2,968 research outputs found

    Cycle-based Cluster Variational Method for Direct and Inverse Inference

    Get PDF
    We elaborate on the idea that loop corrections to belief propagation could be dealt with in a systematic way on pairwise Markov random fields, by using the elements of a cycle basis to define region in a generalized belief propagation setting. The region graph is specified in such a way as to avoid dual loops as much as possible, by discarding redundant Lagrange multipliers, in order to facilitate the convergence, while avoiding instabilities associated to minimal factor graph construction. We end up with a two-level algorithm, where a belief propagation algorithm is run alternatively at the level of each cycle and at the inter-region level. The inverse problem of finding the couplings of a Markov random field from empirical covariances can be addressed region wise. It turns out that this can be done efficiently in particular in the Ising context, where fixed point equations can be derived along with a one-parameter log likelihood function to minimize. Numerical experiments confirm the effectiveness of these considerations both for the direct and inverse MRF inference.Comment: 47 pages, 16 figure

    Structure learning of antiferromagnetic Ising models

    Full text link
    In this paper we investigate the computational complexity of learning the graph structure underlying a discrete undirected graphical model from i.i.d. samples. We first observe that the notoriously difficult problem of learning parities with noise can be captured as a special case of learning graphical models. This leads to an unconditional computational lower bound of Ω(pd/2)\Omega (p^{d/2}) for learning general graphical models on pp nodes of maximum degree dd, for the class of so-called statistical algorithms recently introduced by Feldman et al (2013). The lower bound suggests that the O(pd)O(p^d) runtime required to exhaustively search over neighborhoods cannot be significantly improved without restricting the class of models. Aside from structural assumptions on the graph such as it being a tree, hypertree, tree-like, etc., many recent papers on structure learning assume that the model has the correlation decay property. Indeed, focusing on ferromagnetic Ising models, Bento and Montanari (2009) showed that all known low-complexity algorithms fail to learn simple graphs when the interaction strength exceeds a number related to the correlation decay threshold. Our second set of results gives a class of repelling (antiferromagnetic) models that have the opposite behavior: very strong interaction allows efficient learning in time O(p2)O(p^2). We provide an algorithm whose performance interpolates between O(p2)O(p^2) and O(pd+2)O(p^{d+2}) depending on the strength of the repulsion.Comment: 15 pages. NIPS 201
    corecore