
Full Terms & Conditions of access and use can be found at
http://www.tandfonline.com/action/journalInformation?journalCode=goms20

Download by: [Imperial College London Library] Date: 11 July 2016, At: 03:55

Optimization Methods and Software

ISSN: 1055-6788 (Print) 1029-4937 (Online) Journal homepage: http://www.tandfonline.com/loi/goms20

An interval-matrix branch-and-bound algorithm
for bounding eigenvalues

Dimitrios Nerantzis & Claire S. Adjiman

To cite this article: Dimitrios Nerantzis & Claire S. Adjiman (2016): An interval-matrix branch-
and-bound algorithm for bounding eigenvalues, Optimization Methods and Software, DOI:
10.1080/10556788.2016.1184663

To link to this article: http://dx.doi.org/10.1080/10556788.2016.1184663

© 2016 The Author(s). Published by Taylor &
Francis.

Published online: 05 Jul 2016.

Submit your article to this journal

Article views: 18

View related articles

View Crossmark data

http://www.tandfonline.com/action/journalInformation?journalCode=goms20
http://www.tandfonline.com/loi/goms20
http://www.tandfonline.com/action/showCitFormats?doi=10.1080/10556788.2016.1184663
http://dx.doi.org/10.1080/10556788.2016.1184663
http://www.tandfonline.com/action/authorSubmission?journalCode=goms20&page=instructions
http://www.tandfonline.com/action/authorSubmission?journalCode=goms20&page=instructions
http://www.tandfonline.com/doi/mlt/10.1080/10556788.2016.1184663
http://www.tandfonline.com/doi/mlt/10.1080/10556788.2016.1184663
http://crossmark.crossref.org/dialog/?doi=10.1080/10556788.2016.1184663&domain=pdf&date_stamp=2016-07-05
http://crossmark.crossref.org/dialog/?doi=10.1080/10556788.2016.1184663&domain=pdf&date_stamp=2016-07-05

Optimization Methods & Software, 2016
http://dx.doi.org/10.1080/10556788.2016.1184663

An interval-matrix branch-and-bound algorithm
for bounding eigenvalues

Dimitrios Nerantzis and Claire S. Adjiman∗

Department of Chemical Engineering, Centre for Process Systems Engineering, Imperial College London,
South Kensington Campus, London SW7 2AZ, UK

(Received 1 December 2015; accepted 27 April 2016)

We present and explore the behaviour of a branch-and-bound algorithm for calculating valid bounds on
the kth largest eigenvalue of a symmetric interval matrix. Branching on the interval elements of the matrix
takes place in conjunction with the application of Rohn’s method (an interval extension of Weyl’s theorem)
in order to obtain valid outer bounds on the eigenvalues. Inner bounds are obtained with the use of two
local search methods. The algorithm has the theoretical property that it provides bounds to any arbitrary
precision ε > 0 (assuming infinite precision arithmetic) within finite time. In contrast with existing meth-
ods, bounds for each individual eigenvalue can be obtained even if its range overlaps with the ranges
of other eigenvalues. Performance analysis is carried out through nine examples. In the first example, a
comparison of the efficiency of the two local search methods is reported using 4000 randomly generated
matrices. The eigenvalue bounding algorithm is then applied to five randomly generated matrices with
overlapping eigenvalue ranges. Valid and sharp bounds are indeed identified given a sufficient number of
iterations. Furthermore, most of the range reduction takes place in the first few steps of the algorithm so
that significant benefits can be derived without full convergence. Finally, in the last three examples, the
potential of the algorithm for use in algorithms to identify index-1 saddle points of nonlinear functions is
demonstrated.

Keywords: global optimization; branch-and-bound; interval matrix; eigenvalue bounds; index-1 saddle
points

AMS Subject Classification: 65K; 65H

1. Introduction

In many practical applications requiring the computation of eigenvalues, the matrix of interest
is known only as a function of some parameters and is therefore often expressed as an interval
matrix [4,10,18]. As a result, there is a need for methods that allow the calculation or estimation
of the ranges of the eigenvalues of interval matrices. However in general, problems associ-
ated with the eigenvalues of interval matrices are difficult problems. For example, checking
positive-(semi)definiteness [18,22] or regularity (existence of singular matrix) [20] of interval
matrices are known to be NP-hard problems. Moreover, computing approximate solutions for
the minimum and maximum eigenvalues of symmetric interval matrices can be NP-hard [8].

*Corresponding author. Email: c.adjiman@imperial.ac.uk

© 2016 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.
org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

D
ow

nl
oa

de
d

by
 [

Im
pe

ri
al

 C
ol

le
ge

 L
on

do
n

L
ib

ra
ry

]
at

 0
3:

56
 1

1
Ju

ly
 2

01
6

mailto:c.adjiman@imperial.ac.uk
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

2 D. Nerantzis and C.S. Adjiman

Eigenvalue bounding methods also play an important role in deterministic global optimiza-
tion algorithms. They are used in order to create valid convex underestimators [1] of general
nonlinear functions. Furthermore, methods for bounding the lowest and second lowest eigen-
values of a symmetric interval matrix can be used as a test for identifying domains in which a
twice-continuously differentiable function contains (or does not contain) index-1 saddle points.
This can be used within a global deterministic algorithm to speed up the location of index-1 sad-
dle points of potential energy functions [19], a challenging problem with applications in chemical
engineering and other areas [5].

A number of methods have been proposed in the literature to obtain lower and upper bounds
on the smallest and largest eigenvalues, respectively, of interval matrices [1,7,9,23–25]. Other
methods have been devised to compute bounds for each individual eigenvalue [9,11,12,21]. An
evolutionary method approach for inner bounds was presented by Yuan et al. [27]. Exact bounds
for individual eigenvalues have been given by Deif [3] provided that the signs of the eigenvector
entries remain constant over the interval matrix. This condition limits the applicability of this
result.

The algorithms by Hladík et al. [10], Leng et al. [15], and Leng [14] can be used to calculate the
real eigenvalue set of an interval matrix with any given precision. These algorithms begin with
the calculation of an initial inclusion set and proceed by successive identification and removal
of parts of the initial inclusion set which do not belong to the eigenvalue set. In particular, the
algorithm by Hladík et al. has been shown to be fast and applicable to very large matrices (with
small interval widths). However, when the ranges of individual eigenvalues overlap, the methods
in [10,14,15] can only provide, at best, the bounds of the union of the overlapping ranges.

We present a branch-and-bound algorithm for the calculation of the bounds of any individual
eigenvalue of symmetric interval matrices. The branching occurs on the interval entries of the
input matrix. We use Ronh’s theorem [9,24], which is an interval extension of Weyl’s theorem [6]
and local improvement methods in order to obtain valid bounds at each step. The algorithm can
be used to calculate the bounds of a specific eigenvalue regardless of whether its range overlaps
with that of other eigenvalues or not. Furthermore, the algorithm does not necessarily require the
use of interval arithmetic.

The paper is organized as follows: In Section 2 we give a brief introduction to interval matrices
and a few definitions. In Section 3 we present the pseudocode of the interval-matrix branch-
and-bound algorithm. In Section 4 we present the general bounding approach used in the main
algorithm. In Section 5 we present two local search algorithms. One from the existing literature
and one given here. These algorithms are used in the main algorithm in order to improve the
inner bounds and speed up convergence. In Section 6 we present results from the application of
the method and finally and in Section 7, we draw our conclusions.

2. Preliminaries

We denote interval variables with lower case letters inside square brackets, [x], and the corre-
sponding lower and upper bounds of [x] as x and x, respectively. Symmetric interval matrices
are denoted by capital letters inside square brackets. An interval matrix is simply a matrix
with interval instead of scalar entries. For example, a 2 × 2 symmetric interval matrix is

[M] =
[

[−3,−2] [−0.5,0.5]
[−0.5,0.5] [−4,−3]

]
. The symmetric interval matrix [M] can be interpreted as the infinite

set of symmetric scalar matrices {M : mij ∈ [mij]with mij = mji}. For example, if M1 = [−3 0.1
0.1 −3

]
then M1 ∈ [M]. However if M2 = [−3 0.2

0.1 −3

]
then M2 /∈ [M].

For an n × n symmetric scalar matrix M, we denote by λi(M) the ith largest eigenvalue of M.
Therefore, we order the eigenvalues as λn(M) ≤ λn−1(M) ≤ · · · ≤ λ1(M). We will make use of
the following definitions:

D
ow

nl
oa

de
d

by
 [

Im
pe

ri
al

 C
ol

le
ge

 L
on

do
n

L
ib

ra
ry

]
at

 0
3:

56
 1

1
Ju

ly
 2

01
6

Optimization Methods & Software 3

Definition 1 (eigenvalues of a symmetric interval matrix) The ith largest eigenvalue of a
symmetric matrix [M] is defined as λi([M]) = {λi(M) : M ∈ [M]}.

Note that the set λi([M]) = {λi(M) : M ∈ [M]} is a compact set in R ([9]). Thus we can write
λk([M]) = [λk , λk]. To avoid cumbersome notation, we omit the square brackets, which we use
to denote a single interval, around λk([M]).

Definition 2 (spectral radius of a symmetric interval matrix) The spectral radius, ρ([M]),
of an interval matrix [M] is defined as ρ([M]) = max

M∈[M]
ρ(M), where ρ(M) is the spectral

radius of M.

Definition 3 (norm of a symmetric interval matrix) For any norm ‖ · ‖ defined for scalar
matrices, we define the corresponding norm for interval matrices as ‖[M]‖ = max{‖M‖ : M ∈
[M]}.

Definition 4 (interior and border of an interval matrix) The interior of an interval matrix [M]
is defined as I([M]) = {M ∈ [M] : mij = mij or mij = mij iff mij = mij}. The border, B([M]), of
[M] is simply the complement of I([M]) in [M].

3. The interval-matrix branch-and-bound algorithm

In this section we introduce the interval-matrix branch-and-bound algorithm which follows a
‘classic’ branch-and-bound scheme [13]. Given an n × n symmetric interval matrix [M], the
algorithm returns lower and upper bounds for λk([M]) = min

M∈[M]
λk([M]). The inputs of the

algorithm are the symmetric matrix [M], the order of the eigenvalue (e.g. kth largest eigenvalue),
k, for which the bounds will be calculated, the maximum number of iterations, maxiters and the
precision ε. We denote by L the list which contains sublists of the form {[Mi], li, ui} where [Mi]
is a symmetric matrix with li and ui lower and upper bounds of λk([Mi]). Since the branching
procedure can be represented by a binary tree, we will refer to the sublists in L as nodes. Fur-
thermore, we denote the best lower and upper bounds by BLB and BUB, respectively. Finally, we
denote by RLB the lowest lower bound of the nodes that have been removed due to the fact that
the required precision has been achieved (e.g. the difference between the lower bound at a node
and BUB is less than ε).

The choice of branching strategy (in our case which entry we choose to branch on in step 10
of Algorithm 1) can have a strong influence on the performance of branch-and-bound algorithms
(see, for example, [2]). As will be evident from Proposition 4.3 in Section 4, in order to achieve
theoretical convergence for a given precision, ε, it is necessary to branch on all (off-diagonal)
interval entries. A straightforward branching scheme that meets this requirement would be to
branch on the interval with the maximum width. However, since the lower bound is given by
λk(C) − ‖[E]‖∞, a more judicious choice might be to branch on the interval entry which reduces
‖[E]‖∞ the most. However, from our experiments with the algorithm, we have not observed any
significant effects on performance due to these different branching schemes. Finally, note that
in Algorithm 1, the node which is visited at each step is the one with the current lowest lower
bound.

Bounds on λk([M]) = max
M∈[M]

λk(M) can be calculated in an analogous way to Algorithm 1. In

the following section, we discuss the bounding steps and branching of the algorithm in more
detail. In the analysis which follows we will assume infinite precision arithmetic.

D
ow

nl
oa

de
d

by
 [

Im
pe

ri
al

 C
ol

le
ge

 L
on

do
n

L
ib

ra
ry

]
at

 0
3:

56
 1

1
Ju

ly
 2

01
6

4 D. Nerantzis and C.S. Adjiman

Algorithm 1 Interval-MatrixBB
(1) Inputs: [M], k, maxiters, ε.
(2) Calculate lower and upper bounds l and u for λk([M]).
(3) Set BLB = l, BUB = u and RLB = +∞.
(4) Initialize L = {{[M], l, u}}, iter = 0.
(5) while iter ≤ maxiters do
(6) Choose the first entry, L1, from list L.
(7) Set [M] = L1[1], l = L1[2], and u = L1[3].
(8) Delete L1 from L.
(9) if l < BUB then

(10) Choose branching entry [mij], i �= j.
(11) Branch on [mij] and create [M1] and [M2].
(12) Obtain bounds l1 and u1 for λk([M1]).
(13) Obtain bounds l2 and u2 for λk([M2]).
(14) BUB = min{u1, u2, BUB}.
(15) if BUB − l1 < ε then
(16) RLB = min{l1, RLB}
(17) else
(18) if l1 < BUB: Insert {[M1], l1, u1} in L so that the lower bounds in L are in increasing

order.
(19) end if
(20) if BUB − l2 < ε then
(21) RLB = min{l2, RLB}
(22) else
(23) if l2 < BUB: Insert {[M2], l2, u2} in L so that the lower bounds in L are in increasing

order.
(24) end if
(25) BLB = min{l1, l2, RLB, L1[2]} (L1[2] being the second entry of the first sublist in L.
(26) iter++.
(27) if L is empty or BUB − BLB < ε then
(28) Return BLB and BUB.
(29) end if
(30) end if
(31) end while
(32) Return BLB and BUB.

4. General bounding approach

We can write any given interval matrix [M] in the form [M] = C + [E] where by C we denote
the centre matrix of [M], cij = (mij + mij)/2 and by [E] the radius matrix, [eij] = [mij − cij, mij −
cij] = [−eij, eij]. We make use of the following theorem to calculate bounds, in steps 2, 12, and
13 in Algorithm 1.

Theorem 4.1 (Rohn [9,24]) Given a symmetric interval matrix [M] = C + [E], then

λk(C) + λn([E]) ≤ λk(C + [E]) ≤ λk(C) + λ1([E]), for k = 1, 2, . . . , n. (1)

We can write Equation (1) as

λk(C) − ρ([E]) ≤ λk(C + [E]) ≤ λk(C) + ρ([E]). (2)

D
ow

nl
oa

de
d

by
 [

Im
pe

ri
al

 C
ol

le
ge

 L
on

do
n

L
ib

ra
ry

]
at

 0
3:

56
 1

1
Ju

ly
 2

01
6

Optimization Methods & Software 5

Thus, we can use the following for calculating bounds on λk([M]):

l = λk(C) + b ≤ λk([M]) ≤ λk(C) = u, (3)

where b is a lower bound of −ρ([E]). Since the value λk(C) is attained for C ∈ [M] this means
that λk([M]) cannot be greater than λk(C), and thus λk(C) is a valid upper bound. However, a
better upper bound can be achieved with the use of local improvement step(s). We will see more
on this matter later in this section. On the other hand, we can calculate a lower bound of −ρ([E])
using a number of methods (see, e.g. [1]) or even the exact value of ρ([E]) with the Hertz method
[7] (O(2n−1)). We will use

b = min
i=1,...,n

n∑
j=1

eij = −‖[E]‖∞ ≤ −ρ([E]). (4)

(This bound is the same as the one we would get by the interval Gerschgorin method [1]). Note
that in steps 12 and 13 the new lower bounds l1, l2 can actually be worse (lower) than l. In such
case we simply replace them with l. The reason for this is that λk(C1) and/or λk(C2) could be
less than λk(C) and at the same time b1 = −‖[E1]‖∞ and/or b2 = −‖[E2]‖∞ might have not
improved adequately or even at all. Nevertheless, after a certain number of iterations the lower
bound must improve (see Proposition 4.3).

Next, the following lemma tells us that there is no need to branch on the diagonal entries.

Lemma 4.2 ([9]) Given an n × n symmetric interval matrix [M], define the symmetric interval
matrices

[L] = {lii = mii and [lij] = [mij] for i �= j} (5)

and

[U] = {uii = mii and [uij] = [mij] for i �= j}. (6)

Then ∀M ∈ [M], ∃L ∈ [L] and U ∈ [U] such that

λi(L) ≤ λi(M) ≤ λi(U) for i = 1, 2, . . . , n. (7)

Lemma 4.2 tells us that we need to consider only the lower (upper) parts of the diagonal elements
of an n × n symmetric matrix [M] in order to calculate bounds for λk([M]) (λk([M])) for any
k ∈ {1, 2, . . . , n}. Thus there is no need for branching on the diagonal elements.

Proposition 4.3 Consider an n × n symmetric interval matrix [M] with mij − mij = w > 0 for
i �= j and mii − mii = 0 for i = 1, 2, . . . , n. Then, given accuracy ε, by successive bisection every

submatrix will have u − l ≤ ε after a total of
((n − 1)w/2ε)(n
2−n)/2 − 1� iterations (bisections).

Proof It is helpful to imagine the bisection process as a binary tree. What we would like is to
know how many bisections we need to perform in order to have a full binary tree where for each
leaf of the tree the corresponding submatrix [Mi] will have ui − li ≤ ε.

Initially, for the matrix [M] = C + [E], based on inequality (3), we have u − l = ‖[E]‖∞ =
(n − 1)w/2. We want ‖[E]‖∞ to be halved k times so that we have

(n − 1)w/2

2k
≤ ε ⇒ k ≥ log2

(
(n − 1)w

2ε

)
. (8)

In order to halve ‖[E]‖∞ once, we need to branch on each of the (n2 − n)/2 off-diagonal
elements. Which means that the depth of the tree will grow to d = (n2 − n)/2. Therefore, in

D
ow

nl
oa

de
d

by
 [

Im
pe

ri
al

 C
ol

le
ge

 L
on

do
n

L
ib

ra
ry

]
at

 0
3:

56
 1

1
Ju

ly
 2

01
6

6 D. Nerantzis and C.S. Adjiman

order to achieve the required accuracy, we will need to end up with a tree of depth d ≥ ((n2 −
n)/2) log2((n − 1)w/2ε). The number of leaves of a full binary tree is 2d and the corresponding
number of bisections is 2d − 1. Thus the required number of iterations would be⌈(

(n − 1)w

2ε

)(n2−n)/2

− 1

⌉
. (9)

�

At this point we make the following notes: first, although the number of iterations given by (9)
is forbiddingly high, this is a worst-case scenario where no node fathoming takes place. As
it can be seen in Section 6, the actual performance appears better than (9). This suggests and
renders the algorithm practical for small-sized matrices with wide intervals. Furthermore, the
actual dimension of the problem depends on the number of interval off-diagonal entries in the
matrix and thus can be less than (n2 − n)/2. Second, to the best of our knowledge, no other
method exists that can solve the problem of calculating λk and/or λk for k ∈ {2, . . . , n − 1} for
general interval symmetric matrices, for a given accuracy ε. Thus, we do not know of any better
upper bound on the algorithmic complexity of the problem.

5. Local search algorithms

As mentioned in the previous section, we can improve the trivial upper bound, λk(Mc), of λk[M].
For this purpose we present two local search methods. The first is by Hladík et al. [11], and the
second introduced here, based on Theorem 5.1 given in Section 5.2.

5.1 Hladík et al. [11] local search

In [11], Hladík et al. proposed a number of local search methods which they used along with
eigenvalue bounding methods in order to obtain inner and outer approximations of eigenvalue
ranges. Although in general the values obtained from the local search methods are approximate
(conservative), they can be sometimes shown to be exact [11]. Here, we will make use of the
method, from [11], shown in Algorithm 2 where with C we denote the centre matrix of [M] and
with E being the radius matrix (e.g. eij = (mij − mij)/2). By vk(M) we denote the eigenvector
of M which corresponds to the kth largest eigenvalue.

Algorithm 2 Hladík et al’s. local improvement algorithm
(1) Inputs: [M], k
(2) Set M = C and λk = ∞
(3) while λk(M) < λk do
(4) λk = λk(M)

(5) D = diag(sign(vk(M)))

(6) M = C − DED
(7) end while
(8) Return λk .

For a local search of the maximum of λk (i.e. valid lower bound of λk), we just replace
λk = −∞, < with > and − with + in Steps 2, 3, and 6, respectively.

D
ow

nl
oa

de
d

by
 [

Im
pe

ri
al

 C
ol

le
ge

 L
on

do
n

L
ib

ra
ry

]
at

 0
3:

56
 1

1
Ju

ly
 2

01
6

Optimization Methods & Software 7

5.2 A new local search method

It is known that the values λn and λ1 of a symmetric interval matrix [M] are attained at extreme
matrices of [M] [7]. However, for the rest of the eigenvalue bounds (λn, λ1, and λk , λk for
k = 2, . . . , n − 1) of a general symmetric interval matrix, the situation is more complicated
since boundary values can be attained in I([M]) and/or B([M]). Nevertheless, for matrices
with non-zero width off-diagonal elements, we can prove the following necessary conditions for
M∗ ∈ {M ∈ [M] : argminλk(M)} (or M∗ ∈ {M ∈ [M] : argmaxλk(M)} for k ∈ {2, . . . , n − 1})
to belong in I([M]). Note that in the following theorem, the request for the diagonal elements to
have zero widths is not an extra assumption and this stems from Lemma 4.2. Otherwise, it would
be meaningless to refer to solutions in the interior, since that would never be true. Furthermore,
for the remainder of this section, we assume eigenvectors have been normalized with respect to
the Euclidean norm.

Theorem 5.1 Consider an n × n symmetric interval matrix [M] with mii = mii for i =
1, 2, . . . , n and mij �= mij for i �= j. Let M∗ ∈ {M ∈ [M] : argmin λk(M)} for some integer k< n.
If M∗ ∈ I([M]) then λk(M∗) = λk+1(M∗) or ‖vk‖∞ = 1.

Proof Let M∗ ∈ {M ∈ [M] : argmin λk(M)} with (vi, λi), i = 1, 2 . . . , n being the eigenpairs
of M∗ (vi normalized). Assume that λk(M∗) − λk+1(M∗) > 0 and m = ‖vk‖2

∞ < 1. For ρ ∈
(0, λk − λk+1] the eigenpairs of the matrix

M1 = M∗ + ρ[mI − vkvT
k] (10)

are (vi, λi + ρm) for i �= k and (vk, λk − ρ(1 − m)). However, in general, M1 �∈ [M]. Consider
the diagonal matrix D with entries dii = v2

k,i − m ≤ 0 (v2
k,i being the square of the ith entry of vk)

and consider the matrix

M2 = M1 + ρD = M∗ + ρ[diag(vkvT
k) − vkvT

k], (11)

where with diag(vkvT
k) we denote the diagonal matrix with diagonal entries equal to the diagonal

of vkvT
k . Since M∗ ∈ I([M]), for adequately small ρ > 0, M2 ∈ [M] and because the diagonal

entries of M2 are less or equal to the corresponding diagonal entries of M1 we have that λi(M2) ≤
λi(M1) for i = 1, 2, . . . , n and thus λk(M2) < λk(M∗). This contradicts the assumption that M∗ ∈
{argminλk(M) : M ∈ [M]}. �

Note that by ‘or’ in Theorem 5.1 we mean that at least one of the conditions must be true.
The analogous argument of Theorem 5.1 can be made for M∗ ∈ {M ∈ [M] : argmaxλk(M)} for
k > 1. Furthermore, we can employ the formula used in the proof of Theorem 5.1,

M∗ + ρ[diag(vkvT
k) − vkvT

k] (12)

in an attempt to improve the upper bound, in the same way as with Algorithm 2. This is detailed
in Algorithm 3.

D
ow

nl
oa

de
d

by
 [

Im
pe

ri
al

 C
ol

le
ge

 L
on

do
n

L
ib

ra
ry

]
at

 0
3:

56
 1

1
Ju

ly
 2

01
6

8 D. Nerantzis and C.S. Adjiman

Algorithm 3 A new local improvement algorithm.
(1) Inputs: [M], k (k < n)
(2) Set M = C
(3) while λk(M) > λk+1(M) and ‖vk(M)‖∞ < 1 do
(4) d = λk(M) − λk+1(M)

(5) ρmax = max{ρ ∈ [0, d] : M + ρ[diag(vkvT
k) − vkvT

k] ∈ [M]}
(6) if ρmax > 0 then
(7) M = M + ρmax[diag(vkvT

k) − vkvT
k]

(8) else
(9) Return λk(M)

(10) end if
(11) end while
(12) Return λk(M).

For a local search of the maximum of λk (i.e. lower bound of λk), we replace λk(M) <

λk−1(M) in Step 3, d = λk−1(M) − λk(M) in Step 4 and M − ρ[diag(vkvT
k) − vkvT

k] in Steps
5 and 7.

Notice that Algorithm 2 can be applied to any kind of symmetric matrix while Algorithm 3
requires the off-diagonal entries to have non-zero widths. A common feature is that both algo-
rithms, most of the times, terminate after one step and only rarely after two or three steps.
Furthermore, Algorithm 2 always searches extreme matrices which makes it more suitable for
obtaining an upper bound on λn and a lower bound on λ1. A comparison between the bounds
obtained by the two algorithms is given in Example 1 in Section 6.

In practice we use both local search algorithms and we simply keep the best result. However,
we do not apply them in every bounding step of the main algorithm, in order to reduce compu-
tational time. The methods are applied at the initial step and then we proceed at each iteration
by using the bound obtained by the centre matrix eigenvalue calculation. If this bound happens
to be better than the current best upper (or lower if we are bounding λk) bound we then apply
Algorithms 2 and 3 for further improvement.

We can make a stronger statement than the one of Theorem 5.1 by observing the follow-
ing: If λk = λk+1, λk+1 �= λk+2, and m = ‖vk‖2

∞ + ‖vk+1‖2
∞ < 1 then, for adequately small ρ,

the matrix M1 = M∗ + ρ[mI − vkvT
k − vk+1vT

k+1] would have ‘conveniently placed’ eigenvalues

(but M1 not necessarily in [M]) while the corresponding matrix M2 = ρ
∑1

i=0[diag(vk+ivT
k+i) −

vk+ivT
k+i] would have λk(M2) < λk(M∗) with M2 ∈ [M]. More formally, we have

Theorem 5.2 Let M∗ ∈ {M ∈ [M] : argmin λk(M)}. If M∗ ∈ I([M]) then ∃s ∈ {0, 1, . . . , n −
k} such that λk(M∗) = λk+1(M∗) = · · · = λk+s(M∗) and

∑s
i=0 ‖vk+i‖2

∞ ≥ 1.

Proof Assume M∗ ∈ I([M]) and that up to some integer s ∈ {0, 1, . . . , n − k} λk = · · · = λk+s

(with λk+s �= λk+s+1 otherwise s=n− k) and m = ∑s
i=0 ‖vk+i‖2

∞ < 1. Consider the matrix

M1 = M∗ + ρ

[
mI −

s∑
i=0

vk+ivT
k+i

]
. (13)

The eigenpairs of M1 are (vi, λi + ρm) for i< k and (vk, λk+i − ρ(1 − m)) for i = 0, 1, . . . , s.
Following the same reasoning as in the proof of Theorem 5.1, for adequately small ρ the matrix

M2 = ρ

s∑
i=0

[diag(vk+ivT
k+i) − vk+ivT

k+i] (14)

D
ow

nl
oa

de
d

by
 [

Im
pe

ri
al

 C
ol

le
ge

 L
on

do
n

L
ib

ra
ry

]
at

 0
3:

56
 1

1
Ju

ly
 2

01
6

Optimization Methods & Software 9

would have λk(M2) < λk(M∗) and at the same time M2 ∈ [M]. This contradicts the assumption
that M∗ ∈ {argminλk(M) : M ∈ [M]}. �

Remark: We could make use of Theorem 5.2 in order to expand the local search method given
in Algorithm 3 but this would make the algorithm more complicated without providing any
significant benefit in performance. This is due to the fact that the method usually terminates
because a bound on one of the interval elements of the interval matrix is reached rather than
because λk = λk+1. Nevertheless, we have stated Theorem 5.2 for completeness.

6. Results

In this section we present the results from the application of the algorithm to a number of ran-
domly generated symmetric interval matrices. Given dimension n and radius R, we obtain an
interval matrix [M] = C + [E] by generating the central matrix C with each entry chosen uni-
formly from [−20, 20] and the [E] matrix with eij chosen uniformly from [0, R]. In Example 1,
we compare the values of the bounds obtained with the two local improvement algorithms. In
Examples 2–6 we run the overall bounding algorithm for a maximum of 104 iterations and with
ε = 10−1. Note that λn and λ1 can be computed much faster, as mentioned previously, by the
method from [7]. Nevertheless, we compute the extreme eigenvalue bounds for completeness.
The algorithm is implemented in Python 2.7 and the calculations are performed with an Intel
Core i7-3770 CPU @ 3.40GHz. Note that the calculations were not performed in a numerically
verified way (e.g. use of interval arithmetic) which may lead to numerical errors in the bounds. If
required, an implementation based on numerically validated bounds can be obtained with minor
effort. The bounds in the results and the interval matrices used in each example are outwardly
rounded to the third decimal place (this is why the bounds for λ1 in Table 1 appear to have width
> 10−1 yet are marked as converged).

6.1 Example 1 – comparison of the two local improvement algorithms

In this example we make a comparison between the two local improvement methods, Algo-
rithms 2 and 3. We generate four groups of random 5 × 5 matrices consisting of a thousand
matrices each and with radii R = 5, 10, 20, and 30, respectively. We apply each algorithm in
order to obtain upper bounds on λk for k = 1,2,3,4 and lower bounds on λk for k = 2,3,4,5. In
Figure 1, for each group of random matrices, we plot a histogram of the difference between
the bounds from the two algorithms. Positive values indicate that the bounds determined by
Algorithm 3 were better than those obtained by Algorithm 2, while negative values indicate

the reverse. More explicitly, we denote by λ
(2)

k

U
and λ

(2)

k

L
the upper and lower bounds on λk

Table 1. Summary of results for Example 2.

Eigenvalue λk bounds / time (CPU s) λk bounds / time (CPU s) I10 , I10 S , OBI

[λ1] [2.462, 2.563]∗/0.55 [30.560, 30.654]∗ / 0.01 55% , 74% 99% , 28%
[λ2] [-13.534,-13.411]/5.32 [11.267, 11.363]∗/0.05 61% , 68% 99% , 35%
[λ3] [−35.387, −35.304]∗/0.00 [-9.041,-8.900]/7.99 96% , 63% 99% , 30%

Notes: An asterisk indicates the bound widths have converged to 10−1. I10 and I10 are the percentages of improvement, for the bounds of λk

and λk , respectively, after 10 steps (Equations (15) and (16)), S is the percentage of relative sharpness of the final bounds (Equation (17))
and OBI is the percentage of outer bounds improvement (Equation (18)).

D
ow

nl
oa

de
d

by
 [

Im
pe

ri
al

 C
ol

le
ge

 L
on

do
n

L
ib

ra
ry

]
at

 0
3:

56
 1

1
Ju

ly
 2

01
6

10 D. Nerantzis and C.S. Adjiman

Figure 1. Comparison of bounds obtained by Algorithms 2 and 3. The histograms show the distributions of the values

of λ
(2)
k

U − λ
(3)
k

U
, k = 1,2,3,4 and λ

(3)
k

L
− λ

(2)
k

L
, k = 2,3,4,5 for 1000 randomly generated matrices, with different radii

for each panel: (a) R = 5; (b) R = 10; (c) R = 20; (d) R = 30. The dashed vertical lines indicate the median in each case.

and λk , respectively, obtained by Algorithm 2 and by λ
(3)

k

U
and λ

(3)

k

L
the corresponding bounds

obtained by Algorithm 3. The values on the x-axis of each histogram represent the quantities

λ
(2)

k

U − λ
(3)

k

U
, k = 1,2,3,4 and λ

(3)

k

L
− λ

(2)

k

L
, k = 2,3,4,5.

As we see from Figure 1, for smaller radii, Algorithm 2 performs significantly better
than Algorithm 3. However, as the radius increases, the relative performance of Algorithm 3
improves, as indicated by the increasing median value. Although on average Algorithm 2 per-
forms better, an overall improvement can be achieved with the combination of the two methods
(use of the best result). This comes at no significant cost since both methods terminate after one
step in most cases and occasionally after two or three steps.

6.2 Examples 2–6 – performance of the eigenvalue bounding algorithm

The next set of examples is used to investigate the performance of Algorithm 1. For Examples 2–
6, we plot the interval eigenvalue bounds as obtained by the algorithm and give a summary table

of algorithmic performance. To explain the quantities in the table, we denote by λ
(i)
k

L
and λ

(i)
k

U

the lower and upper bounds, respectively, on λk at iteration i. We also denote by λ
(i)
k

L
and λ

(i)
k

U

the lower and upper bounds, respectively, on λk at iteration i. When the iteration superscript
is omitted, the quantity refers to the corresponding value at the final iteration of the algorithm.
In each table, we give the following information: the final bounds for λk , λk

L, and λk
U ; the

final bounds for λk , λk
L
, and λk

U
; the computational times required to obtain these bounds;

the percentage improvement, denoted by I10 and I10, of the bounds on λk and λk , respectively,

D
ow

nl
oa

de
d

by
 [

Im
pe

ri
al

 C
ol

le
ge

 L
on

do
n

L
ib

ra
ry

]
at

 0
3:

56
 1

1
Ju

ly
 2

01
6

Optimization Methods & Software 11

Figure 2. Eigenvalue ranges of Example 2. Initial bounds are shown in black dots. The enclosures provided by the
inner bounds are indicated by large rectangles. The distance between the inner and outer bounds is shown via shorter
filled rectangles. These are barely visible on this figure due to small width of these intervals.

between the initial and the tenth iterations:

I10 = 100[1 − (λ
(10)

k

U − λ
(10)

k

L
)/(λ

(1)

k

U − λ
(1)

k

L
)] (15)

and

I10 = 100[1 − (λ
(10)

k

U
− λ

(10)

k

L
)/(λ

(1)

k

U
− λ

(1)

k

L
)]; (16)

the relative sharpness, S, of the final bounds as a percentage:

S = 100(λk
L − λk

U)/(λk
U − λk

L); (17)

the percentage improvement of the outer bounds between the initial bounds and final outer
bounds, OBI:

OBI = 100(λk
U − λk

L)/(λ
(1)

k

U
− λ

(1)

k

L
). (18)

6.3 Example 2: n = 3, R = 10

In this example we calculate eigenvalue bounds for the following randomly generated, 3 × 3,
symmetric matrix with R= 10:

[M] =
⎡
⎣[−6.852, 6.575] [2.953, 21.876] [−0.682, 9.799]

[2.953, 21.876] [1.635, 6.707] [−11.806, 0.069]
[−0.682, 9.799] [−11.806, 0.069] [−13.344, −9.041]

⎤
⎦

Results are presented in Table 1 while in Figure 2, we plot the inner, outer and initial outer
eigenvalue ranges. Note that all the intervals in Figure 2 overlap and thus other methods would
return the more conservative range [λ3, λ1] = [−35.387, 11.363], corresponding to an increase of
134% in the range of [λ1], 165% in the range of [λ2], and 149% in the range of [λ3].

D
ow

nl
oa

de
d

by
 [

Im
pe

ri
al

 C
ol

le
ge

 L
on

do
n

L
ib

ra
ry

]
at

 0
3:

56
 1

1
Ju

ly
 2

01
6

12 D. Nerantzis and C.S. Adjiman

Table 2. Result table for Example 3.

Eigenvalue λk bounds/time (CPU s) λk bounds/time (CPU s) I10 , I10 S , OBI

[λ1] [7.824, 7.884]∗/0.90 [28.421, 28.488]∗/0.01 47% , 58% 99% , 31%
[λ2] [2.011,2.197]/7.64 [18.497,18.880]/7.27 46% , 39% 97% , 43%
[λ3] [−21.369, −21.272]∗/0.01 [-3.515,-3.310]/5.33 69% , 48% 98% , 35%
[λ4] [−57.637, −57.549]∗/0.00 [−33.795, −33.707]∗/0.00 85% , 84% 99% , 18%

Notes: An asterisk indicates the bound widths have converged to 10−1. I10 and I10 are the percentages of improvement, for

the bounds of λk and λk , respectively, after 10 steps (Equations (15) and (16)), S is the percentage of relative sharpness of the
final bounds (Equation (17)) and OBI is the percentage of outer bounds improvement (Equation (18)).

Figure 3. Eigenvalue ranges of Example 3. Initial bounds are shown in black dots. The enclosures provided by the
inner bounds are indicated by large rectangles. The distance between the inner and outer bounds is shown via shorter
filled rectangles.

6.4 Example 3: n = 4, R = 5

In this example we increase the dimension of the random test matrix to 4 × 4 and reduce the
radius to R= 5 and obtain the following matrix:

[M] =

⎡
⎢⎢⎣

[−4.340, 0.224] [13.600, 15.001] [−19.428, −10.118] [13.756, 22.622]
[13.600, 15.001] [−12.442, −9.068] [13.962, 23.074] [−9.825, −3.263]

[−19.428, −10.118] [13.962, 23.074] [−4.305, −1.296] [−0.350, 7.571]
[13.756, 22.622] [−9.825, −3.263] [−0.350, 7.571] [−13.402, −13.033]

⎤
⎥⎥⎦

Results are shown in Table 2 while in Figure 3, we plot the corresponding eigenvalue ranges.
Notice that [λ1] and [λ2] are found to be overlapping, indicating that the more conservative range
[2.011, 28.488] would be obtained for both eigenvalues using other methods. This constitutes to
increases of 28% and 57% in the ranges of [λ1] and [λ2], respectively.

D
ow

nl
oa

de
d

by
 [

Im
pe

ri
al

 C
ol

le
ge

 L
on

do
n

L
ib

ra
ry

]
at

 0
3:

56
 1

1
Ju

ly
 2

01
6

Optimization Methods & Software 13

Table 3. Result table for Example 4.

Eigenvalue λk bounds/time (CPU s) λk bounds/time (CPU s) I10 , I10 S , OBI

[λ1] [16.076,17.873]/7.65 [40.296, 40.340]∗/0.05 26% , 62% 92% , 28%
[λ2] [4.131,5.041]/7.99 [25.990,26.296]/5.53 36% , 18% 95% , 30%
[λ3] [−14.581, −14.488]∗/0.02 [11.064,12.872]/8.04 59% , 28% 93% , 20%
[λ4] [−31.857,−31.715]/2.56 [−12.550,−11.196]/7.86 34% , 28% 93% , 35%
[λ5] [−53.925, −53.834]∗/0.01 [−24.441, −24.404]∗/0.02 60% , 53% 99% , 11%

Notes: An asterisk indicates the bound widths have converged to 10−1. I10 and I10 are the percentages of improvement, for

the bounds of λk and λk respectively, after 10 steps (Equations (15) and (16)), S is the percentage of relative sharpness of the
final bounds (Equation (17)) and OBI is the percentage of outer bounds improvement (Equation (18))

Figure 4. Eigenvalue ranges of Example 4. Initial bounds are shown in black dots. The enclosures provided by the
inner bounds are indicated by large rectangles. The distance between the inner and outer bounds is shown via shorter
filled rectangles.

6.5 Example 4: n = 5, R = 5

In this example we further increase the dimension of the random test matrix to 5 × 5 and maintain
the radius to R= 5 to generate:

[M] =

⎡
⎢⎢⎣

[−13.381, −4.796] [−20.029, −10.378] [−6.984, −1.529] [−18.732, −13.184] [−1.132, 5.845]
[−20.029, −10.378] [−6.463, −2.382] [−18.754, −13.526] [−3.619, 1.946] [−9.496, −6.370]

[−6.984, −1.529] [−18.754, −13.526] [3.479, 11.218] [−15.133, −6.965] [9.598, 13.545]
[−18.732, −13.184] [−3.619, 1.946] [−15.133, −6.965] [−3.744, −1.398] [11.449, 19.341]

[−1.132, 5.845] [−9.496, −6.370] [9.598, 13.545] [11.449, 19.341] [−10.990, −7.583]

⎤
⎥⎥⎦

Results and eigenvalue ranges for this example are shown in Table 3 and Figure 4, respectively.
Figures 5–7 are indicative of the algorithm’s behaviour. In the first case (Figure 5), nodes are
being removed at a high rate and thus convergence is achieved very fast. In the second case
(Figure 6), nodes are removed adequately fast and convergence to the required tolerance can still
be achieved by increasing the maximum iteration number. In the third case (Figure 7), almost no
nodes are removed and the algorithm does not converge. Nevertheless, a significant improvement
with respect to the initial bounds is achieved at the termination of the algorithm. In Figure 8 we

D
ow

nl
oa

de
d

by
 [

Im
pe

ri
al

 C
ol

le
ge

 L
on

do
n

L
ib

ra
ry

]
at

 0
3:

56
 1

1
Ju

ly
 2

01
6

14 D. Nerantzis and C.S. Adjiman

Figure 5. Bounding λ5: (a) Lower and upper bounds as functions of iterations. The two dots indicate the initial bounds.
(b) Number of nodes fathomed as a function of iterations.

Figure 6. Bounding λ4: (a) Lower and upper bounds as functions of iterations. The two dots indicate the initial bounds.
(b) Number of nodes fathomed as a function of iterations.

show the progress of the bounds on λ4when we do not make use of local search algorithms.
A comparison of this figure with Figure 6 demonstrates that the use of the local search can
significantly increase the convergence speed.

D
ow

nl
oa

de
d

by
 [

Im
pe

ri
al

 C
ol

le
ge

 L
on

do
n

L
ib

ra
ry

]
at

 0
3:

56
 1

1
Ju

ly
 2

01
6

Optimization Methods & Software 15

Figure 7. Bounding λ4: (a) Lower and upper bounds as functions of iterations. The two dots indicate the initial bounds.
(b) Number of nodes fathomed as a function of iterations.

Figure 8. Bounding λ4 without the use of local search: (a) Lower and upper bounds as a function of iterations. The
two dots indicate the initial bounds. (b) Number of nodes fathomed as a function of iterations.

6.6 Example 5: sparse interval entries, n = 7, R = 5

In practical applications, the matrix might contain only a few interval entries. In this example, a
random 7 × 7 symmetric matrix with a small number of interval entries (12 off-diagonal and 2

D
ow

nl
oa

de
d

by
 [

Im
pe

ri
al

 C
ol

le
ge

 L
on

do
n

L
ib

ra
ry

]
at

 0
3:

56
 1

1
Ju

ly
 2

01
6

16 D. Nerantzis and C.S. Adjiman

Table 4. Result table for Example 5.

Eigenvalue λk bounds/time (CPU s) λk bounds/time (CPU s) I10 , I10 S , OBI

[λ1] [36.059,36.297]/9.41 [46.023, 46.081]∗/0.03 56% , 74% 97% , 53%
[λ2] [29.451, 29.552]∗/0.05 [40.183, 40.272]∗/6.36 64% , 62% 98% , 50%
[λ3] [4.713, 4.814]∗/0.07 [14.494, 14.497]∗/0.04 68% , 69% 99% , 53%
[λ4] [−15.814, −15.713]∗/1.26 [−7.855, −7.850]∗/0.08 54% , 54% 93% , 64%
[λ5] [−20.491, −20.389]∗/0.76 [−12.244, −12.063]/6.18 52% , 51% 97% , 64%
[λ6] [−28.396, −28.231]/4.86 [−25.701, −25.157]/10.02 51% , 48% 78% , 84%
[λ7] [−51.939, −51.838]∗/0.06 [−39.955, −39.859]∗/0.70 66% , 60% 98% , 47%

Notes: An asterisk indicates the bound widths have converged to 10−1. I10 and I10 are the percentages of improvement, for the bounds

of λk and λk , respectively, after 10 steps (Equations (15) and (16)), S is the percentage of relative sharpness of the final bounds
(Equation (17)) and OBI is the percentage of outer bounds improvement (Equation (18))

Figure 9. Eigenvalue ranges of Example 5. Initial bounds are shown in black dots. The enclosures provided by the
inner bounds are indicated by large rectangles. The distance between the inner and outer bounds is shown via shorter
filled rectangles.

diagonal entries randomly chosen with R= 5) is considered. The matrix is shown in Appendix 1.
Results are given in Table 4 and eigenvalue bounds are plotted in Figure 9. Although this matrix
is larger than that in Example 4, the CPU time required is similar. Despite overlap of the ranges
of [λ1] and [λ2], and of those of [λ4], [λ5], and [λ6], the algorithm is able to resolve the bounds
on these eigenvalues to good or even high accuracy.

6.7 Example 6: tridiagonal matrix, n = 10, R = 5

In this example we apply Algorithm 1 to a 10 × 10 randomly generated tridiagonal symmet-
ric matrix, again with R= 5. The matrix is shown in Appendix 2. Results are given in Table 5
and eigenvalue bounds are plotted in Figure 10. It can be seen that computational performance
decreases for this larger matrix. Nevertheless, tight bounds are obtained on most of the eigenval-
ues. The results show that all 10 eigenvalues overlap despite the use of a relatively small radius
of 5, and the bounds obtained are much tighter than the worst-case range of [−36.027, 34.841].

D
ow

nl
oa

de
d

by
 [

Im
pe

ri
al

 C
ol

le
ge

 L
on

do
n

L
ib

ra
ry

]
at

 0
3:

56
 1

1
Ju

ly
 2

01
6

Optimization Methods & Software 17

Table 5. Result table for Example 6.

Eigenvalue λk bounds/time (CPU s) λk bounds/time (CPU s) I10 , I10 S , OBI

[λ1] [19.584,19.883]/9.01 [34.603,34.841]/7.72 50% , 52% 96% , 15%
[λ2] [9.789,10.451]/9.79 [22.553,22.755]/7.00 41% , 44% 93% , 37%
[λ3] [7.707,8.682]/9.26 [18.238, 18.272]∗/0.15 34% , 68% 90% , 38%
[λ4] [3.900, 4.001]∗/0.25 [15.399,15.947]/9.82 69% , 47% 95% , 34%
[λ5] [2.662, 2.763]∗/0.39 [14.837,15.426]/10.12 70% , 50% 95% , 30%
[λ6] [−5.772,−5.452]/8.55 [4.877,5.313]/10.46 61% , 58% 93% , 33%
[λ7] [− 12.201,−11.282]/9.47 [−3.034,−2.248]/10.61 40% , 45% 83% , 42%
[λ8] [−19.074,−18.253]/10.81 [−9.121,−8.691]/8.89 36% , 41% 88% , 45%
[λ9] [−29.158,−28.833]/8.76 [−12.945,−12.223]/8.98 25% , 31% 94% , 16%
[λ10] [−36.027,−35.600]/11.24 [−25.408,−24.931]/11.45 55% , 51% 92% , 36%

Notes: An asterisk indicates the bound widths have converged to 10−1. I10 and I10 are the percentages of improvement, for the bounds of

λk and λk respectively, after 10 steps (Equations (15) and (16)), S is the percentage of relative sharpness of the final bounds (Equation (17))
and OBI is the percentage of outer bounds improvement (Equation (18))

Figure 10. Eigenvalue ranges of Example 6. Initial bounds are shown in black dots. The enclosures provided by the
inner bounds are indicated by large rectangles. The distance between the inner and outer bounds is shown via shorter
filled rectangles.

6.8 Examples 7–9: identification of non index-1 areas

In many rate-based physical processes, such as chemical reactions or nucleation, the identifica-
tion of transition states on potential energy surfaces is an important and challenging problem.
Mathematically the problem is described as follows: Given a C2 function f : B ⊂ R

n → R

find x∗ ∈ B such that ∇f (x∗) = 0 and ∇2f (x∗) has 1 negative eigenvalue and n− 1 positive
eigenvalues. The point x∗ is called a transition state or index-1 saddle point.

One emerging approach to this problem is based on the use of deterministic global search
methods in which one aims first to locate all critical points and then to identify within those
the physically relevant ones, namely index-1 saddle points (and possibly minima that are also
of interest) [16,17,26]. However, in such an approach, it is necessary to obtain full convergence
for all critical points, including those that are not of practical relevance. In order to focus the
computational effort on the location of index-1 saddle points, a number of practical tests that
allow the identification of non index-1 areas have recently been proposed [19]. These tests can

D
ow

nl
oa

de
d

by
 [

Im
pe

ri
al

 C
ol

le
ge

 L
on

do
n

L
ib

ra
ry

]
at

 0
3:

56
 1

1
Ju

ly
 2

01
6

18 D. Nerantzis and C.S. Adjiman

Table 6. Comparison of two approaches to identify areas that cannot contain an index-1 saddle point.

Example Function Dim. L Rohn’s method Alg. 1(max 5 steps) Improvement (%)

7 Ackley 3 0.32 1072 1482 38
8 Levy 5 0.9 1025 1803 75
9 Himmelblau 5 2 1058 1189 12

Notes: ‘Dim.’ refers to the dimensionality of the example, L is the maximum edge length for the random hyper-rectangles, columns 5 and
6 indicate the number of hyper-rectangles, out of 10,000, that are found not to contain an index-1 saddle point, using Rohn’s method and
Algorithm 1, respectively, column 7 refers to the percentage increase in the number of hyper-rectangles found with the proposed approach

be used in each iteration of a global deterministic search method and allow the exclusion of such
areas, thereby avoiding further investigation and speeding up the convergence process. One such
test is based on the use of Rohn’s method. For example, if we find that λn−1 ≤ 0 for the interval
Hessian matrix derived from the function f and calculated over a hyper-rectangular area B, then
no index-1 saddle points exist in B and thus B can be excluded from the search.

Motivated by the fact that within only a few iterations the algorithm leads to a significant
improvement of the initial eigenvalue bounds, as seen from the I10 values in Tables 1–5, it might
be advantageous to use a few steps of the algorithm instead of a single step (Rohn’s method) for
the exclusion of non index-1 areas. In Table 6 we show the results for three selected test functions.
For each test function, we randomly create 10,000 hyper-rectangles, within a given domain, with
each edge having a length selected randomly in the interval [0, L]. For each hyper-rectangular
area, we first calculate the corresponding interval Hessian matrix. We compare the application of
two approaches to obtain an upper bound on λn−1 and determine whether the region may contain
an index-1 saddle point: Rohn’s method (i.e. the initial step of Algorithm 1) or Algorithm 1 for a
maximum of only five steps. For each approach, we report the number of hyper-rectangle found
such that λn−1 ≤ 0.

As test functions we use Ackley’s function (Example 7, (19)), Levy’s function (Exam-
ple 8, (20)) and an extension to n dimensions of Himmelblau’s function (Example 9, (21)):

f (x) = −20 exp

⎛
⎝−0.2

√√√√1

n

n∑
i=1

x2
i

⎞
⎠− exp

(
1

n

n∑
i=1

cos(2πxi)

)
+ 20 + e, (19)

with n= 3 and x ∈ [0.5, 5]3.

f (x) = sin2(πy1) +
n−1∑
i=1

(yi − 1)2[1 + 10 sin2(πyi+1)] + (yn − 1)2, (20)

where yi = 1 + (xi − 1)/4, n= 5, and x ∈ [−5, 5]5.

f (x) =
n∑

i<j

[(x2
i + xj − 11)2 + (xi + x2

j − 7)2], (21)

where n= 5 and x ∈ [−5, 5]5

The results indicate that a significant increase in the number of regions identified not to contain
an index-1 saddle point is achieved when using Algorithm 1. Furthermore, the solution given by
the local search method can be used in a stopping criterion since if the lower bound of λn−1

is found to be strictly positive, there is no reason to proceed. In practice we would apply the
local search only once and prior to branch-and-bound procedure for bounding λn−1. Finally, in
the same way described above, we can use the algorithm to identify convex areas (λn ≥ 0) and
index-1 areas (λn < 0 and λn−1 > 0).

D
ow

nl
oa

de
d

by
 [

Im
pe

ri
al

 C
ol

le
ge

 L
on

do
n

L
ib

ra
ry

]
at

 0
3:

56
 1

1
Ju

ly
 2

01
6

Optimization Methods & Software 19

7. Conclusions

We have presented a branch-and-bound algorithm for calculating bounds on all individual eigen-
values of a symmetric interval matrix. The algorithm is based on calculating successively tighter
bounds by branching on the off-diagonal interval entries of the input matrix using Rohn’s method
for outer bounds and local search methods for inner bounds. In contrast to other methods, the
algorithm provides valid and distinct bounds on each eigenvalue, regardless of whether the
ranges of the eigenvalues overlap. Application to five examples, up to a 10 × 10 matrix, has
shown that the algorithm can achieve significant reductions in the range of each eigenvalue
compared to existing methods. The use of local search methods has been found to increase the
convergence speed significantly. Two approaches have been used for local search: one developed
previously [11] and one proposed here. The [11] method is found to perform best on average, but
not systematically, making the combination of these two fast approaches desirable.

The algorithm is particularly effective for low-dimensional problems, where by dimension we
mean the number of interval entries in the initial matrix. While the algorithm becomes more com-
putationally demanding for larger problems, a few iterations always yield substantial reductions
in the eigenvalue ranges and provide a low-cost approach to obtain good bounds. Furthermore,
as shown in Examples 7–9, the proposed algorithm can be used as an effective improvement over
Rohn’s method as a test in deterministic global search methods for the location of index-1 saddle
points.

Data statement

Supporting data for this work are available on request by writing to the corresponding author (c.adjiman@imperial.ac.uk).

Disclosure statement

No potential conflict of interest was reported by the authors.

Funding

Financial support from the Engineering and Physical Sciences Research Council (EPSRC) of the UK, via a Leadership
Fellowship [EP/J003840/1], is gratefully acknowledged.

References

[1] C.S. Adjiman, S. Dallwig, C.A. Floudas, and A. Neumaier, A global optimization method, αBB, for general twice-
differentiable constrained NLPs I. Theoretical advances, Comput. Chem. Eng. 22 (1998), pp. 1137–1158.

[2] T. Csendes and D. Ratz, Subdivision direction selection in interval methods for global optimization, SIAM J. Numer.
Anal. 34 (1997), pp. 922–938.

[3] A. Deif, The interval eigenvalue problem, ZAMM – J. Appl. Math. Mech./Z. Angew. Math. Mech. 71 (1991), pp.
61–64.

[4] A.D. Dimarogonas, Interval analysis of vibrating systems, J. Sound Vib. 183 (1995), pp. 739–749.
[5] M.M.H. Ellabaan, Y.S. Ong, M.H. Lim, and K. Jer-Lai, Finding Multiple First Order Saddle Points Using a Valley

Adaptive Clearing Genetic Algorithm, in IEEE International Symposium on Computational Intelligence in Robotics
and Automation, 2009, pp. 457–462.

[6] G.H. Golub and C.F. Van Loan, Matrix Computations (Johns Hopkins Studies in Mathematical Sciences), 3rd ed.,
The Johns Hopkins University Press, Baltimore, 1996.

[7] D. Hertz, The extreme eigenvalues and stability of real symmetric interval matrices, IEEE Trans. Autom. Control
37 (1992), pp. 532–535.

[8] M. Hladík, Complexity issues for the symmetric interval eigenvalue problem, Open Math, 13 (2015).
[9] M. Hladík, D. Daney, and E. Tsigaridas, Bounds on real eigenvalues and singular values of interval matrices, SIAM

J. Matrix Anal. Appl. 31 (2010), pp. 2116–2129.

D
ow

nl
oa

de
d

by
 [

Im
pe

ri
al

 C
ol

le
ge

 L
on

do
n

L
ib

ra
ry

]
at

 0
3:

56
 1

1
Ju

ly
 2

01
6

20 D. Nerantzis and C.S. Adjiman

[10] M. Hladík, D. Daney, and E. Tsigaridas, An algorithm for addressing the real interval eigenvalue problem, J.
Comput. Appl. Math. 235 (2011), pp. 2715–2730.

[11] M. Hladík, D. Daney, and E. Tsigaridas, Characterizing and approximating eigenvalue sets of symmetric interval
matrices, Comput. Math. Appl. 62 (2011), pp. 3152–3163.

[12] M. Hladík, D. Daney, and E. Tsigaridas, A filtering method for the interval eigenvalue problem, Appl. Math.
Comput. 217 (2011), pp. 5236–5242.

[13] R. Horst, P.M. Pardalos, and N. Van Thoai, Introduction to Global Optimization, Springer Science & Business
Media, Dordrecht, 2000.

[14] H. Leng, Real eigenvalue bounds of standard and generalized real interval eigenvalue problems, Appl. Math.
Comput. 232 (2014), pp. 164–171.

[15] H. Leng, Z. He, and Q. Yuan, Computing bounds to real eigenvalues of real-interval matrices, Int. J. Numer.
Methods Eng. 74 (2008), pp. 523–530.

[16] Y. Lin and M.A. Stadtherr, Advances in interval methods for deterministic global optimization in chemical
engineering, J. Global Optim. 29 (2004), pp. 281–296.

[17] Y. Lin and M.A. Stadtherr, Locating stationary points of sorbate-zeolite potential energy surfaces using interval
analysis, J. Chem. Phys. 121 (2004), pp. 10159–10166.

[18] A. Nemirovskii, Several NP-hard problems arising in robust stability analysis, Math. Control, Signals Syst. 6
(1993), pp. 99–105.

[19] D. Nerantzis and C.S. Adjiman, Deterministic Global Optimization and Transition States, in 12th Interna-
tional Symposium on Process Systems Engineering and 25th European Symposium on Computer Aided Process
Engineering 37 (2015), pp. 851–856.

[20] S. Poljak and J. Rohn, Checking robust nonsingularity is NP-hard, Math. Control, Signals Syst. 6 (1993), pp. 1–9.
[21] Z. Qiu, P.C. Müller, and A. Frommer, An approximate method for the standard interval eigenvalue problem of real

non-symmetric interval matrices, Commun. Numer. Methods Eng. 17 (2001), pp. 239–251.
[22] J. Rohn, Checking positive definiteness or stability of symmetric interval matrices is NP-hard, Comment. Math.

Univ. Carolin. 35 (1994), pp. 795–797.
[23] J. Rohn, An algorithm for checking stability of symmetric interval matrices, IEEE Trans. Automat. Control 41

(1996), pp. 133–136.
[24] J. Rohn, Bounds on eigenvalues of interval matrices, ZAMM – J. Appl. Math. Mech./Zeitschrift für Angewandte

Mathematik und Mechanik 78 (1998), pp. 1049–1050.
[25] A. Skjäl and T. Westerlund, New methods for calculating αBB-type underestimators, J. Global Optim. 58 (2014),

pp. 411–427.
[26] K.M. Westerberg and C.A. Floudas, Locating all transition states and studying the reaction pathways of potential

energy surfaces, J. Chem. Phys. 110 (1999), pp. 9259–9295.
[27] Q. Yuan, Z. He, and H. Leng, An evolution strategy method for computing eigenvalue bounds of interval matrices,

Appl. Math. Comput. 196 (2008), pp. 257–265.

Appendix 1. Matrix of Example 5 (sparse interval entries)

[M] =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

[−17.448, −8.931]
−17.933 −3.0769

0.828 [−16.605, −8.919] [−0.766, 3.614]
−2.682 [13.550, 23.498] [12.048, 21.553] 13.237
−16.277 5.913 −19.363 3.559 −4.189

[−0.920, 1.502] [−13.596, −11.311] 1.160 −2.585 2.626 −3.293
−9.448 −15.174 −13.762 −5.352 15.225 8.797 −6.353

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

Appendix 2. Matrix of Example 6 (tridiagonal)

Diagonal: [[−14.964, −11.750], [−16.049, −9.979] , [−4.917, 1.523], [9.020, 19.007], [5.340, 9.723], [10.435, 12.681],
[2.355, 10.660], [−10.4775, −2.044], [2.194, 4.969], [−10.137, −1.903]]

Lower/upper diagonal: [[12.707, 15.697], [9.853, 15.241], [−0.266, 2.815], [2.583, 4.573], [5.422, 10.488],
[−13.950, −8.734], [14.656, 21.373], [−1.715, 3.770], [10.856, 12.916]]

D
ow

nl
oa

de
d

by
 [

Im
pe

ri
al

 C
ol

le
ge

 L
on

do
n

L
ib

ra
ry

]
at

 0
3:

56
 1

1
Ju

ly
 2

01
6

	1. Introduction
	2. Preliminaries
	3. The interval-matrix branch-and-bound algorithm
	4. General bounding approach
	5. Local search algorithms
	5.1. Hladík et al. [11] local search
	5.2. A new local search method

	6. Results
	6.1. Example 1 -- comparison of the two local improvement algorithms
	6.2. Examples 2--6 -- performance of the eigenvalue bounding algorithm
	6.3. Example 2: n==3, R==10
	6.4. Example 3: n==4, R==5
	6.5. Example 4: n==5, R==5
	6.6. Example 5: sparse interval entries, n==7, R==5
	6.7. Example 6: tridiagonal matrix, n==10, R==5
	6.8. Examples 7--9: identification of non index-1 areas

	7. Conclusions
	Data statement
	Disclosure statement
	Funding

