722 research outputs found

    Ejector refrigeration: A comprehensive review

    Get PDF
    The increasing need for thermal comfort has led to a rapid increase in the use of cooling systems and, consequently, electricity demand for air-conditioning systems in buildings. Heat-driven ejector refrigeration systems appear to be a promising alternative to the traditional compressor-based refrigeration technologies for energy consumption reduction. This paper presents a comprehensive literature review on ejector refrigeration systems and working fluids. It deeply analyzes ejector technology and behavior, refrigerant properties and their influence over ejector performance and all of the ejector refrigeration technologies, with a focus on past, present and future trends. The review is structured in four parts. In the first part, ejector technology is described. In the second part, a detailed description of the refrigerant properties and their influence over ejector performance is presented. In the third part, a review focused on the main jet refrigeration cycles is proposed, and the ejector refrigeration systems are reported and categorized. Finally, an overview over all ejector technologies, the relationship among the working fluids and the ejector performance, with a focus on past, present and future trends, is presented. (C) 2015 Elsevier Ltd. All rights reserved

    Experimental and Theoretical Investigation of a Hybrid Compressor and Ejector Refrigeration System for Automotive Air Conditioning Application

    Get PDF
    In this research, performance of a hybrid compressor and ejector refrigeration system for automotive air conditioning application was investigated theoretically and experimentally. Mathematical modeling integrated the 1-dimensional analysis of ejector with the thermodynamic analysis of the hybrid compressor and ejector refrigeration system via EES (Engineering Equation Solver) software was proposed. Also an experimental rig of the hybrid compressor and ejector refrigeration system for automotive air conditioning application was built. This hybrid system has a rated cooling capacity of 3.5 kW. Refrigerant R134a and R141b were used for mechanical vapor compression sub system and the ejector sub system, respectively. The operating conditions are chosen accordingly as, generator temperature between 100 °C and 120 °C, condenser temperature between 30 °C and 40 °C, and evaporator temperature between 0 °C and 10 °C. Theoretical results of the ejector’s entrainment ratio (Rm) and COP of the system with variations on operating conditions were compared with the experiment values. From the results, mathematical modeling seems to provide error in COP prediction up to 15.5% when compared with experimental values. Fortunately, modification of the mathematical modeling by applying the computational fluid dynamics (CFD) technique provides less error about 5.5%. It’s also found that the COP of the hybrid system can be increased by 10-20% compared to a simple stage ejector refrigeration cycle (EJC). Moreover, estimated power consumption of the automotive air conditioning system can be approximately reduced 20% under the conventional vapor compression cycle.In this research, performance of a hybrid compressor and ejector refrigeration system for automotive air conditioning application was investigated theoretically and experimentally. Mathematical modeling integrated the 1-dimensional analysis of ejector with the thermodynamic analysis of the hybrid compressor and ejector refrigeration system via EES (Engineering Equation Solver) software was proposed. Also an experimental rig of the hybrid compressor and ejector refrigeration system for automotive air conditioning application was built. This hybrid system has a rated cooling capacity of 3.5 kW. Refrigerant R134a and R141b were used for mechanical vapor compression sub system and the ejector sub system, respectively. The operating conditions are chosen accordingly as, generator temperature between 100°C and 120°C, condenser temperature between 30°C and 40°C, and evaporator temperature between 0°C and 10°C. Theoretical results of the ejector's entrainment ratio (Rm) and COP of the system with variations on operating conditions were compared with the experiment values. From the results, mathematical modeling seems to provide error in COP prediction up to 15.5% when compared with experimental values. Fortunately, modification of the mathematical modeling by applying the computational fluid dynamics (CFD) technique provides less error about 5.5%. It's also found that the COP of the hybrid system can be increased by 10 - 20% compared to a simple stage ejector refrigeration cycle (EJC). Moreover, estimated power consumption of the automotive air conditioning system can be approximately reduced 20% under the conventional vapor compression cycle

    Exergy and Exergoeconomic Analysis of a Cogeneration Hybrid Solar Organic Rankine Cycle with Ejector

    Get PDF
    Solar energy is utilized in a combined ejector refrigeration system with an organic Rankine cycle (ORC) to produce a cooling effect and generate electrical power. This study aims at increasing the utilized share of the collected solar thermal energy by inserting an ORC into the system. As the ejector refrigeration cycle reaches its maximum coefficient of performance (COP), the ORC starts working and generating electrical power. This electricity is used to run the circulating pumps and the control system, which makes the system autonomous. For the ejector refrigeration system, R134a refrigerant is selected as the working fluid for its performance characteristics and environmentally friendly nature. The COP of 0.53 was obtained for the ejector refrigeration cycle. The combined cycle of the solar ejector refrigeration and ORC is modeled in EBSILON Professional. Different parameters like generator temperature and pressure, condenser temperature and pressure, and entrainment ratio are studied, and the effect of these parameters on the cycle COP is investigated. Exergy, economic, and exergoeconomic analyses of the hybrid system are carried out to identify the thermodynamic and cost inefficiencies present in various components of the system

    Enhancement of refrigeration performance with an ejector

    Get PDF
    The effective use of energy is an important issue for society considering the future increasing demand, restricted use of fossil fuels and associated environmental problem. This project describes a mathematical model of the ejector refrigeration model where the ejector is the main component and replaces the expansion valves in the refrigeration cycle

    Thermodynamic Analysis Of Steam Ejector Refrigeration Cycle

    Get PDF
    Steam ejectors are capable of drawing large volumes of vapor within a relatively small space and at a low cost. In this study, the compressor is replaced by a constant-area mixing ejector to reduce the energy consumption in refrigeration cycle. The influence of various parameters on the performance of the system is obtained by an iterative program and reasons are analyzed in this paper. The effect of pressure difference, the difference of evaporation pressure and primary nozzle outlet pressure, on the COP and the exergy loss of every component in system is considered. Finally the key points to optimize the ejector cycle and the minimum exergy loss location to optimize the ejector design are obtained by theoretical research. A better understanding for the real industrial application is provided by this theoretical analysis on the steam ejector refrigeration system and a foundation for the simulation and experimental reach is laid

    Comparative Study on Solar Collector's Configuration for an Ejector-Refrigeration Cycle

    Full text link
    Solar collector's configuration plays important role on solar-powered refrigeration systems to work as heat source for generator . Three types of solar collector consisting of flat plate, evacuated tube, and compound parabolic solar collectors are compared to investigate their performances. The performances consist of the behavior of heat which can be absorbed by the collectors, heat loss from the collectors and outlet temperature of working fluid at several slopes of the solar collectors. The new accurate analysis method of heat transfer is conducted to predict the performance of the solar collectors. The analysis is based on several assumptions, i.e. sky condition at Bandung is clear and not raining from 08.00 until 17.00 and thermal resistance at cover and absorber plate is negligible. The numerical calculation results confirm that performance of the evacuated tubes solar collector at the same operating conditions is higher than the others. For the case of an evacuated-tubes solar collector system with aperture area of 3.5 m2, the maximum heat which can be absorbed is 3992 W for the highest solar intensity of 970 W/m2 at 12.00 with horizontal position of the solar collector. At this condition, the highest outlet temperature of water is 347.15 K with mass flow rate 0.02 kg/s and inlet temperature 298 K

    A Comparative Study of Different Cooling/Dehumidification Systems Based on Compressor, Ejector, and Membrane Technologies

    Get PDF
    Air conditioning and refrigeration systems for cooling and dehumidification are some of the largest consumers of energy with most of the systems using electricity or fossil fuels to operate. Additionally, refrigeration systems typically use refrigerants, which can deplete the ozone layer and contribute to global warming, as the working fluid during operations. Therefore, alternative cooling and dehumidification systems need to be developed and implemented as substitutes to conventional HVAC systems in order to reduce the destruction of the environment. In addition, it is important that these new non-refrigerant systems provide the same or better energy performance when compared to conventional system. The application of ejector and membrane technologies can provide an alternative approach to conventional systems; therefore, the performance characteristics of these systems are investigated herein by modelling and simulating. Four systems were modelled, evaluated, and analyzed in this study with the simulations for each system being performed by using the Engineering Equation Solver (EES). The first major system investigated was a conventional cooling system, commonly referred to as a vapor-compression refrigeration system. The model inputs for this system are hot region temperatures of 27 to 33°C and cold region temperatures of 6 to18°C, with these regions forming the heat sinks and sources, respectively. Additionally, the working fluids to the vapor-compression system were assumed to be either refrigerant R-22, which is still widely used for HVAC applications, or an ozone-safe replacement, namely (R-410A). The second major system investigated was a steam-ejector refrigeration system, which has the same inputs as the vapor-compression refrigeration system. This system has been operated for some time but has seen only limited applications because of its lack of optimization. Therefore, a particular focus herein for this system was the development of an ejector model capable of investigating optimum performance characteristics. The third major system was the membrane-ejector dehumidifier that uses a steam ejector for the purpose of creating a vacuum on the low-pressure side of a membrane, this low-pressure region promotes the removal of water vapor from the ambient air that is dehumidified as it flows on the other side of the membrane surface. A major difference between the compressor in the vapor-compression refrigeration system and the ejector in the membrane-ejector dehumidification system is that the compressor operates with high-cost mechanical and electrical energy while the ejector operates with low-cost thermal energy, which is used to produce driving steam in a 90-150°C boiler. The fourth system was also evaluated with this system being similar to the third system except that a condenser was installed between ejectors. As noted before, all four systems were simulated with idealized conditions in order to facilitate modelling. As such, the true value of the investigation reported herein is knowledge gained regarding the performance of each system as a function of various parameters, rather than a system to system performance comparison. For the given conditions and assumptions, the coefficient of performance of the vapor-compression systems with either refrigerant R-22 or R410A was found to range from 8 to 30, which is higher than the COP found in real-world operating conditions because of the idealized model. The steam-ejector refrigeration system which operated at the same heat source and sink temperature conditions, had COP’s ranging from 2.2 to 6.5. However, a direct comparison of COP’s for the two technologies is not possible because the ejector system used low-cost thermal energy, and the idealized assumption. The membrane-ejector dehumidifier gave COP’s of 0.12 to 0.19 but add in a condenser between the two ejectors doubled the COP to 0.44-0.5. Again, because the membrane-ejector system is the most innovative and complicated of the four systems, many opportunities exist for improvement and optimization. Of special note, the COP’s of the first two system is based on cooling while these last two system COP’s are based on dehumidification, precluding COP comparison. Another consideration is that non-idealized assumptions in this study is the significant air leakage through the membrane, and as membrane improvement are made significant increase in COP’s are expected. Furthermore, the small COP of the ejector system can be drastically increased if the thermal energy input comes from a renewable heat sources such as solar or geothermal

    A study of working fluids for heat driven ejector refrigeration using lumped parameter models

    Get PDF
    This paper studies the influence of working fluids over the performance of heat driven ejector refrigeration systems performance by using a lumped parameter model. The model used has been selected after a comparison of different models with a set of experimental data available in the literature. The effect of generator, evaporator and condenser temperature over the entrainment ratio and the COP has been investigated for different working fluids in the typical operating conditions of low grade energy sources. The results show a growth in performance (the entrainment ratio and the COP) with a rise in the generator and evaporator temperature and a decrease in the condenser temperature. The working fluids have a great impact on the ejector performance and each refrigerant has its own range of operating conditions. R134a is found to be suitable for low generator temperature (70-100 degrees C), whereas the hydrocarbons R600 is suitable for medium generator temperatures (100-130 degrees C) and R601 for high generator temperatures (130-180 degrees C). (C) 2015 Elsevier Ltd and IIR. All rights reserved

    Feasibility Study of Jet-Ejector Refrigeration Systems as a Mechanism for Harnessing Low-Grade Thermal Energy from Different Sources

    Full text link
    [ES] Los sistemas de refrigeración por eyección activados por calor de origen renovable o fuentes de calor residual tienen el potencial de alcanzar ahorros energéticos significativos al sustituir o asistir a los sistemas de refrigeración tradicionales. Su campo de aplicabilidad es muy amplio y el presente trabajo se ha centrado en un estudio detallado de dos aplicaciones con gran potencial siguiendo un enfoque computacional: (i) generación de aire acondicionado activado por energía solar térmica y (ii) refrigeración de la admisión de un motor de combustión reutilizando la energía térmica disponible en la línea de escape de este. Las actividades de investigación han estado dirigidas a mitigar dos de los principales puntos débiles que caracterizan a los ciclos de refrigeración por eyección: su eficiencia relativamente baja y la incapacidad mostrada por la configuración base del ciclo de eyección para operar de forma robusta en condiciones de operación alejadas de las de diseño. La primera cuestión ha sido abordada principalmente diseñando geometrías de eyector altamente optimizadas usando técnicas de mecánica de fluidos computacional y optimizando la integración del eyector en el conjunto del sistema de refrigeración. La segunda cuestión se ha abordado caracterizando el comportamiento del sistema en condiciones de diseño y fuera de diseño. Se han propuesto dos estrategias avanzadas para hacer frente a la caída de prestaciones que sufre el sistema al operar en condiciones fuera de diseño, como son la utilización de eyectores de geometría ajustable o la implementación de tanques de almacenamiento térmico. La respuesta del sistema se ha analizado en condiciones fuera de diseño con dos aproximaciones temporales complementarias. Los modelos estacionarios se han usado para optimizar las diferentes arquitecturas de eyector y la operación global del sistema en ciertas condiciones de operación representativas, mientras que el análisis transitorio representa un enfoque más realista y tiene en cuenta la naturaleza impredecible e inestable de la climatología. El estudio se ha concluido con un análisis termoeconómico, el cual ha sido útil para discernir si los diseños altamente optimizados son competitivos al ser comparados con las soluciones de refrigeración que se encuentran actualmente consolidadas en el mercado. La principal conclusión del análisis en condiciones estáticas para la aplicación termosolar es que la transformación de potencia térmica a potencia de refrigeración puede alcanzar un rendimiento del 37.7%, mientras que el rendimiento global del sistema alcanza el 20.1% con diseños altamente optimizados de eyector para unas condiciones de evaporación y condensación de 13°C y 40°C, respectivamente. En condiciones dinámicas, la implementación de la geometría variable mejora en torno a un 40% el rendimiento del sistema de refrigeración, además de incrementar su operatividad. El tanque de almacenamiento térmico juega un papel relevante en este aspecto y, para una envergadura de colector parabólico de 7.1 m, un consumo nominal de 13.3 kW de potencia térmica del tanque ha resultado ser una solución de compromiso para mantener en equilibrio los principales indicadores de prestaciones. El análisis termoeconómico de la arquitectura más prometedora sugiere que el ahorro de coste operativo está lejos de poder compensar la elevada inversión inicial en equipamiento (16.905€ para una capacidad de refrigeración aproximada de 5.6 kW), destacando la dificultad del sistema para competir con las soluciones de refrigeración actualmente consolidadas en el mercado y resaltando la necesidad de considerar soluciones híbridas. La principal conclusión de la aplicación en motor de combustión es que la reducción de temperaturas en la línea de admisión por debajo de 4°C es factible, produciendo mejoras en el rendimiento volumétrico de en torno al 11%, no obstante, el sistema muestra vulnerabilidades al operar en puntos de motor diferentes al de diseño.[CA] Els sistemes de refrigeració per ejecció activats per calor d'origen renovable o fonts de calor residual tenen el potencial d'assolir estalvis energètics significatius al substituir o assistir als sistemes de refrigeració tradicionals. El seu camp d'aplicabilitat es ampli i el present treball s'ha centrat en un estudi detallat de dos aplicacions amb gran potencial seguint un enfocament computacional: (i) generació d'aire condicionat activat per energia solar tèrmica i (ii) refrigeració de l'admissió d'un motor de combustió reutilitzant l'energia tèrmica disponible en la línia d'escapament d'aquest. Les activitats d'investigació han estat dirigides a mitigar dos dels principals punts dèbils que caracteritzen als cicles de refrigeració per ejecció: la seua eficiència relativament baixa i la incapacitat mostrada per la configuració base del cicle d'ejecció per a operar de forma robusta en condicions d'operació allunyades de les de disseny. La primera qüestió ha sigut abordada principalment dissenyant geometries d'ejector altament optimitzades usant tècniques de mecànica de fluids computacional i optimitzant la integració de l'ejector en el conjunt del sistema de refrigeració. La segona qüestió s'ha abordat caracteritzant el comportament del sistema en condicions de disseny i fora de disseny. S'han proposat dos estratègies avançades per a fer front a la caiguda de prestacions que pateix el sistema quan opera en condicions fora de disseny, com són la utilització d'ejectors de geometria ajustable o la implementació de tancs de emmagatzemament tèrmic. La resposta del sistema s'ha analitzat en condicions fora de disseny amb dos aproximacions temporals complementàries. Els models estacionaris s'han usat per a optimitzar les diferents arquitectures d'ejector i l'operació global del sistema en certes condicions d'operació representatives, mentre que l'anàlisi transitori representa un enfocament més realista i té en compte la natura impredictible i inestable dels canvis en les condiciones climàtiques. L'estudi s'ha conclòs amb un anàlisi termoeconòmic, el qual ha sigut útil per a discernir si els dissenys altament optimitzats són competitius quan es comparen amb les solucions de refrigeració que es troben actualment consolidades al mercat. La principal conclusió de l'anàlisi en condicions estàtiques per a l'aplicació termosolar és que la transformació de potència tèrmica a potència de refrigeració pot arribar a un rendiment del 37.7%, mentre que el rendiment global del sistema arriba al 20.1 % amb dissenys altament optimitzats d'ejector per a unes condicions d'evaporació i condensació de 13°C i 40°C, respectivament. En condicions dinàmiques, la implementació de la geometria variable millora al voltant d'un 40% el rendiment del sistema de refrigeració, a més d'incrementar la seua capacitat de romandre en funcionament. El tanc d'emmagatzemament tèrmic juga un paper rellevant en aquest aspecte i, per a una llargària de col·lector parabòlic de 7.1 m, un consum nominal de 13.3 kW de potencia tèrmica del tanc ha resultat ser una solució de compromís per a mantenir en equilibri els principals indicadors de prestacions. L'anàlisi termoeconòmic de l'arquitectura més prometedora suggereix que l'estalvi de cost operatiu està lluny de poder compensar l'elevada inversió inicial en equipament (16.905€ per a una capacitat de refrigeració aproximada de 5.6 kW), posant de manifest la dificultat del sistema per a competir amb les solucions de refrigeració actualment consolidades al mercat i ressaltant la necessitat de considerar solucions híbrides. La principal conclusió de l'aplicació en motor de combustió és que la reducció de temperatures a la línia d'admissió per baix de 4°C és factible, produint millores en el rendiment volumètric de al voltant de l'11%, no obstant això, el sistema mostra vulnerabilitats a l'hora d'operar en punts de motor diferents al de disseny.[EN] Jet-ejector refrigeration systems powered by renewable heat or waste heat sources have the potential to achieve significant primary energy savings when substituting or aiding traditional refrigeration systems. Their field of applicability is vast and the present work has been focused on a detailed study of two applications with great potential following a computational approach: (i) air-conditioning generation powered by solar thermal energy and (ii) internal combustion engine intake air refrigeration powered by its exhaust line waste heat. The research efforts have been directed towards mitigating the negative effect of two of the main weak points of jet-ejector refrigeration systems: their relatively low efficiency and the incapacity of the baseline configuration to operate robustly away from the design conditions. The first issue has been addressed mainly by designing highly optimized jet-ejector geometries using computational fluid dynamics techniques and optimizing the jet-ejector integration in the overall system. The second one has been addressed by carrying out complete characterizations of the refrigeration system response in design and off-design conditions. Advanced strategies to face the refrigeration system performance decay away from design conditions have been proposed, like the utilization of adjustable jet-ejector architectures or the implementation of hot thermal storage tanks. The system response has been analyzed in off-design conditions with two complementary temporal schemes. The steady-state models have been used to optimize the jet-ejector architectures and the overall system operation for representative operating scenarios, while the transient analysis represents a more realistic approach and accounts for changes in climatic conditions, which have an unpredictable and unstable nature. The study has been concluded with a thermoeconomic analysis, which has been useful to discern if the highly optimized designs are competitive when compared to existing refrigeration solutions consolidated in the market. The main conclusions of the steady-state analysis for the solar application are that the transformation from thermal power to refrigeration power can achieve an efficiency of 37.7%, while the global efficiency achieves 20.1% when highly optimized jet-ejectors are used for an evaporating and condensing conditions of 13°C and 40°C, respectively. In dynamic conditions, the implantation of an adjustable jet-ejector brings improvements in refrigeration system efficiency of around 40%, besides improving its capacity to remain in operation. The thermal storage system plays a relevant role in this sense and, for a fixed parabolic trough collector span of 7.1 m, a nominal thermal power consumption of 13.3 kW represents a trade-off between the performance indicators subject to analysis. The thermoeconomic assessment of the most promising system architecture suggests that the operating cost savings are far from compensating for the capital expenditures (16,905€ for a refrigeration capacity of approximately 5.6 kW), evidencing the difficulties of the system to compete against refrigeration solutions currently consolidated in the market and outlining the interest in hybrid solutions. The main conclusion of the automotive application is that it is feasible to achieve in the engine intake line temperatures below 4°C, bringing improvements in volumetric engine efficiency of around 11%. Nevertheless, the system shows vulnerabilities when operating in engine operating points different from the design one.My most sincere acknowledgment to the whole CMT-Motores Térmicos team for giving me the opportunity of being part of it and the grant program Subvenciones para la contrataci ́on de personal investigador predoctoral for doctoral studies (reference ACIF/2018/124), awarded by Generalitat Valenciana, Conselleria de Innovación, Universidades, Ciencia y Sociedad Digital and the European Union for funding this project.Ponce Mora, A. (2022). Feasibility Study of Jet-Ejector Refrigeration Systems as a Mechanism for Harnessing Low-Grade Thermal Energy from Different Sources [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/18171

    Numerical Analysis For Heat Driven Ejector Refrigeration Systems For Various Refrigerants

    Get PDF
    In this study, a numerical efficiency analysis for ejector refrigeration systems driven by low grade waste heat (65-85 °C) is performed. A 1-D numerical ejector model which was validated is applied to estimate the characteristics of the ejector. Investigation is focused on various refrigerants such as HFC (R134a, R245fa, R365mfc), HFO (R1234yf, R1234ze(E), R1233zd(E), R1336mzz(Z)), and natural refrigerants (NH3, R600, R600a), and their COPs (Coefficient of Performance) are compared. Main operating conditions (e.g. generation temperature, evaporation temperature, condensation temperature) are also considered to compare the system characteristics for each refrigerant. Simulations are performed for different operating conditions and their effects on system performance is analyzed. The results show that high NBP (Normal Boiling Point) refrigerants tend to show higher theoretical performance because of their high latent heat. In addition, it is found that sensitivity of generation temperature is less than evaporation temperature and condensation temperature
    corecore