the new services provided by Internet of Things which is becoming an important aspect in human and machines future. The IoT services are a key solution for providing smart environments in homes, buildings and cities. In the era of a massive number of connected things and objects with a high grow rate, several challenges have been raised such as management, aggregation and storage for big produced data. In order to tackle some of these issues, cloud computing emerged to IoT as Cloud of Things (CoT) which provides virtually unlimited cloud services to enhance the large scale IoT platforms. There are several factors to be considered in design and implementation of a CoT platform. One of the most important and challenging problems is the heterogeneity of different objects. This problem can be addressed by deploying suitable "Middleware". Middleware sits between things and applications that make a reliable platform for communication among things with different interfaces, operating systems, and architectures. The main aim of this paper is to study the middleware technologies for CoT. Toward this end, we first present the main features and characteristics of middlewares. Next we study different architecture styles and service domains. Then we presents several middlewares that are suitable for CoT based platforms and lastly a list of current challenges and issues in design of CoT based middlewares is discussed.Comment: http://www.sciencedirect.com/science/article/pii/S2352864817301268, Digital Communications and Networks, Elsevier (2017

    Middleware Technologies for Cloud of Things - a survey

    Full text link
    The next wave of communication and applications rely on the new services provided by Internet of Things which is becoming an important aspect in human and machines future. The IoT services are a key solution for providing smart environments in homes, buildings and cities. In the era of a massive number of connected things and objects with a high grow rate, several challenges have been raised such as management, aggregation and storage for big produced data. In order to tackle some of these issues, cloud computing emerged to IoT as Cloud of Things (CoT) which provides virtually unlimited cloud services to enhance the large scale IoT platforms. There are several factors to be considered in design and implementation of a CoT platform. One of the most important and challenging problems is the heterogeneity of different objects. This problem can be addressed by deploying suitable "Middleware". Middleware sits between things and applications that make a reliable platform for communication among things with different interfaces, operating systems, and architectures. The main aim of this paper is to study the middleware technologies for CoT. Toward this end, we first present the main features and characteristics of middlewares. Next we study different architecture styles and service domains. Then we presents several middlewares that are suitable for CoT based platforms and lastly a list of current challenges and issues in design of CoT based middlewares is discussed.Comment: http://www.sciencedirect.com/science/article/pii/S2352864817301268, Digital Communications and Networks, Elsevier (2017

    Road Pricing with Autonomous Links

    Get PDF
    This research examines road pricing on a network of autonomous highway links. By autonomous it is meant that the links are competitive and independent, with the objective of maximizing their own profits without regard for either social welfare or the profits of other links. The principal goal of the research is to understand the implications of adoption of road pricing and privatization on social welfare and the distribution of gains and losses. The specific pricing strategies of autonomous links are evaluated first under the condition of competition for simple networks. An agent-based modeling system is developed which integrates an equilibrated travel demand, route choice, and travel time model with a repeated game of autonomous links setting prices to maximize profit. The levels of profit, welfare consequences, and potential cooperative arrangements undertaken by autonomous links will be evaluated. By studying how such an economic system may behave under various circumstances, the effectiveness of road pricing and road privatization as public policy can be assessed.Network dynamics, road pricing, autonomous links, privatization, agent-based transportation model

    Agent-based simulation framework for the taxi sector modeling

    Get PDF
    Taxi services account for a significant part of the daily trips in most cities around the world. These services are regulated by a central authority, which usually monitors the performance of the taxi services provision and defines the policies applied to the taxi sector. In order to support policy makers, fleet managers and individual taxi drivers, there is a need for developing models to understand the behavior of these markets. Most of the models developed for analyzing the taxi market are based on econometric measurements and do not account for the spatial distribution of both taxi demand and supply. Only few simulation models are able to better understand the operational characteristics of the taxi market. This paper presents a framework for the development of agent based taxi simulation models. It is aimed at assessing policy makers, taxi fleet managers and individual drivers in the definition of the optimum operation mode and the number of vehicles.Peer ReviewedPostprint (published version

    Review of Methods for Estimating the Economic Impact of Transportation Improvements

    Get PDF
    Transportation analysts and the public decision-makers they support are confronted with a broad range of analytical tools for estimating the economic impacts of improvements to trans- portation networks. Many of the available models operate at different scales and have distinctly different structures, making them more or less appropriate for analyzing the impacts of differ- ent types of projects. Here, we review several of the economic methods and models that have been developed for analyzing the impact of transportation improvements, giving special atten- tion to types of projects that add highway capacity in urban areas. We review project-based methods, including beneÞt-cost analysis and several analytical software tools developed by the Federal Highway Administration (FHWA) for economic analysis of transportation investment. We then move on to aggregate and disaggregate-level econometric methods, including regional economic models, hedonic price functions, production functions and cliometric analyses. We also devote some attention to the role of induced demand in economic evaluation, since it is of- ten one of the most uncertain and confounding factors faced by those charged with conducting economic evaluation of transportation projects.Economic Impact, Benefit-Cost Analysis
    corecore