273 research outputs found

    Ehrhart polynomials of cyclic polytopes

    Get PDF
    The Ehrhart polynomial of an integral convex polytope counts the number of lattice points in dilates of the polytope. In math.CO/0402148, the authors conjectured that for any cyclic polytope with integral parameters, the Ehrhart polynomial of it is equal to its volume plus the Ehrhart polynomial of its lower envelope and proved the case when the dimension d = 2. In our article, we prove the conjecture for any dimension.Comment: 15 page

    On Volumes of Permutation Polytopes

    Full text link
    This paper focuses on determining the volumes of permutation polytopes associated to cyclic groups, dihedral groups, groups of automorphisms of tree graphs, and Frobenius groups. We do this through the use of triangulations and the calculation of Ehrhart polynomials. We also present results on the theta body hierarchy of various permutation polytopes.Comment: 19 pages, 1 figur

    On positivity of Ehrhart polynomials

    Full text link
    Ehrhart discovered that the function that counts the number of lattice points in dilations of an integral polytope is a polynomial. We call the coefficients of this polynomial Ehrhart coefficients, and say a polytope is Ehrhart positive if all Ehrhart coefficients are positive (which is not true for all integral polytopes). The main purpose of this article is to survey interesting families of polytopes that are known to be Ehrhart positive and discuss the reasons from which their Ehrhart positivity follows. We also include examples of polytopes that have negative Ehrhart coefficients and polytopes that are conjectured to be Ehrhart positive, as well as pose a few relevant questions.Comment: 40 pages, 7 figures. To appear in in Recent Trends in Algebraic Combinatorics, a volume of the Association for Women in Mathematics Series, Springer International Publishin

    A note on lattice-face polytopes and their Ehrhart polynomials

    Full text link
    We give a new definition of lattice-face polytopes by removing an unnecessary restriction in the paper "Ehrhart polynomials of lattice-face polytopes", and show that with the new definition, the Ehrhart polynomial of a lattice-face polytope still has the property that each coefficient is the normalized volume of a projection of the original polytope. Furthermore, we show that the new family of lattice-face polytopes contains all possible combinatorial types of rational polytopes.Comment: 11 page

    The Number of Nowhere-Zero Flows on Graphs and Signed Graphs

    Get PDF
    A nowhere-zero kk-flow on a graph Γ\Gamma is a mapping from the edges of Γ\Gamma to the set \{\pm1, \pm2, ..., \pm(k-1)\} \subset \bbZ such that, in any fixed orientation of Γ\Gamma, at each node the sum of the labels over the edges pointing towards the node equals the sum over the edges pointing away from the node. We show that the existence of an \emph{integral flow polynomial} that counts nowhere-zero kk-flows on a graph, due to Kochol, is a consequence of a general theory of inside-out polytopes. The same holds for flows on signed graphs. We develop these theories, as well as the related counting theory of nowhere-zero flows on a signed graph with values in an abelian group of odd order. Our results are of two kinds: polynomiality or quasipolynomiality of the flow counting functions, and reciprocity laws that interpret the evaluations of the flow polynomials at negative integers in terms of the combinatorics of the graph.Comment: 17 pages, to appear in J. Combinatorial Th. Ser.

    Enumerating Colorings, Tensions and Flows in Cell Complexes

    Get PDF
    We study quasipolynomials enumerating proper colorings, nowhere-zero tensions, and nowhere-zero flows in an arbitrary CW-complex XX, generalizing the chromatic, tension and flow polynomials of a graph. Our colorings, tensions and flows may be either modular (with values in Z/kZ\mathbb{Z}/k\mathbb{Z} for some kk) or integral (with values in {−k+1,…,k−1}\{-k+1,\dots,k-1\}). We obtain deletion-contraction recurrences and closed formulas for the chromatic, tension and flow quasipolynomials, assuming certain unimodularity conditions. We use geometric methods, specifically Ehrhart theory and inside-out polytopes, to obtain reciprocity theorems for all of the aforementioned quasipolynomials, giving combinatorial interpretations of their values at negative integers as well as formulas for the numbers of acyclic and totally cyclic orientations of XX.Comment: 28 pages, 3 figures. Final version, to appear in J. Combin. Theory Series
    • …
    corecore