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Abstract

The Ehrhart polynomial of an integral convex polytope counts the number of lattice points in dilates
of the polytope. In (Coefficients and roots of Ehrhart polynomials, preprint), the authors conjectured
that for any cyclic polytope with integral parameters, the Ehrhart polynomial of it is equal to its
volume plus the Ehrhart polynomial of its lower envelope and proved the case when the dimension
d = 2. In our article, we prove the conjecture for any dimension.
© 2004 Elsevier Inc. All rights reserved.
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1. Introduction

For anyintegral convex polytop#, thatis, a convex polytope whose vertices have integral
coordinates, any positive integer € N, we usei (P, m) to denote the number of lattice
points inm P, wherem P = {mx | x € P} isthe mth dilate polytopef P. In our paper, we
will focus on a special class of polytopes, cyclic polytopes, which are defined in terms of
the moment curve:

Definition 1.1. Themoment curve ifit? is defined by

t
d 2
Vi i R— R t— v(t) =
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Let T = {r1,...,t,}< be a linearly ordered set. Then tlogclic polytopeCy(T) =
Cy(t1, ..., t,) is the convex hull conw, (1), va(2), . .., v4(t,)} of n > d distinct points
vq(t;), 1<i <n, onthe moment curve.

The main theorem in our article is the one conjectureld jriConjecture 1.5]

Theorem 1.2. For any integral cyclic polytop€,(T),
i(Ca(T),m) =Vol(mCy(T)) +i(Cq—1(T), m).

Hence

d

d
i(Ca(T), m) =Y Volx(mCi(T)) = Y Volx(Cx(T)m",
k=0 k=0

where Vol (mCy(T)) is the volume ofnCy(T) in k-dimensional spaceand we let
Volo(mCo(T)) = 1.

One direct result of Theoreth?2is thati (C4(T), m) is always a polynomial im:. This
result was already shown by Eugéne Ehrhart for any integral polytope in[2P6Phus,
we calli (P, m) the Ehrhart polynomial d® whenP is an integral polytope. There is much
work on the coefficients of Ehrhart polynomials. For instance it is well known that the
leading and second coefficientsigfP, m) are the normalized volume & and one half
of the normalized volume of the boundary Bf But there is no known explicit method
of describing all the coefficients of Ehrhart polynomials of general integral polytopes.
However, because of some special properties that cyclic polytopes have, we are able to
calculate the Ehrhart polynomial of cyclic polytopes in the way described in Theb2zm

In this paper, we use a standard triangulation decomposition of cyclic polytopes, and
careful counting of lattice points to reduce Theorér to the case: = d + 1, (Theo-
rem 2.9). We then prove Theorer®.9 with the use of certain linear transformations and
decompositions of polytopes containing our cyclic polytopes.

2. Statements and proofs

All polytopes we will consider are full-dimensional, so for any convex polyt&peve
used to denote both the dimension of the ambient sgatand the dimension aP. Also,
We used P and! (P) to denote the boundary and the interiorRyfrespectively.

For simplicity, for any regiorR ¢ R?, we denote byC(R) := R N Z¢ the set of lattice
pointsinR.

Consider the projection : R? — R?~! that forgets the last coordinate. [lh, Lemma
5.1], the authors showed that the inverse image undéa lattice pointy € Cy_1(T)NZ¢~1
is a line that intersects the boundary@f(7') at integral points. By a similar argument, itis
easy to see that this is true when we replace the cyclic polytopes by their dilated polytopes.
Note thatr(mC,;(T)) = mCy_1(T), so for any lattice poiny in mC;_1(T) the inverse
image underr intersects the boundary at lattice points.
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Definition 2.1. For anyx in a real space, ld{x) denote the last coordinate of

For any polytopeP c R¢ and any pointy € R, let p(y, P) = n~1(y) N P be the
intersection oP with the inverse image ofunderr. Let p(y, P) andn(y, P) be the point
in p(y, P) with the largest and smallest last coordinate, respectivalyylf P) is the empty
set, i.e.,y € n(P), then letp(y, P) andn(y, P) be empty sets as well. Clearly(y, P)
andn(y, P) are on the boundary df. Also, we letp* (y, P) = p(y, P) \ n(y, P), and for
anyS ¢ R p*(S, P) = Uyes pT (3, P).

Define PB(P) = Uyen(P)’p(y, P) to be thepositive boundaryof P; NB(P) =
Uyen(,)) n(y, P)tobethenegative boundargf PandQ(P) = P\NB(P) = p™ (n(P), P)
= Uyen(P) p*(y, P) to be thenonnegative pardf P.

For any facefF of P, if F has an interior point in the positive boundaryf (it is easy
to see thatF ¢ P B(P)) then we callF a positive facebf P and define the sign df as
+1 : sign(F) = +1. Similarly, we can define theegative facetef P with associated
sign—1.

By the argument we gave before Definiti@ril, = induces a bijection of lattice points
betweenN B(mC;(T)) andn(mCy(T)) = mCq—1(T). Hence, Theorem.2is equivalent
to the following proposition:

Proposition 2.2. Vol(mCy(T)) = |L(QmC4(T)))|.

From now on, we will consider any polytopes or setsragtisetswhich allownegative
multiplicities.We can consider any element of a multiset as a pain), wheremis the
multiplicity of elementx. Then for any multisetd/1, M» and any integers:, n andi, we
define the following operators:

(i) Scalar productiMy =i - M1 = {(x,im) | (x, m) € M1}.
(i) Addition: M1 & M2 = {(x,m +n) | (x,m) € M1, (x,n) € M>}.
(i) Subtraction:M1EOM» = M1 ® ((—1) - M?).

Itis clear that the following holds:

Lemma 2.3. ()VRy,.... Ry C RY Vi, ....ix € Z: L5 1ijRj) = B_1i;L(R)).
(b) For any polytopeP ¢ R, VR, ..., Re C R L Viy, ... ix e Z:

k

k
p [ EPiiR;. P | =EPijpT(R;. P).
j=1

j=1

Let P be a convex polytope. For agyan interior point oft(P), sincer is a continuous
open map, the inverse image ytontains an interior point oP. Thusn~1(y) intersects
the boundary oP exactly twice. For any a boundary point of(P), again becausgis an
open map, we have thaty, P) c 0P, sop(y, P) = n~1(y) N 0P is either one point or a
line segment. We hope thaty, P) always has only one point, so we define the following
polytopes and discuss several properties of them.
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Definition 2.4. We call a convex polytop® a nice polytope with respect ta if for any
y € dn(P), |p(y, P)| = 1 and for any lattice point € n(P), n~1(y) intersects)P at
lattice points.

Lemma 2.5. A nice polytope P has the following properties

() Foranyy € I(n(P)), n=X(y) NP = {p(y, P),n(y, P)}. In particular, if y is a
lattice point thenp(y, P) andn(y, P) are each lattice points
(i) Foranyy e on(P), n~1(y)N3P = p(y. P) = p(y, P) =n(y, P),sop™(y, P) = 0.
In particular, when y is a lattice pointo(y, P) is a lattice point as well
(i) £ andp™ commute: foranyk ¢ R, L(pT (R, P)) = pH(L(R), P).
(iv) LetR be aregion containing(n(P)). Then

QP)=pt(R.PY=EPr"(y. P).

YER

Moreover

ILQPYI= Y 1p(y, P)) —1(n(y, P)).
veL(R)

(By conventionif y € n(P), we letl(p(y, P)) —l(n(y, P)) =0.)

(v) If P is decomposed into nice polytopBsU - - - U Py, thenQ(P) = EBf-‘zl Q(P;), so
LOQP)) = Bi_; LQP)).

(vi) The set of facets of P are partitioned into the set of positive facets and the set of negative
facetsi.e. every facet is either positive or negative but not both

Proof. The first three and last properties are immediately true. And the fourth one follows
directly from the second one. The fifth property can be checked by considering the definition
of Q. O

By using these properties, we are able to give the following proposition about a nice
convex polytope:

Proposition 2.6. Let P be a nice convex polytope with respect uch thatz(P) is also
nice, and all the points in P have nonnegative last coordinate. Suppose further that for any
facet F of P, n(F) is a nice polytope with respect to Then

aPy= P signF)ptQ(F)), conuF, n(F))),

F:a facet of P

whereconv(F, n(F)) denotes the convex hull of the getU {(y’,0)' | y € n(F)}, i.e. the
region between F and its projection onto the hyperpléfa, ..., x;)’ | x; = 0}. (Note
for any vectorw, we use’ to denote its transpose. So for a vertical vecto(y’, 0)' is just
the vector obtained from y by attaching a zero to the bottom)of
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Proof. A special case of Lemm25/(iv) is whenR = Q(n(P)), so we have
QP) = pTQ@(P).P)= P pt0.P).
yeQ(n(P))

Now for any pointsa and b, we use(a, b] to denote the half-open line segment
betweera(excluding) andd(including). Thenp™ (y, P) = (n(y, P), p(y, P)1 = (((y', 0)/,
p(v, P)1O(',0), n(y, P)]). Therefore,

QP)= @ (0, py. PISW, 0, n(y, P

yeQ(n(P))
= ( P .0, p0. P)]) D ( P D00, P)]) :
yeQ(n(P)) yeQ(n(P))
Let F1, F>, ..., Fy; be all the positive facets ¢ and Fy.1, ..., F; be all the negative

facets. Then it is clear that(F1) U n(Fo) U - - - U n(Fy) andn(Fp41) U - - - U m(Fy) both
give a decomposition of(P). Therefore by Lemma&.5(v), we have thaQl(n(P)) =
Bi_1 Qn(F) = By Qn(F))). Hence,

14
P .. p0.PI=FH P .0 pG. Pl

yeQ(n(P)) i=1 yeQ(n(F;))
14
=@ rtQ(F)), cONUF;, (Fi))).
i=1

Similarly, we will have

k
B V0. PI= P ~DptQ@(F)). conMF;, u(F)))).

yeQ(n(P)) j=t+1

Thus, by putting them together, we get

Q(P) = EB Sign(F)p (Q(n(F)), conU(F, ne(F))). U
F:a facet of P

Inthe last proposition, we used a new notation g@hwi( F)) to denote certain polytopes.
For polytopes that can be written in this way, we have the following lemma, whose proof
is trivial:

Lemma 2.7. Let H be a hyperplane ift? such thatt(H) = R?1. LetS1 C S be two
convex polytopes inside H and the last coordinates of all of their points are nonnegative.
Then for anyy € n(S1), p™ (v, conv(S1, ©(S1))) = p™(y, cONU(S2, T(S2))).

Having discussed some properties of nice polytopes with respactite come back to
the dilated cyclic polytopes which are our main interest and show that they are nice:
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Lemma 2.8. mCy4(T) is a nice polytope with respect to

Proof. We already argued thaiC,(T) satisfies the second condition to be nice. So it is
left to check thatp(y, C4(T))| = 1 foranyy € dCy—_1(T).

Lety = (y1, y2, ..., ya—1) and supposgis on a facef of mC,_1(T) and without loss
of generality, letnv,_1(r1), mvg_1(t2), ..., mvq_1(t4—1) be thed — 1 vertices ofF. Then
there existly, ..., 24_1 € R such thaty = foj dimva_1(tj) andZ‘f =1

Letx € n*l(y)mmcd(T) Thereexisty, ..., 4, € R>osuchthak = }_; Z;mva(t))
and)"’_, ] =1.Theny = n(x) = Z'I’ l}/mvd 1(¢). Sincey is on the facef, )/j =0

unless K j<d — 1. Thusy = Y93 Aimvg_1(tj) and Y 921 7, = 1. Therefores; =

A’] 1<j<d -1 Hencex = Zle Zjmvq(t;) is the only point it~ TyynmcCy(T). O

We know that for any cyclic polytop€,(T) withn = |T| > d + 1, we can decompose
it into n — d cyclic polytopesP, U --- U P,_4, which is a triangulation of";(7") and
where P;’s are all defined byd + 1)-element integer sets. E.g., the pulling triangulation
of [4] has this property. Therefore by the fourth property in Len®r@ we have that
LQC4(T))) = U= LOQ(P)). Thus|L(Q(P))| = Y, [L(Q(P)))|. Note that we also
have Vol Cy(T)) = Z;‘:‘f Vol (P;). We conclude that to prove Propositigr, it is enough
to prove the following:

Theorem 2.9. Foranyintegersets Twith=|T|=d + 1, Vol (mC4(T))=|L(Q(mCy(T)))|.

Definition 2.10. Amap¢ : R? — R? is structure preservingf it preserves volume and it
commutes with the following operations:

(i) £ :taking lattice points of a regioR C R?;
(i) conv : taking the convex hull of a collection of points;
(i) Q : taking the nonnegative part of a convex polytope;
(iv) P B :taking the positive boundary of a convex polytope;
(v) N B :taking the negative boundary of a convex polytope.

Remark 2.11. Hereq commuting with conv implies (or is equivalent to) that for any set of
pointsxy, ..., x; € Re, andforanyly, ..., 4 € R>owith Zle Ai =1, T(Zf?:1 Aixi) =
Zf.‘zl AT (x;). Thereforep is an affine transformation, which can be defined hy a d
matrixA and a vector € R? : T(x) = Ax + u. Moreover, commuting withPB andNB
implies thatp preserves the positive facets and negative facets of a convex polytope.

Lemma 2.12. Let A be ad x d integral lower triangular matrix withl’s on its diagona|
and u be an integral vector i®?. Theng : x — Ax + u gives a map which is structure
preserving and so doesgy~1. Therefore ¢ is a bijection fromz“ to Z¢. Hence for any
subsets € RY, |£(S)| = |L(¢(9))].

Moreover, for anyy € RY~1, if we definep(y) = Ay + i, whereA is the left upper
(d — 1) x (d — 1) matrix of A andii = n(u), thenp™(@(y), (P)) = @(p*(y, P)), for
any polytopeP.
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Proof. The determinant oA is 1, henceg is volume preserving. It is easy to check that
¢ commutes withZ and conv To show thatp commutes witl2, P B andN B, it suffices

to show that for alk1, xo € R? with 7(x1) = n(x2) andi(x1) > [(x2), thenz(p(x1)) =
(p(x2)) andl(p(x1)) > [(p(x2)). Thisis not hard to check using the fact tidt a lower
triangular matrix with 1’s on its diagonal. Henegjs structure preserving.

Note thatp ! mapsxto A~1x — A~1u. But we know thatd—1 is also an integral lower
triangular matrix with 1's on its diagonal andA~1u is an integral vector. Sp—! is
structure preserving as well.

Itis clear thatp = 7 o @ o 71, which implies thatt=1 o p = ¢ o 7~ 1. So we have

xeppt,P) & o) epty, P =ntNP
& x e (M NEP)=1"1d»)) N e(P)
& xept @y, o). O

Now for any real numbers, ro, .. ., rg, we consider the x d lower triangular matrices

.. i dei_i(r1, ... 1), =],
Arl,‘..,f’d(l’]): {é ) ! j( ! i) Z1

i<j
and
1, i=j,
By g, j) =10, o i #j&i <d,
D' ei—jlr1,....r1), j#i=d,
whereey (r1, ..., 1) = 3 i iy, TiaTip -+ - Ty 1S thekth elementary symmetric function
inrl,...,rl.

For simplicity, we allow a map originally defined d&f’ to work in higher dimension,
by applying the map to the first coordinates. Then it is not hard to see tHaf ,, =

Artpra—1Brivrg = Bri,orgArgra -

,,,,,

—r —e1(r1)
rirp e2(ry, 12)
Upy...ry = —r1rars = —e3(r1, 72, 13)
(=Dr1ra---rq (=D%q(r1,r2, ..., 7a)
and
0 0
0 0
Ur]_,. rqg — : = :
0 0
(=Drira-rg (—Deq(r1,r2, ..., 1a)

Similarly, we allow the addition operation between two vectors of different dimensions by
adding the lower dimension one to the first corresponding coordinates of the higher one.
Thusaurl,...,rd =Ury
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Nowwe definemapg,, ., x> Ay Xx+up,  ,a0de, . x> By X+
ry- Unlikg @ry...ry> Pry. ., does not depend on the orderrgb. In other words, for
any permutation € Sy, ¢, ., = Pro oy

Note thatp,, ., only changes theth coordinate of a vector, so we have the following
lemma:

..........

Lemma 2.13. Pryvrg = Pro. vy 1 © (/)rl

Remark 2.14. When we considep,, , and¢, . operating on the moment curve,

we have
t (t —r1)
2 (t = r))(t = r2)
Dre,.ra Va () = Ary, .y . FUpy, g = . )
1 (t—=r)@—ra)---(t —rq)
; t
12 a
d)rlﬂ---»"d va(1)) = Brl ..... rd . + Urq,rg = :
: (A1
4
(t=r)(t—ra)---(t —rq)
Remark 2.15. Whenry, ..., rq are integersy,, .. ¢,, ., andtheir inverse maps are

structure preserving by Lemn2al2

Now by usinge’s (or ¢'s), we are able to determine the sign of the facets of dilated cyclic
polytopes:

Proposition 2.16. Let P = mCy4(T), wherem € N andT = {1, 12, ..., t,} < an integral
ordered set. Let F be a facet of P determined by vertig€s, ), va(fi,), . .., va(ti,). Letk

be the smallest element of the &&t2, ..., n} \ {i1, ..., iq}, thensign(F) = (—1)¢*.In
particular, when|T| = n = d + 1, let F}, be the facet of P determined by all the vertices of
P excepty,(1;,), then fork € [d], sign(Fy) = sign(ay), whereoy, = (k. k+1,...,d) € Sy
andsign(Fy41) = —1.

Proof. We first consider the case when= 1, i.e. P is a cyclic polytope. Without loss of
generality, we assume that < i> < --- < ig. Consider the polytop@ = ‘15:,-1 ,,,,, i, (P)-
Forj =1,2,...,n, the last coordinate of the vertex @which mapped fromv,(z;) is

,,,,, i va(t))) = (t; — ti)(; — t;,) - - (t; — t;,). Hence the last coordinates of the

,,,,,

the last coordinate to.@®incek is the smallest element not {iy, ..., iz}, i1 = 1,i> =
2,...,ig—1=k—1iy > k.Soty —1;, > Owhenl = 1,2, ..., k—1 andy —t;, < Owhen
I =kk+1 ... .d Therefore sigt(¢, ., (va(t))) = (—1)?-*+1 By using Gale’s

,,,,,
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,,,,,

,,,,,,
d — k is odd, and positive facetsdf — k is even. So sig(F) = (=14 k. Forn=d+1,
it is easy to see that sigey) = (—1)?~* = sign(Fy).

Form > 1, we just need to consider the map— By, x +mvg instead of

qﬁt .... - and then we will have similar results[]

Lemma 2.17.For all d € N, for all s1,...,5¢4 € N, letxo = 1 and Py, =
{(x1,...,xq) € Rd | Vi e[d]: 0<x; <sixi— l} RA]_ ,,,,, = Q(Psl ,,,,, 1) ThenRsl ,,,,, Sqa =
P, sdﬂ{xd >0landforalld>2: Ry, s, =p (RS1 ,,,,, 1> Pstoosa)-

Moreover, the vertices oy, ,, are

S s
0 51 1 1
5152 5152
0 0
0 o §15253
0 0 ’
0 §182 -+ - 84

and the positive boundary &, ., is just the convex hull of the firgt— 1 vertices and the
last one. Note the firgt— 1 vertices span &/ — 2)-dimensional spacfxi, ..., xg) | xg =
xq—1 = 0}. HenceP B(Py,, . 4,) is in the hyperplane spanned by tliis— 2)-dimensional
space and the last vertex.

Proof. The first result is immediate by considering the definitiofof
We haveRy,, s, 1 C Psy...5,1> SO

p+(Rsl ..... Sd— 1’ ..... sd) cp (Psl L Sd—1° Psl,...,sd) = P+(7I(Ps1 Sd) Psl ..... d)
= Q(Psl ,,,,,, S, d) = sl,...,sd-
Butforx = (x1, ..., x4) € Ry, 5,, We have thak, > 0 which implies thaksx,_1 > 0,

S0xg—1 > 0. Thereforen(x) € Ry, 5,4- Thus,x € P+(R‘91,...,sd_1a Py, .. s;)- Now we
can conclude thaky, .. s, = P (Ryy...5u1> Poysy)- O

Theorem 2.18.Letd € NandT = {r1, 12, ..., t4+1} < be an integral ordered sgthen

.....

oESy

Proof. We proceed by induction ah Whend = 1, C4(T) is just the intervalzy, t2]. Then
the only element € Sy is the identity mapR,,—,, = (0,72 —11]. And ¢, : x > x — 1,
s0¢;, i x > x 411, Thusg, (0, 12 — 11]) = (11, 12] = Q([12, 12]).

Now we assume the theorem is true for dimensions lessdhand we will prove the
case of dimensiod(>2). Let P = ¢, , (Ca(T)), and letv; = ¢, (va(ti)),i €

[d + 1], be the vertices oP. Then fori € [d], v; = (vd‘é(ti)) and fori = d + 1,

..........
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Va—-1(ta+1)

Vd+1 = ( d
[[i=1ta+1 — 1))
points inP are nonnegative. By Propositi@6, we have that

> . Since]‘[?zl(tdﬂ —1;)) > 0, the last coordinates of all the

Q(P) = @ Sign(F)p* (Q(n(F)), CONF, (F))).
F: a facet ofp

As in Propositior2.16 we let Fy; be the facet o€, (T) determined by all the vertices of
C4(T) exceptvy(t;,), then

..........

W (FO)).

.....

Fork =d+1 F = ¢, (Far1) = conv{y;}¢_,) is on the hyperplandly =
{((x1,...,x3) € RY | x4 = 0}. So condF, n(F)) is just F. Thus pt(Q(n(F)),
conv(F, n(F))) is an empty set.

And for k € [d], by Proposition2.16 sign(Fy) = sign(oy), whereoy = (k,k +
1,...,d) € Sg. LetTy = T\ {t}, thenn(¢p,, , (Fr)) = n(Fi) = Ca-1(Ty), because
¢y,....1, Just changes the last coordinates. It is easy to see that

,,,,,

wherev), ; = (legd“) ) is the projection ofy.,1 to the hyperplanéZo.
Hence,
Q(P) = P sign(or) p™ (Q(Cy-1(Ti)). coM({v; )izt U {v)41}1)).-
keld]
For anyk € [d], Tk = {t5, (1), to,(2): - - - » top(d—1)- ta+1} <. By the induction hypothesis,

we have that
_ ; -1
Q(Caq-1(Ty)) = @ SIOND Py, st a1y Rlar11o @)ttt 1 =t a1+
T€SH-1

So,

.....

— i i -1
- @ sign(ax)sign(t) (/)tgk (@(1))s Loy (x(d—1)) (thJrl*lUk(r(l)) sensld 41 1oy (x(d—1)) )
TES /1

—_— 1 _l =
= @ S|gr(0)§0t(‘_(l)"“’tn<d71> (th+1—fa(1),.‘-,ld+1—fa(d—1))' (leto = ox7)
cgeSq:0(d)=k

yenes

We claim that for allb € S; with o(d) = k, we have

-1 +
(Pta(l),...,t,,<d,1,(PB(Ptd+1*ta(1),.‘.,td+1*fa(d71),td+1*ln(d))) c Hk :
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Given this, we can pick a convex polytofge C Hi, such that

(&) The last coordinates of the pointsSpare nonnegative;
(b) Sk containS(p,:_(ll) ,,,,, tg(d,l)(PB(Ptd+rtg<1),...,rd+rta<d71>,td+1fta<d>))» for all 0 € S; with
o(d) =k;

Note thatr(Hy) containsn(¢,, . (Fr)) = n(Fx) = Ca-1(Ty), Which has dimension
d — 1. Son(Hy) = R 1,
Hence, by Lemm&.7

Q(Cq(T))
= ;1. (Q(P))

.....
.....

.....

TeSy-1

conU( Sk, m(Sk))))
H -1 -1
= @ @ Slgn(ﬂ) (pbzl ,,,,, tq (P+ ((pfa(l) ,,,,, to(d—1) (th+1—la(1) ,,,,, td+1—1g(d-1) ) )

keld] oeSq,0(d)=k

,,,,,,,,,,

GgESy
Ptd+1—tg<1) ,,,,, td+1—ta(d—1)qfd+l_to(d)))
_ ; -1
= @ S|gn(6)q’t,,(1) ta-(d)(th-%—l_to(l) qqqqq fa+1—Tod—1) a1~ To(d) )

gESY

Thus the claim implies the theorem.
Showing the claim is equivalent to showing that

+
PB(Ptd-%—l_to‘(l)’--~vtd+l_ta(d—l)’td+1_ta(a')) c QDtU(l),...,zg(d,l) (Hk )-

,,,,, i1 @Nd its inverse only work on the firgt— 1 coordinates of any point in
RY.Thuse, ., .. (HD)isjuste, , ., (H)Nix € RY|1(x)>0}. Butitis clear

thatPB(Ptd+1—ta(1)....,td+1—tg<d,1),zd+1—tg(,1)) isin{x € R? | {(x) >0}. Soitis enough to show
that

PB(Ptd-Fl_tﬂ(l):--~vfd+l_ta(d—l)’td+1_t¢r(zl')) c (pl‘,,-(l),...,fg(d,]_) (Hk)
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By Lemma2.17, P B(Py, 1 —1,).....tas1—tow@—1-tax1—to@y) 1€S IN the hyperplankl which is
Id+1 — 15(2)
(ta+1 — 15(1)) (td+1 — 15(2))
spannedby(x1, ..., xq) | xq = x4—1 = 0} and (ta4+1 — t5(1)) (d+1 — 16(2)) td+1 — 15(3))

.....

(a+1 — to0) Td+1 — 16(2)) -+ (la+1 — To(a))
So we need show thag, , . . . (Hi) = H. Since H; is the hyperplane containing
b1,y (Fio), itis enough to show thap, . . (D . (F)) = @, ) 4 (Fi) IS
contained inH. However,F;, = conWv,(T;)). Meanwhile, by RemarR.14 we have
(1 — to(1))
(1 = 1)t — 15(2)
Plotysmtoa (Va() = .

(t —t5)t — 152) -+ - (T — t5))

Sinceo(d) = k, for anyi € [d],i # k, Plotyootoa) (vq(t;)) has the last two
coordinates equal to.@&nd fori =d + 1, ¢, , ., (va(ta11)) is exactly the last vertex
Of Prys—to)tasi—tow—1)tas1—10a)» WHIiCh completes the proof the claim and hence the
theorem. [J

Remark 2.19. If we defineg,, ., . x> Ay, x+muy 5, thensimilarly we can
prove that

Q(mCd(T)) = @ Sigma)(/)r;flta(l) to(d) (mRld-%-l*to(l)a'-‘std-%—l*ta(d))'

sesa
Corollary 2.20.

LOQCy(T)) = @B S9N LY 1 0 MRyt tas1—t0a))-

oESy
Hence
ILQmCa(T))| =D SIGNG) LI Ry 3 ty1) .. tas1—toa)) |-
geSy

.....

51 S2x1 SpXn—1

x1=1xo=1 xp=1

Therefore, it is natural to look at the following:

Lemma 2.21. For any nonnegative integets, ao, . .., a,, let

ay azxi apXp—1

h(ay, az, ...,a,) = Z Z Z 1.

x1=1x2=1 xp=1
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Then the only highest degree term of h}jsfag‘lag

consider h as a polynomial just in the variable

~2...4,. This is also true when we

Proof. We will prove it by induction om.

Whenn = 1, h(ay) = Zﬁizl 1 = g1. Thus the lemma holds.

Assume the lemma is true fot, and note thati(ai,az,...,ap+1) = Ziizl
h(azx1, as, ..., d,+1). By assumptionh—llagag‘1 -+ -ap11x] isthe only highest degree term
of h(agxy, as, ..., a,+1) whenwe consider it as polynomial bothyin= aox1, as, ..., a,11
and in y. This implies that%agag_lmanﬂxi’ is the only highest degree term of
h(azxi, as, ..., ay+1) When we consider it both inp, a3, ..., a,+1 and inx;. Then our
lemma immediately follows from the fact that the highest degree tertﬁ:ﬁle xj is

1 n+l
n_+lal g

Proposition 2.22. For any nonnegative integets, az, . .., a,, let H,, (a1, az, ..., a,) =
ZGES,l sign(a)h(mag(l), Ag2) - -+ aa(n)). Then

m" -
Hmlar, az. ....an) = — [Tao [] (@—ap.
=1 1<i<j<n

Proof. Clearly if any ofa;’s is O, then#,,, (a1, ..., a,) = 0. Also for 1<i < j<n, H;
changes sign when we switehanda;, i.e.,

”Hm(...,ai,...,aj,...):—Hm(...,aj,...,ai,...).

ThereforeH,, (a1, ..., a,) must be a multiple of
n
H aj 1_[ (ai —aj),
i=1 1<i<j<n

which has degreén(n + 1).
So now itis enough to show thd,, (a1, . . ., a,) is of degreézn(nJrl) and the coefficient
of ajaytah 2 - a, in Hyp(ay, ..., ay) is ™+, which follows from Lemmea2.21 O

Proof of Theorem 2.9, By Corollary2.20

O’ESd
=Hm(tat1 — to), td+1 — t6(2)» - - - » td+1l — to(d))
d d
m
= [lewa-o [[ @-1
i=1 1<i<j<d

d
m
=T | | (ti — t;) =Vol(mCy(T)). O
1<i<j<d+l
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As we argued earlier in our paper, the proof of Theo2®completes the proof of
Proposition2.2 and thus proof of our main Theoreh2

3. Examples and question

In this section, we are going to show some examples to make some of the statements or
their proofs in the last section more clear. We will use the cyclic polytBpe C,(T),
whered = 3, T = {1, 2, 3, 4} throughout this section. Let, = v, (k) be theith vertex of
P and Fy = conv({v1, vz, v3, v4} \ vk).

Example 3.1. According to Propositio2.16 sign(F1) = sign((1, 2, 3)) = 1, sign(F») =
sign((2, 3)) = —1, sign(F3) = sign((3)) = 1 and sigriF,) = —1. So F; and F3 are
positive facets whilé, and F4 are negative facetS)(P) = P \ (F2 U Fy).

Example 3.2(Example of structure preserving map

1 00 0 t
¢112’3:xr—> 0 1 O0}x + 0 s SO¢1’2.3(V3(I)) = t2 .
11-61 —6 =1 —-2)(t—23

In particular,¢; 5 3(v1) = (1, 1,00, ¢153(v2) = (2,4,0), 1 53(v3) = (3,9,0), and
$123(va) = (4,16,6). Therefore, ¢y ,3(P) = conv(L,1,0),(2,4,0),(3,9,0),
(4,16,6)"). Becausep, , 3 is structure preserving, SigR)) = sign(Fy), where F} =
¢1,23(Fo).-

Example 3.3. ¢; , 3(P) is a polytope that satisfies the hypothesis in the Propos2ién
so we should have

Q(¢123(P)) = D) sign(F))p™ (QAn(F))). conu Y. (F))).
kel4]

Now we check it:
conv(Fy, n(Fy)) = conM((1, 1,0)’, (2,4,0)', (3,9, 0)). Itis just a triangle in the hyper-
planeHp = {(x1, x2, x3)" | x3 = 0}. Therefore,
Pt (Qn(Fy)), COMM Fy, (Fy))) = 0.
n(F)) = conM(2,4), (3,9), (4,16)) = C2(2, 3,4) is a triangle, whose positive facet

is conVv2(2), v2(4)) and negative facets are camy(2), v2(3)) and conyva(3), v2(4)).
Hence,

Q(n(Fp) = C2(2,3, 4 \ (conuv2(2), v2(3)) U conuva(3), v2(4))),

CONM(F1, m(F7)) = conm(2, 4,0)', (3,9,0)', (4,16,0)', (4, 16, 6)").
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Therefore,
pH(Q(r(FY)), con(Fy, mi(F7)))
= Q(conU(2, 4,0), (3,9, 0), (4,16,0), (4,16,6)"))
©Q(convU(3,9,0), (4, 16,0, (4, 16,6)")).

Similarly,

p T (Q(n(F})), conv(Fy, n(F)))
— Q(conu(1, 2,0), (3,9,0), (4, 16,0), (4, 16, 6)))
OQ(conv(3, 9, 0, (4, 16,0), (4, 16,6)")).

And
pT(Qr(F3)), coN(F3, m(F3)))
= Q(con(L, 2, 0), (2, 4,0, (4,16,0), (4, 16, 6)))
©Q(conu(2, 4,0), (4,16, 0)', (4, 16,6)")).
Thus,

P sign(F)p QR (F)), conFY, (F))))
kel4]

= P sign(F)p (Qn(F})), coMF], n(F})))
ke[3]

= Q(conv(2, 4,0, (3,9,0), (4, 16,0), (4, 16, 6)"))
©Q(conv(3,9,0), (4,16,0), (4,16,6)))
O(Q(convu((1, 2,0), (3,9,0), (4,16,0), (4, 16,6)"))
©Q(conv(3,9,0), (4,16,0), (4, 16,6))))
@(Q(conv((1, 2,0), (2,4,0), (4,16,0), (4, 16,6)))
OQ(conv(2, 4,0)', (4, 16,0), (4, 16,6))))

= Q(conv((1, 2,0/, (2,4,0), (4, 16,0/, (4, 16,6)"))
©Q(conU(2, 4,0, (4,16,0), (4, 16, 6)"))
eQ(conv((2,4,0),(3,9,0), (4,16,0), (4, 16,6)))
©0Q(conv(1, 2,0), (3,9,0), (4,16,0), (4, 16, 6)"))

= Q(conv(1, 2,0), (2,4,0), (3,9,0), (4,16,0), (4, 16,6)))
©Q(conv(1, 2,0Y, (3,9,0), (4,16,0), (4,16, 6)))

= Q(P123(P))

This agrees with Propositidh 6.

125

We willillustrate explicitly how we get the formulain Theoréi8for P = C3(1, 2, 3, 4)

in the next example:
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Example 3.4. According to Propositio2.6 or Example3.3, we have:

Q123(P)) = €D sign(F)p* (Q(F)). conu F}, n(F}))
ke[3]

= Q(P) = P sign(F)¢1 3 30" (QR(F))). COMF], n(F)))).
ke[3]
b1 330" (Qu(FY)), CONMFS, T(F})))
= 13 5(Q(conu(2,4,0), (3,9,0), (4,16,0)', (4,16,6)))
©Q(conv(3,9,0), (4, 16,0), (4, 16,6))))
= Q(conv((2, 4, 8)’, (3,9, 27), (4, 16,58, (4, 16, 64)))
©0Q(conU(3, 9, 27), (4, 16,58), (4, 16, 64)))

1 00 -2
(/)2’3’1: X = -5 1 0]«x + 6 s
11 -61 —6

(t—2)
S0¢y31(v3(1) = (t—=2)@ -3 .
=Dt -2 -3

And @35 1(x) is just @y 31(x) — (1,0,0). Hence,py31(@33,(x)) = x + (1,0,0)".
Therefore,

02,31($13 50T (QR(FY)), CONMFY, n(F]))))
= Q(conv((0, 0, 0)’, (1,0,0), (2,2,0), (2,2,6)))
©Q(conu(1,0,0), (2,2, 0/, (2,2,6)))
= Q(conv(0, 0,0), (2,0,0), (2,2,0), (2,2,6)))
©Q(conu(1,0,0), (2,0,0), (2,2,0), (2,2,6)))
= R2130¢231(¢331(Q(conu(0,0,0)', (1,0,0)', (1.2,0). (1.2, 6)))))
= R2,1,3@<P2,3,1((Pi§,1(R1,2,3)).

Thus,
b1 3 30T (UR(FY)), COMFY, T(F))) = ¢33 1 (Ra—2.4-34-1) O3 5 1(Ra-34-24-1).
We will have similar results foF» and F3. Therefore,

_ ; -1
QP) = @ Slgn(a)(pta(l)vta(Z)>fa(3) (Rig—152),ta102) 14— 103))>

ogeS3

which agrees with Theoreh18

Now we will use Theorenml.2to calculate (C3(1, 2, 3,4), m) :
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Example 3.5. According to Theoreni.2

3
i(C3(T). m) = ) NOl(C(T))m".
k=0

C3(7) itself is a simplex, so
wu&w»=$ [ Gd-b=2
1<i<j<4
C2(T) can be decomposed into simplicés(1, 2, 3) andC2(1, 3, 4), thus
Vol2(C2(T)) =Vola(C2(1, 2, 3)) + Vol2(Ca(1, 3, 4))
= %[(2 -DB-1)B-2+B-1H4-1H4d-3)] =4

C1(T) isjust anintervall, 4], so Vol (C1(T)) =4—-1=3.
Thereforej (Ca(1, 2, 3, 4), m) = 2m3 + 4m? + 3m + 1.

Since our theorem gives a nice form of Ehrhart polynomials of cyclic polytopes, it is
natural to ask the following:

Question 3.6.Are there other integral polytopes which have the same form of Ehrhart
polynomials as cyclic polytopes? In other words, what kind of intedtjablytopesP are
there whose Ehrhart polynomials will satisfy the following?

d
i(P,m) =Vol(mP) +i(n(P), m) = ZVOIk(n(k)(P))mk,
k=0

wheren® is the map which ignores the ldstoordinates of a point.
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