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Abstract

TheEhrhart polynomial of an integral convex polytope counts the number of lattice points in dilates
of the polytope. In (Coefficients and roots of Ehrhart polynomials, preprint), the authors conjectured
that for any cyclic polytope with integral parameters, the Ehrhart polynomial of it is equal to its
volume plus the Ehrhart polynomial of its lower envelope and proved the case when the dimension
d = 2. In our article, we prove the conjecture for any dimension.
© 2004 Elsevier Inc. All rights reserved.
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1. Introduction

Foranyintegral convexpolytopeP, that is, a convexpolytopewhoseverticeshave integral
coordinates, any positive integerm ∈ N, we usei(P ,m) to denote the number of lattice
points inmP, wheremP = {mx | x ∈ P } is the mth dilate polytopeof P . In our paper, we
will focus on a special class of polytopes, cyclic polytopes, which are defined in terms of
the moment curve:

Definition 1.1. Themoment curve inRd is defined by

�d : R → Rd , t �→ �d(t) =




t

t2

...

td


 .
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Let T = {t1, . . . , tn}< be a linearly ordered set. Then thecyclic polytopeCd(T ) =
Cd(t1, . . . , tn) is the convex hull conv{vd(t1), vd(t2), . . . , vd(tn)} of n > d distinct points
�d(ti),1� i�n, on the moment curve.

The main theorem in our article is the one conjectured in[1, Conjecture 1.5]:

Theorem 1.2. For any integral cyclic polytopeCd(T ),

i(Cd(T ),m) = Vol(mCd(T )) + i(Cd−1(T ),m).

Hence,

i(Cd(T ),m) =
d∑

k=0

Volk(mCk(T )) =
d∑

k=0

Volk(Ck(T ))mk,

where Volk(mCk(T )) is the volume ofmCk(T ) in k-dimensional space, and we let
Vol0(mC0(T )) = 1.

One direct result of Theorem1.2 is thati(Cd(T ),m) is always a polynomial inm. This
result was already shown by Eugène Ehrhart for any integral polytope in 1962[2]. Thus,
we calli(P ,m) the Ehrhart polynomial ofPwhenP is an integral polytope. There is much
work on the coefficients of Ehrhart polynomials. For instance it is well known that the
leading and second coefficients ofi(P ,m) are the normalized volume ofP and one half
of the normalized volume of the boundary ofP. But there is no known explicit method
of describing all the coefficients of Ehrhart polynomials of general integral polytopes.
However, because of some special properties that cyclic polytopes have, we are able to
calculate the Ehrhart polynomial of cyclic polytopes in the way described in Theorem1.2.
In this paper, we use a standard triangulation decomposition of cyclic polytopes, and

careful counting of lattice points to reduce Theorem1.2 to the casen = d + 1, (Theo-
rem2.9). We then prove Theorem2.9 with the use of certain linear transformations and
decompositions of polytopes containing our cyclic polytopes.

2. Statements and proofs

All polytopes we will consider are full-dimensional, so for any convex polytopeP, we
used to denote both the dimension of the ambient spaceRd and the dimension ofP.Also,
We use�P andI (P ) to denote the boundary and the interior ofP, respectively.

For simplicity, for any regionR ⊂ Rd , we denote byL(R) := R ∩ Zd the set of lattice
points inR.

Consider the projection� : Rd → Rd−1 that forgets the last coordinate. In[1, Lemma
5.1], theauthors showed that the inverse imageunder�of a latticepointy ∈ Cd−1(T )∩Zd−1

is a line that intersects the boundary ofCd(T ) at integral points. By a similar argument, it is
easy to see that this is true when we replace the cyclic polytopes by their dilated polytopes.
Note that�(mCd(T )) = mCd−1(T ), so for any lattice pointy in mCd−1(T ) the inverse
image under� intersects the boundary at lattice points.
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Definition 2.1. For anyx in a real space, letl(x) denote the last coordinate ofx.
For any polytopeP ⊂ Rd and any pointy ∈ Rd−1, let �(y, P ) = �−1(y) ∩ P be the

intersection ofPwith the inverse image ofy under�. Letp(y, P ) andn(y, P ) be the point
in �(y, P )with the largest and smallest last coordinate, respectively. If�(y, P ) is the empty
set, i.e.,y 
∈ �(P ), then letp(y, P ) andn(y, P ) be empty sets as well. Clearly,p(y, P )

andn(y, P ) are on the boundary ofP.Also, we let�+(y, P ) = �(y, P ) \ n(y, P ), and for
anyS ⊂ Rd−1, �+(S, P ) = ⋃

y∈S �+(y, P ).

Define PB(P ) = ⋃
y∈�(P ) p(y, P ) to be thepositive boundaryof P ; NB(P ) =⋃

y∈�(P ) n(y, P ) to be thenegative boundaryofPand�(P ) = P \NB(P ) = �+(�(P ), P )

= ⋃
y∈�(P ) �

+(y, P ) to be thenonnegative partof P.

For any facetF of P, if F has an interior point in the positive boundary ofP, (it is easy
to see thatF ⊂ PB(P )) then we callF a positive facetof P and define the sign ofF as
+1 : sign(F ) = +1. Similarly, we can define thenegative facetsof P with associated
sign−1.

By the argument we gave before Definition2.1, � induces a bijection of lattice points
betweenNB(mCd(T )) and�(mCd(T )) = mCd−1(T ). Hence, Theorem1.2 is equivalent
to the following proposition:

Proposition 2.2. Vol(mCd(T )) = |L(�(mCd(T )))|.

From now on, we will consider any polytopes or sets asmultisetswhich allownegative
multiplicities.We can consider any element of a multiset as a pair(x,m), wherem is the
multiplicity of elementx. Then for any multisetsM1,M2 and any integersm, n andi, we
define the following operators:

(i) Scalar product:iM1 = i · M1 = {(x, im) | (x,m) ∈ M1}.
(ii) Addition: M1 ⊕ M2 = {(x,m + n) | (x,m) ∈ M1, (x, n) ∈ M2}.
(iii) Subtraction:M1�M2 = M1 ⊕ ((−1) · M2).

It is clear that the following holds:

Lemma 2.3. (a)∀R1, . . . , Rk ⊂ Rd , ∀i1, . . . , ik ∈ Z : L(
⊕k

j=1 ijRj ) = ⊕k
j=1 ijL(Rj ).

(b) For any polytopeP ⊂ Rd , ∀R1, . . . , Rk ⊂ Rd−1, ∀i1, . . . , ik ∈ Z :

�+

 k⊕

j=1

ijRj , P


 =

k⊕
j=1

ij�+(Rj , P ).

LetP be a convex polytope. For anyy an interior point of�(P ), since� is a continuous
open map, the inverse image ofy contains an interior point ofP. Thus�−1(y) intersects
the boundary ofPexactly twice. For anyya boundary point of�(P ), again because� is an
open map, we have that�(y, P ) ⊂ �P, so�(y, P ) = �−1(y) ∩ �P is either one point or a
line segment. We hope that�(y, P ) always has only one point, so we define the following
polytopes and discuss several properties of them.
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Definition 2.4. We call a convex polytopeP a nicepolytope with respect to� if for any
y ∈ ��(P ), |�(y, P )| = 1 and for any lattice pointy ∈ �(P ), �−1(y) intersects�P at
lattice points.

Lemma 2.5. A nice polytope P has the following properties:

(i) For any y ∈ I (�(P )), �−1(y) ∩ �P = {p(y, P ), n(y, P )}. In particular, if y is a
lattice point, thenp(y, P ) andn(y, P ) are each lattice points.

(ii) For anyy ∈ ��(P ),�−1(y)∩�P = �(y, P ) = p(y, P ) = n(y, P ), so�+(y, P ) = ∅.
In particular, when y is a lattice point, �(y, P ) is a lattice point as well.

(iii) L and�+ commute: for anyR ⊂ Rd−1, L(�+(R, P )) = �+(L(R), P ).

(iv) Let R be a region containingI (�(P )). Then

�(P ) = �+(R, P ) =
⊕
y∈R

�+(y, P ).

Moreover,

|L(�(P ))| =
∑

y∈L(R)

l(p(y, P )) − l(n(y, P )).

(By convention, if y 
∈ �(P ), we letl(p(y, P )) − l(n(y, P )) = 0.)
(v) If P is decomposed into nice polytopesP1 ∪ · · · ∪ Pk, then�(P ) = ⊕k

i=1�(Pi), so
L(�(P )) = ⊕k

i=1L(�(Pi)).

(vi) The set of facets of P are partitioned into the set of positive facets and the set of negative
facets, i.e., every facet is either positive or negative but not both.

Proof. The first three and last properties are immediately true. And the fourth one follows
directly from the second one.The fifth property can be checked by considering the definition
of �. �

By using these properties, we are able to give the following proposition about a nice
convex polytope:

Proposition 2.6. Let P be a nice convex polytope with respect to� such that�(P ) is also
nice, and all the points in P have nonnegative last coordinate. Suppose further that for any
facet F ofP, �(F ) is a nice polytope with respect to�. Then

�(P ) =
⊕

F :a f acet of P

sign(F )�+(�(�(F )), conv(F,�(F ))),

whereconv(F,�(F )) denotes the convex hull of the setF ∪ {(y′,0)′ | y ∈ �(F )}, i.e. the
region between F and its projection onto the hyperplane{(x1, . . . , xd)′ | xd = 0}. (Note,
for any vectorv, we usev′ to denote its transpose. So for a vertical vectory, (y′,0)′ is just
the vector obtained from y by attaching a zero to the bottom ofy.)
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Proof. A special case of Lemma2.5/(iv) is whenR = �(�(P )), so we have

�(P ) = �+(�(�(P )), P ) =
⊕

y∈�(�(P ))

�+(y, P ).

Now for any pointsa and b, we use(a, b] to denote the half-open line segment
betweena(excluding)andb(including).Then,�+(y, P ) = (n(y, P ), p(y, P )] = (((y′,0)′,
p(y, P )]�((y′,0)′, n(y, P )]). Therefore,

�(P ) =
⊕

y∈�(�(P ))

(((y′,0)′, p(y, P )]�((y′,0)′, n(y, P )])

=

 ⊕

y∈�(�(P ))

((y′,0)′, p(y, P )]

 ⊕ 

 ⊕
y∈�(�(P ))

(−1) · ((y′,0)′, n(y, P )]

 .

Let F1, F2, . . . , F# be all the positive facets ofP andF#+1, . . . , Fk be all the negative
facets. Then it is clear that�(F1) ∪ �(F2) ∪ · · · ∪ �(F#) and�(F#+1) ∪ · · · ∪ �(Fk) both
give a decomposition of�(P ). Therefore by Lemma2.5/(v), we have that�(�(P )) =⊕#

i=1�(�(Fi)) = ⊕k
j=#+1�(�(Fj )). Hence,

⊕
y∈�(�(P ))

((y′,0)′, p(y, P )] =
#⊕

i=1

⊕
y∈�(�(Fi ))

((y′,0)′, p(y, P )]

=
#⊕

i=1

�+(�(�(Fi)), conv(Fi,�(Fi))).

Similarly, we will have

⊕
y∈�(�(P ))

(−1) · ((y′,0)′, n(y, P )] =
k⊕

j=#+1

(−1)�+(�(�(Fj )), conv(Fj ,�(Fj ))).

Thus, by putting them together, we get

�(P ) =
⊕

F :a facet ofP

sign(F )�+(�(�(F )), conv(F,�(F ))). �

In the last proposition,weusedanewnotation conv(F,�(F )) to denote certain polytopes.
For polytopes that can be written in this way, we have the following lemma, whose proof
is trivial:

Lemma 2.7. Let H be a hyperplane inRd such that�(H) = Rd−1. Let S1 ⊂ S2 be two
convex polytopes inside H and the last coordinates of all of their points are nonnegative.
Then for anyy ∈ �(S1), �+(y, conv(S1,�(S1))) = �+(y, conv(S2,�(S2))).

Having discussed some properties of nice polytopes with respect to�, we come back to
the dilated cyclic polytopes which are our main interest and show that they are nice:
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Lemma 2.8. mCd(T ) is a nice polytope with respect to�.

Proof. We already argued thatmCd(T ) satisfies the second condition to be nice. So it is
left to check that|�(y, Cd(T ))| = 1 for anyy ∈ �Cd−1(T ).

Let y = (y1, y2, . . . , yd−1)
′ and supposey is on a facetF ofmCd−1(T ) and without loss

of generality, letm�d−1(t1),m�d−1(t2), . . . , m�d−1(td−1) be thed − 1 vertices ofF. Then
there exist�1, . . . , �d−1 ∈ R�0 such thaty = ∑d−1

j=1 �jm�d−1(tj ) and
∑d−1

j=1 �j = 1.

Letx ∈ �−1(y)∩mCd(T ).Thereexist�′
1, . . . , �

′
n ∈ R�0 such thatx = ∑n

j=1 �′
jm�d(tj )

and
∑n

j=1 �′
j = 1. Theny = �(x) = ∑n

j=1 �′
jm�d−1(tj ). Sincey is on the facetF, �′

j = 0

unless 1�j �d − 1. Thusy = ∑d−1
j=1 �′

jm�d−1(tj ) and
∑d−1

j=1 �′
j = 1. Therefore�j =

�′
j ,1�j �d − 1. Hencex = ∑d−1

j=1 �jm�d(tj ) is the only point in�−1(y)∩mCd(T ). �

We know that for any cyclic polytopeCd(T ) with n = |T | > d + 1, we can decompose
it into n − d cyclic polytopesP1 ∪ · · · ∪ Pn−d , which is a triangulation ofCd(T ) and
wherePi ’s are all defined by(d + 1)-element integer sets. E.g., the pulling triangulation
of [4] has this property. Therefore by the fourth property in Lemma2.5, we have that
L(�(Cd(T ))) = ⋃n−d

i=1 L(�(Pi)). Thus|L(�(P ))| = ∑k
i=1 |L(�(Pi))|.Note that we also

have Vol(Cd(T )) = ∑n−d
i=1 Vol(Pi).We conclude that to prove Proposition2.2, it is enough

to prove the following:

Theorem 2.9. Forany integersetsTwithn=|T |=d +1, Vol(mCd(T ))=|L(�(mCd(T )))|.

Definition 2.10. A map� : Rd → Rd is structure preservingif it preserves volume and it
commutes with the following operations:

(i) L : taking lattice points of a regionR ⊂ Rd;
(ii) conv : taking the convex hull of a collection of points;
(iii) � : taking the nonnegative part of a convex polytope;
(iv) PB : taking the positive boundary of a convex polytope;
(v) NB : taking the negative boundary of a convex polytope.

Remark 2.11. Here� commuting with conv implies (or is equivalent to) that for any set of
pointsx1, . . . , xk ∈ Rd ,and for any�1, . . . , �k ∈ R�0with

∑k
i=1 �i = 1, T (

∑k
i=1 �ixi) =∑k

i=1 �iT (xi). Therefore� is an affine transformation, which can be defined by ad × d

matrixA and a vectoru ∈ Rd : T (x) = Ax + u. Moreover,� commuting withPBandNB
implies that� preserves the positive facets and negative facets of a convex polytope.

Lemma 2.12. Let A be ad × d integral lower triangular matrix with1’s on its diagonal,
and u be an integral vector inRd . Then� : x �→ Ax + u gives a map which is structure
preserving, and so does�−1. Therefore, � is a bijection fromZd to Zd . Hence, for any
subsetS ∈ Rd , |L(S)| = |L(�(S))|.
Moreover, for anyy ∈ Rd−1, if we define�̃(y) = Ãy + ũ, whereÃ is the left upper

(d − 1) × (d − 1) matrix of A andũ = �(u), then�+(�̃(y),�(P )) = �(�+(y, P )), for
any polytopeP.
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Proof. The determinant ofA is 1, hence� is volume preserving. It is easy to check that
� commutes withL and conv. To show that� commutes with�, PB andNB, it suffices
to show that for allx1, x2 ∈ Rd with �(x1) = �(x2) andl(x1) > l(x2), then�(�(x1)) =
�(�(x2)) andl(�(x1)) > l(�(x2)). This is not hard to check using the fact thatA is a lower
triangular matrix with 1’s on its diagonal. Hence,� is structure preserving.

Note that�−1 mapsx toA−1x − A−1u. But we know thatA−1 is also an integral lower
triangular matrix with 1’s on its diagonal and−A−1u is an integral vector. So�−1 is
structure preserving as well.
It is clear that�̃ = � ◦ � ◦ �−1, which implies that�−1 ◦ �̃ = � ◦ �−1. So we have

x ∈ �(�+(y, P )) ⇔ �−1(x) ∈ �+(y, P ) = �−1(y) ∩ P

⇔ x ∈ �(�−1(y)) ∩ �(P ) = �−1(�̃(y)) ∩ �(P )

⇔ x ∈ �+(�̃(y),�(P )). �

Now for any real numbersr1, r2, . . . , rd ,we consider thed ×d lower triangular matrices

Ar1,...,rd (i, j) =
{
(−1)i−j ei−j (r1, . . . , ri), i�j,

0, i < j

and

Br1,...,rd (i, j) =


1, i = j,

0, i 
= j& i < d,

(−1)i−j ei−j (r1, . . . , ri), j 
= i = d,

whereek(r1, . . . , rl) = ∑
i1<i2<···<ik

ri1ri2 · · · rik is thekth elementary symmetric function
in r1, . . . , rl .

For simplicity, we allow a map originally defined onRd to work in higher dimension,
by applying the map to the firstd coordinates. Then it is not hard to see thatAr1,...,rd =
Ar1,...,rd−1Br1,...,rd = Br1,...,rdAr1,...,rd−1.

We also define vectors

ur1,...,rd =




−r1
r1r2

−r1r2r3
...

(−1)dr1r2 · · · rd




=




−e1(r1)

e2(r1, r2)

−e3(r1, r2, r3)
...

(−1)ded(r1, r2, . . . , rd)




and

vr1,...,rd =




0
0
...

0
(−1)dr1r2 · · · rd




=




0
0
...

0
(−1)ded(r1, r2, . . . , rd)




.

Similarly, we allow the addition operation between two vectors of different dimensions by
adding the lower dimension one to the first corresponding coordinates of the higher one.
Thus,ur1,...,rd = ur1,...,rd−1 + vr1,...,rd .
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Nowwedefinemaps�r1,...,rd
: x �→ Ar1,...,rd x+ur1,...,rd and�r1,...,rd

: x �→ Br1,...,rd x+
vr1,...,rd . Unlike�r1,...,rd

, �r1,...,rd
does not depend on the order ofri ’s. In other words, for

any permutation� ∈ Sd, �r1,...,rd
= �r�(1),...,r�(d)

.

Note that�r1,...,rd
only changes thedth coordinate of a vector, so we have the following

lemma:

Lemma 2.13. �r1,...,rd
= �r1,...,rd−1

◦ �r1,...,rd
.

Remark 2.14.When we consider�r1,...,rd
and�r1,...,rd

operating on the moment curve,
we have

�r1,...,rd
(�d(t)) = Ar1,...,rd




t

t2

...

td


 + ur1,...,rd =




(t − r1)

(t − r1)(t − r2)
...

(t − r1)(t − r2) · · · (t − rd)


 ,

�r1,...,rd
(�d(t)) = Br1,...,rd




t

t2

...

td


 + vr1,...,rd =




t

t2

...

td−1

(t − r1)(t − r2) · · · (t − rd)




.

Remark 2.15.Whenr1, . . . , rd are integers,�r1,...,rd
,�r1,...,rd

and their inverse maps are
structure preserving by Lemma2.12.

Now by using�’s (or�’s), we are able to determine the sign of the facets of dilated cyclic
polytopes:

Proposition 2.16. LetP = mCd(T ), wherem ∈ N andT = {t1, t2, . . . , tn}< an integral
ordered set. Let F be a facet of P determined by vertices�d(ti1), �d(ti2), . . . , �d(tid ). Let k
be the smallest element of the set{1,2, . . . , n} \ {i1, . . . , id}, thensign(F ) = (−1)d−k. In
particular,when|T | = n = d + 1, letFk be the facet of P determined by all the vertices of
P except�d(tik ), then fork ∈ [d], sign(Fk) = sign(�k),where�k = (k, k+1, . . . , d) ∈ Sd

andsign(Fd+1) = −1.

Proof. We first consider the case whenm = 1, i.e.P is a cyclic polytope. Without loss of
generality, we assume thati1 < i2 < · · · < id. Consider the polytopeQ = �ti1,...,tid

(P ).

For j = 1,2, . . . , n, the last coordinate of the vertex ofQ which mapped from�d(tj ) is
l(�ti1,...,tid

(�d(tj ))) = (tj − ti1)(tj − ti2) · · · (tj − tid ). Hence the last coordinates of the

vertices of�ti1,...,tid
(F ) are all 0’s. So�ti1,...,tid

(F ) is on the hyperplane obtained by setting
the last coordinate to 0. Sincek is the smallest element not in{i1, . . . , id}, i1 = 1, i2 =
2, . . . , ik−1 = k−1, ik > k.Sotk − til > 0 whenl = 1,2, . . . , k−1; andtk − til < 0 when
l = k, k + 1, . . . , d. Therefore sign(l(�ti1,...,tid

(�d(tk))) = (−1)d−k+1. By using Gale’s

evenness condition[3], it is not hard to see that sign(l(�ti1,...,tid
(�d(tl))) = (−1)d−k+1, for
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all l 
∈ {i1, . . . , id}. Thus we can conclude thatl(�ti1,...,tid
(P )) is nonnegative ifd − k is

odd, and is nonpositive ifd − k is even. Hence�ti1,...,tid
(F ) andF are negative facets if

d − k is odd, and positive facets ifd − k is even. So sign(F ) = (−1)d−k. Forn = d + 1,
it is easy to see that sign(�k) = (−1)d−k = sign(Fk).

Form > 1, we just need to consider the mapx �→ Bti1,...,tid
x + mvti1,...,tid

instead of
�ti1,...,tid

, and then we will have similar results.�

Lemma 2.17. For all d ∈ N, for all s1, . . . , sd ∈ N, let x0 = 1 and Ps1,...,sd =
{(x1, . . . , xd) ∈ Rd | ∀i ∈ [d] : 0�xi �sixi−1}, Rs1,...,sd = �(Ps1,...,sd ). ThenRs1,...,sd =
Ps1,...,sd ∩ {xd > 0} and for alld�2 : Rs1,...,sd = �+(Rs1,...,sd−1, Ps1,...,sd ).

Moreover, the vertices ofPs1,...,sd are



0
0
...

0


 ,




s1
0
...

0


 ,




s1
s1s2
0
...

0




, . . . ,




s1
s1s2
s1s2s3

...

s1s2 · · · sd




and the positive boundary ofPs1,...,sd is just the convex hull of the firstd−1vertices and the
last one. Note the firstd−1vertices span a(d−2)-dimensional space{(x1, . . . , xd)′ | xd =
xd−1 = 0}. HencePB(Ps1,...,sd ) is in the hyperplane spanned by this(d − 2)-dimensional
space and the last vertex.

Proof. The first result is immediate by considering the definition of�.

We haveRs1,...,sd−1 ⊂ Ps1,...,sd−1, so

�+(Rs1,...,sd−1, Ps1,...,sd ) ⊂ �+(Ps1,...,sd−1, Ps1,...,sd ) = �+(�(Ps1,...,sd ), Ps1,...,sd )

= �(Ps1,...,sd ) = Rs1,...,sd .

But for x = (x1, . . . , xd) ∈ Rs1,...,sd , we have thatxd > 0 which implies thatsdxd−1 > 0,
soxd−1 > 0. Therefore�(x) ∈ Rs1,...,sd−1. Thus,x ∈ �+(Rs1,...,sd−1, Ps1,...,sd ). Now we
can conclude thatRs1,...,sd = �+(Rs1,...,sd−1, Ps1,...,sd ). �

Theorem 2.18.Letd ∈ N andT = {t1, t2, . . . , td+1}< be an integral ordered set, then

�(Cd(T )) =
⊕
�∈Sd

sign(�)�−1
t�(1),...,t�(d)

(Rtd+1−t�(1),...,td+1−t�(d) ).

Proof. We proceed by induction ond.Whend = 1, Cd(T ) is just the interval[t1, t2].Then
the only element� ∈ S1 is the identity map.Rt2−t1 = (0, t2 − t1]. And �t1

: x �→ x − t1,

so�−1
t1

: x �→ x + t1. Thus�
−1
t1

((0, t2 − t1]) = (t1, t2] = �([t1, t2]).
Now we assume the theorem is true for dimensions less thand, and we will prove the

case of dimensiond(�2). Let P = �t1,...,td
(Cd(T )), and letvi = �t1,...,td

(�d(ti)), i ∈
[d + 1], be the vertices ofP. Then for i ∈ [d], vi =

(
�d−1(ti)

0

)
and for i = d + 1,
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vd+1 =
(

�d−1(td+1)∏d
i=1(td+1 − ti ))

)
. Since

∏d
i=1(td+1 − ti )) > 0, the last coordinates of all the

points inP are nonnegative. By Proposition2.6, we have that

�(P ) =
⊕

F : a facet ofP
sign(F )�+(�(�(F )), conv(F,�(F ))).

As in Proposition2.16, we letFk be the facet ofCd(T ) determined by all the vertices of
Cd(T ) except�d(tik ), then

�(P ) =
⊕

k∈[d+1]
sign(�t1,...,td

(Fk))�+( �(�(�t1,...,td
(Fk))),

conv(�t1,...,td
(Fk),�(�t1,...,td

(Fk)))).

For k = d + 1, F̃ = �t1,...,td
(Fd+1) = conv({vi}di=1) is on the hyperplaneH0 =

{(x1, . . . , xd)′ ∈ Rd | xd = 0}. So conv(F̃ ,�(F̃ )) is just F̃ . Thus �+(�(�(F̃ )),

conv(F̃ ,�(F̃ ))) is an empty set.
And for k ∈ [d], by Proposition2.16, sign(Fk) = sign(�k), where�k = (k, k +

1, . . . , d) ∈ Sd. Let Tk = T \ {tk}, then�(�t1,...,td
(Fk)) = �(Fk) = Cd−1(Tk), because

�t1,...,td
just changes the last coordinates. It is easy to see that

conv(�t1,...,td
(Fk),�(�t1,...,td

(Fk))) = conv({vi}i 
=k ∪ {v′
d+1}),

wherev′
d+1 =

(
�d−1(td+1)

0

)
is the projection ofvd+1 to the hyperplaneH0.

Hence,

�(P ) =
⊕
k∈[d]

sign(�k)�+(�(Cd−1(Tk)), conv({vi}i 
=k ∪ {v′
d+1})).

For anyk ∈ [d], Tk = {t�k(1), t�k(2), . . . , t�k(d−1), td+1}<. By the induction hypothesis,
we have that

�(Cd−1(Tk)) =
⊕

�∈Sd−1

sign(�)�−1
t�k(�(1)),...,t�k(�(d−1))

(Rtd+1−t�k(�(1)),...,td+1−t�k(�(d−1)) ).

So,

sign(�k)�
−1
t1,...,td

(�(Cd−1(Tk)))

=
⊕

�∈Sd−1

sign(�k)sign(�)�−1
t�k(�(1)),...,t�k(�(d−1))

(Rtd+1−t�k(�(1)),...,td+1−t�k(�(d−1)) )

=
⊕

�∈Sd :�(d)=k

sign(�)�−1
t�(1),...,t�(d−1)

(Rtd+1−t�(1),...,td+1−t�(d−1) ). (let � = �k�)

LetHk be the hyperplane determined by�t1,...,td
(Fk), andH

+
k = {x ∈ Hk | l(x)�0}.

We claim that for all� ∈ Sd with �(d) = k, we have

�−1
t�(1),...,t�(d−1)

(PB(Ptd+1−t�(1),...,td+1−t�(d−1),td+1−t�(d) )) ⊂ H+
k .
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Given this, we can pick a convex polytopeSk ⊂ Hk, such that

(a) The last coordinates of the points inSk are nonnegative;
(b) Sk contains�−1

t�(1),...,t�(d−1)
(PB(Ptd+1−t�(1),...,td+1−t�(d−1),td+1−t�(d) )), for all � ∈ Sd with

�(d) = k;
(c) Sk contains�t1,...,td

(Fk).

Note that�(Hk) contains�(�t1,...,td
(Fk)) = �(Fk) = Cd−1(Tk), which has dimension

d − 1. So�(Hk) = Rd−1.

Hence, by Lemma2.7

�(Cd(T ))

= �−1
t1,...,td

(�(P ))

=
⊕
k∈[d]

sign(�k)�
−1
t1,...,td

(�+(�(Cd−1(Tk)), conv({vi}i 
=k ∪ {v′
d+1})))

=
⊕
k∈[d]

sign(�k)�
−1
t1,...,td

(�+(�(Cd−1(Tk)), conv(Sk,�(Sk))))

=
⊕
k∈[d]

sign(�k)�
−1
t1,...,td

(�+(
⊕

�∈Sd−1

sign(�)�−1
t�k(�(1)),...,t�k(�(d−1))

(Rtd+1−t�k(�(1)),...,td+1−t�k(�(d−1)) ),

conv(Sk,�(Sk))))

=
⊕
k∈[d]

⊕
�∈Sd ,�(d)=k

sign(�)�−1
t1,...,td

(�+(�−1
t�(1),...,t�(d−1)

(Rtd+1−t�(1),...,td+1−t�(d−1) ),

�−1
t�(1),...,t�(d−1)

(Ptd+1−t�(1),...,td+1−t�(d−1),td+1−t�(d) )))

=
⊕
�∈Sd

sign(�)�−1
t1,...,td

�−1
t�(1),...,t�(d−1)

(�+(Rtd+1−t�(1),...,td+1−t�(d−1) ,

Ptd+1−t�(1),...,td+1−t�(d−1),td+1−t�(d) ))

=
⊕
�∈Sd

sign(�)�−1
t�(1),...,t�(d)

(Rtd+1−t�(1),...,td+1−t�(d−1),td+1−t�(d) ).

Thus the claim implies the theorem.
Showing the claim is equivalent to showing that

PB(Ptd+1−t�(1),...,td+1−t�(d−1),td+1−t�(d) ) ⊂ �t�(1),...,t�(d−1)
(H+

k ).

Both�t�(1),...,t�(d−1)
and its inverse only work on the firstd − 1 coordinates of any point in

Rd . Thus�t�(1),...,t�(d−1)
(H+

k ) is just�t�(1),...,t�(d−1)
(Hk)∩ {x ∈ Rd | l(x)�0}. But it is clear

thatPB(Ptd+1−t�(1),...,td+1−t�(d−1),td+1−t�(d) ) is in {x ∈ Rd | l(x)�0}. So it is enough to show
that

PB(Ptd+1−t�(1),...,td+1−t�(d−1),td+1−t�(d) ) ⊂ �t�(1),...,t�(d−1)
(Hk).
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By Lemma2.17,PB(Ptd+1−t�(1),...,td+1−t�(d−1),td+1−t�(d) ) lies in the hyperplaneHwhich is

spannedby{(x1, . . . , xd)′ | xd = xd−1 = 0}and




td+1 − t�(1)
(td+1 − t�(1))(td+1 − t�(2))

(td+1 − t�(1))(td+1 − t�(2))(td+1 − t�(3))

.

.

.

(td+1 − t�(1))(td+1 − t�(2)) · · · (td+1 − t�(d))




.

So we need show that�t�(1),...,t�(d−1)
(Hk) = H. SinceHk is the hyperplane containing

�t1,...,td
(Fk), it is enough to show that�t�(1),...,t�(d−1)

(�t1,...,td
(Fk)) = �t�(1),...,t�(d)

(Fk) is
contained inH. However,Fk = conv(�d(Tk)). Meanwhile, by Remark2.14, we have

�t�(1),...,t�(d)
(�d(t)) =




(t − t�(1))

(t − t�(1))(t − t�(2))
...

(t − t�(1))(t − t�(2)) · · · (t − t�(d))


 .

Since �(d) = k, for any i ∈ [d], i 
= k, �t�(1),...,t�(d)
(�d(ti)) has the last two

coordinates equal to 0. And for i = d + 1, �t�(1),...,t�(d)
(�d(td+1)) is exactly the last vertex

of Ptd+1−t�(1),...,td+1−t�(d−1),td+1−t�(d) , which completes the proof the claim and hence the
theorem. �

Remark 2.19. If we define�m,r1,...,rd
: x �→ Ar1,...,rd x+mur1,...,rd , then similarly we can

prove that

�(mCd(T )) =
⊕
�∈Sd

sign(�)�−1
m,t�(1),...,t�(d)

(mRtd+1−t�(1),...,td+1−t�(d) ).

Corollary 2.20.

L(�(mCd(T ))) =
⊕
�∈Sd

sign(�)L(�−1
m,t�(1),...,t�(d)

(mRtd+1−t�(1),...,td+1−t�(d) )).

Hence,

|L(�(mCd(T )))| =
∑
�∈Sd

sign(�)|L(mRtd+1−t�(1),...,td+1−t�(d) )|.

It is easy to see thatmRs1,...,sd = Rms1,s2,...,sd . Moreover,

|L(Rs1,...,sd )| =
s1∑

x1=1

s2x1∑
x2=1

· · ·
snxn−1∑
xn=1

1.

Therefore, it is natural to look at the following:

Lemma 2.21. For any nonnegative integersa1, a2, . . . , an, let

h(a1, a2, . . . , an) =
a1∑

x1=1

a2x1∑
x2=1

· · ·
anxn−1∑
xn=1

1.
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Then the only highest degree term of h is1
n!a

n
1a

n−1
2 an−2

3 · · · an. This is also true when we
consider h as a polynomial just in the variablea1.

Proof. We will prove it by induction onn.
Whenn = 1, h(a1) = ∑a1

x1=1 1 = a1. Thus the lemma holds.
Assume the lemma is true forn, and note thath(a1, a2, . . . , an+1) = ∑a1

x1=1

h(a2x1, a3, . . . , an+1).By assumption,1
n!a

n
2a

n−1
3 · · · an+1x

n
1 is the only highest degree term

ofh(a2x1, a3, . . . , an+1)whenweconsider it as polynomial both iny = a2x1, a3, . . . , an+1
and in y. This implies that 1

n!a
n
2a

n−1
3 · · · an+1x

n
1 is the only highest degree term of

h(a2x1, a3, . . . , an+1) when we consider it both ina2, a3, . . . , an+1 and inx1. Then our
lemma immediately follows from the fact that the highest degree term of

∑a1
x1=1 x

n
1 is

1
n+1a

n+1
1 . �

Proposition 2.22. For any nonnegative integersa1, a2, . . . , an, letHm(a1, a2, . . . , an) =∑
�∈Sn sign(�)h(ma�(1), a�(2) . . . , a�(n)). Then

Hm(a1, a2, . . . , an) = mn

n!
n∏

i=1

ai
∏

1� i<j �n

(ai − aj ).

Proof. Clearly if any ofai ’s is 0, thenHm(a1, . . . , an) = 0. Also for 1� i < j �n, Hm

changes sign when we switchai andaj , i.e.,

Hm(. . . , ai, . . . , aj , . . .) = −Hm(. . . , aj , . . . , ai, . . .).

Therefore,Hm(a1, . . . , an) must be a multiple of

n∏
i=1

ai
∏

1� i<j �n

(ai − aj ),

which has degree12n(n + 1).
Sonow it is enough to show thatHm(a1, . . . , an) is of degree12n(n+1)and the coefficient

of an
1a

n−1
2 an−2

3 · · · an in Hm(a1, . . . , an) is mn

n! , which follows from Lemma2.21. �

Proof of Theorem 2.9. By Corollary2.20,

|L(�(mCd(T )))| =
∑
�∈Sd

sign(�)|L(mRtd+1−t�(1),...,td+1−t�(d) )|

= Hm(td+1 − t�(1), td+1 − t�(2), . . . , td+1 − t�(d))

= md

d!
d∏

i=1

(td+1 − ti )
∏

1� i<j �d

(ti − tj )

= md

d!
∏

1� i<j �d+1

(ti − tj ) = Vol(mCd(T )). �
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As we argued earlier in our paper, the proof of Theorem2.9 completes the proof of
Proposition2.2and thus proof of our main Theorem1.2.

3. Examples and question

In this section, we are going to show some examples to make some of the statements or
their proofs in the last section more clear. We will use the cyclic polytopeP = Cd(T ),

whered = 3, T = {1,2,3,4} throughout this section. Letvk = �d(k) be theith vertex of
P andFk = conv({v1, v2, v3, v4} \ vk).

Example 3.1.According to Proposition2.16, sign(F1) = sign((1,2,3)) = 1, sign(F2) =
sign((2,3)) = −1, sign(F3) = sign((3)) = 1 and sign(F4) = −1. So F1 andF3 are
positive facets whileF2 andF4 are negative facets.�(P ) = P \ (F2 ∪ F4).

Example 3.2(Example of structure preserving map).

�1,2,3:x �→

 1 0 0

0 1 0
11 −6 1


 x +


 0

0
−6


 , so�1,2,3(�3(t)) =


 t

t2

(t − 1)(t − 2)(t − 3)


 .

In particular,�1,2,3(v1) = (1,1,0)′,�1,2,3(v2) = (2,4,0)′,�1,2,3(v3) = (3,9,0)′, and
�1,2,3(v4) = (4,16,6)′. Therefore,�1,2,3(P ) = conv((1,1,0)′, (2,4,0)′, (3,9,0)′,
(4,16,6)′). Because�1,2,3 is structure preserving, sign(F ′

k) = sign(Fk), whereF ′
k =

�1,2,3(Fk).

Example 3.3. �1,2,3(P ) is a polytope that satisfies the hypothesis in the Proposition2.6,
so we should have

�(�1,2,3(P )) =
⊕
k∈[4]

sign(F ′
k)�

+(�(�(F ′
k)), conv(F

′
k,�(F

′
k))).

Now we check it:
conv(F ′

4,�(F
′
4)) = conv((1,1,0)′, (2,4,0)′, (3,9,0)′). It is just a triangle in the hyper-

planeH0 = {(x1, x2, x3)′ | x3 = 0}. Therefore,

�+(�(�(F ′
4)), conv(F

′
4,�(F

′
4))) = ∅.

�(F ′
1) = conv((2,4)′, (3,9)′, (4,16)′) = C2(2,3,4) is a triangle, whose positive facet

is conv(�2(2), �2(4)) and negative facets are conv(�2(2), �2(3)) and conv(�2(3), �2(4)).
Hence,

�(�(F ′
1)) = C2(2,3,4) \ (conv(�2(2), �2(3)) ∪ conv(�2(3), �2(4))),

conv(F ′
1,�(F

′
1)) = conv((2,4,0)′, (3,9,0)′, (4,16,0)′, (4,16,6)′).
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Therefore,

�+(�(�(F ′
1)), conv(F

′
1,�(F

′
1)))

= �(conv((2,4,0)′, (3,9,0)′, (4,16,0)′, (4,16,6)′))
��(conv((3,9,0)′, (4,16,0)′, (4,16,6)′)).

Similarly,

�+(�(�(F ′
2)), conv(F

′
2,�(F

′
2)))

= �(conv((1,2,0)′, (3,9,0)′, (4,16,0)′, (4,16,6)′))
��(conv((3,9,0)′, (4,16,0)′, (4,16,6)′)).

And

�+(�(�(F ′
3)), conv(F

′
3,�(F

′
3)))

= �(conv((1,2,0)′, (2,4,0)′, (4,16,0)′, (4,16,6)′))
��(conv((2,4,0)′, (4,16,0)′, (4,16,6)′)).

Thus, ⊕
k∈[4]

sign(F ′
k)�

+(�(�(F ′
k)), conv(F

′
k,�(F

′
k)))

=
⊕
k∈[3]

sign(F ′
k)�

+(�(�(F ′
k)), conv(F

′
k,�(F

′
k)))

= �(conv((2,4,0)′, (3,9,0)′, (4,16,0)′, (4,16,6)′))
��(conv((3,9,0)′, (4,16,0)′, (4,16,6)′))
�(�(conv((1,2,0)′, (3,9,0)′, (4,16,0)′, (4,16,6)′))
��(conv((3,9,0)′, (4,16,0)′, (4,16,6)′)))
⊕(�(conv((1,2,0)′, (2,4,0)′, (4,16,0)′, (4,16,6)′))
��(conv((2,4,0)′, (4,16,0)′, (4,16,6)′)))

= �(conv((1,2,0)′, (2,4,0)′, (4,16,0)′, (4,16,6)′))
��(conv((2,4,0)′, (4,16,0)′, (4,16,6)′))
⊕�(conv((2,4,0)′, (3,9,0)′, (4,16,0)′, (4,16,6)′))
��(conv((1,2,0)′, (3,9,0)′, (4,16,0)′, (4,16,6)′))

= �(conv((1,2,0)′, (2,4,0)′, (3,9,0)′, (4,16,0)′, (4,16,6)′))
��(conv((1,2,0)′, (3,9,0)′, (4,16,0)′, (4,16,6)′))

= �(�1,2,3(P ))

This agrees with Proposition2.6.

Wewill illustrateexplicitlyhowweget the formula inTheorem2.18forP = C3(1,2,3,4)
in the next example:
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Example 3.4.According to Proposition2.6or Example3.3, we have:

�(�1,2,3(P )) =
⊕
k∈[3]

sign(F ′
k)�

+(�(�(F ′
k)), conv(F

′
k,�(F

′
k)))

⇒ �(P ) =
⊕
k∈[3]

sign(F ′
k)�

−1
1,2,3�

+(�(�(F ′
k)), conv(F

′
k,�(F

′
k))).

�−1
1,2,3�

+(�(�(F ′
1)), conv(F

′
1,�(F

′
1)))

= �−1
1,2,3(�(conv((2,4,0)′, (3,9,0)′, (4,16,0)′, (4,16,6)′))

��(conv((3,9,0)′, (4,16,0)′, (4,16,6)′)))
= �(conv((2,4,8)′, (3,9,27)′, (4,16,58)′, (4,16,64)′))

��(conv((3,9,27)′, (4,16,58)′, (4,16,64)′))

�2,3,1: x �→

 1 0 0

−5 1 0
11 −6 1


 x +


 −2

6
−6


 ,

so�2,3,1(�3(t)) =

 (t − 2)

(t − 2)(t − 3)
(t − 1)(t − 2)(t − 3)


 .

And �3,2,1(x) is just �2,3,1(x) − (1,0,0)′. Hence,�2,3,1(�
−1
3,2,1(x)) = x + (1,0,0)′.

Therefore,

�2,3,1(�
−1
1,2,3�

+(�(�(F ′
1)), conv(F

′
1,�(F

′
1))))

= �(conv((0,0,0)′, (1,0,0)′, (2,2,0)′, (2,2,6)′))
��(conv((1,0,0)′, (2,2,0)′, (2,2,6)′))

= �(conv((0,0,0)′, (2,0,0)′, (2,2,0)′, (2,2,6)′))
��(conv((1,0,0)′, (2,0,0)′, (2,2,0)′, (2,2,6)′))

= R2,1,3��2,3,1(�
−1
3,2,1(�(conv((0,0,0)′, (1,0,0)′, (1,2,0)′, (1,2,6)′))))

= R2,1,3��2,3,1(�
−1
3,2,1(R1,2,3)).

Thus,

�−1
1,2,3�

+(�(�(F ′
1)), conv(F

′
1,�(F

′
1))) = �−1

2,3,1(R4−2,4−3,4−1)��−1
3,2,1(R4−3,4−2,4−1).

We will have similar results forF2 andF3. Therefore,

�(P ) =
⊕
�∈S3

sign(�)�−1
t�(1),t�(2),t�(3)

(Rt4−t�(1),t4−t�(2),t4−t�(3) ),

which agrees with Theorem2.18.

Now we will use Theorem1.2to calculatei(C3(1,2,3,4),m) :
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Example 3.5.According to Theorem1.2

i(C3(T ),m) =
3∑

k=0

Volk(Ck(T ))mk.

C3(T ) itself is a simplex, so

Vol3(C3(T )) = 1

3!
∏

1� i<j �4

(j − i) = 2.

C2(T ) can be decomposed into simplicesC2(1,2,3) andC2(1,3,4), thus

Vol2(C2(T )) =Vol2(C2(1,2,3)) + Vol2(C2(1,3,4))

= 1

2! [(2− 1)(3− 1)(3− 2) + (3− 1)(4− 1)(4− 3)] = 4.

C1(T ) is just an interval[1,4], so Vol1(C1(T )) = 4− 1 = 3.
Therefore,i(C3(1,2,3,4),m) = 2m3 + 4m2 + 3m + 1.

Since our theorem gives a nice form of Ehrhart polynomials of cyclic polytopes, it is
natural to ask the following:

Question 3.6.Are there other integral polytopes which have the same form of Ehrhart
polynomials as cyclic polytopes? In other words, what kind of integrald-polytopesP are
there whose Ehrhart polynomials will satisfy the following?

i(P ,m) = Vol(mP ) + i(�(P ),m) =
d∑

k=0

Volk(�(k)(P ))mk,

where�(k) is the map which ignores the lastk coordinates of a point.
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