28,995 research outputs found

    An interval-matrix branch-and-bound algorithm for bounding eigenvalues

    Get PDF
    We present and explore the behaviour of a branch-and-bound algorithm for calculating valid bounds on the k-th largest eigenvalue of a symmetric interval matrix. Branching on the interval elements of the matrix takes place in conjunction with the application of Rohn’s method (an interval extension of Weyl’s theorem) in order to obtain valid outer bounds on the eigenvalues. Inner bounds are obtained with the use of two local search methods. The algorithm has the theoretical property that it provides bounds to any arbitrary precision > 0 (assuming infinite precision arithmetic) within finite time. In contrast with existing methods, bounds for each individual eigenvalue can be obtained even if its range overlaps with the ranges of other eigenvalues. Performance analysis is carried out through nine examples. In the first example, a comparison of the efficiency of the two local search methods is reported using 4,000 randomly generated matrices. The eigenvalue bounding algorithm is then applied to five randomly generated matrices with overlapping eigenvalue ranges. Valid and sharp bounds are indeed identified given a sufficient number of iterations. Furthermore, most of the range reduction takes place in the first few steps of the algorithm so that significant benefits can be derived without full convergence. Finally, in the last three examples, the potential of the algorithm for use in algorithms to identify index-1 saddle points of nonlinear functions is demonstrated

    On the probability that all eigenvalues of Gaussian, Wishart, and double Wishart random matrices lie within an interval

    Full text link
    We derive the probability that all eigenvalues of a random matrix M\bf M lie within an arbitrary interval [a,b][a,b], ψ(a,b)Pr{aλmin(M),λmax(M)b}\psi(a,b)\triangleq\Pr\{a\leq\lambda_{\min}({\bf M}), \lambda_{\max}({\bf M})\leq b\}, when M\bf M is a real or complex finite dimensional Wishart, double Wishart, or Gaussian symmetric/Hermitian matrix. We give efficient recursive formulas allowing the exact evaluation of ψ(a,b)\psi(a,b) for Wishart matrices, even with large number of variates and degrees of freedom. We also prove that the probability that all eigenvalues are within the limiting spectral support (given by the Mar{\v{c}}enko-Pastur or the semicircle laws) tends for large dimensions to the universal values 0.69210.6921 and 0.93970.9397 for the real and complex cases, respectively. Applications include improved bounds for the probability that a Gaussian measurement matrix has a given restricted isometry constant in compressed sensing.Comment: IEEE Transactions on Information Theory, 201

    Characterizing and approximating eigenvalue sets of symmetric interval matrices

    Get PDF
    We consider the eigenvalue problem for the case where the input matrix is symmetric and its entries perturb in some given intervals. We present a characterization of some of the exact boundary points, which allows us to introduce an inner approximation algorithm, that in many case estimates exact bounds. To our knowledge, this is the first algorithm that is able to guaran- tee exactness. We illustrate our approach by several examples and numerical experiments
    corecore