29,231 research outputs found

    Universal Quantum Circuits

    Full text link
    We define and construct efficient depth-universal and almost-size-universal quantum circuits. Such circuits can be viewed as general-purpose simulators for central classes of quantum circuits and can be used to capture the computational power of the circuit class being simulated. For depth we construct universal circuits whose depth is the same order as the circuits being simulated. For size, there is a log factor blow-up in the universal circuits constructed here. We prove that this construction is nearly optimal.Comment: 13 page

    Partial-indistinguishability obfuscation using braids

    Get PDF
    An obfuscator is an algorithm that translates circuits into functionally-equivalent similarly-sized circuits that are hard to understand. Efficient obfuscators would have many applications in cryptography. Until recently, theoretical progress has mainly been limited to no-go results. Recent works have proposed the first efficient obfuscation algorithms for classical logic circuits, based on a notion of indistinguishability against polynomial-time adversaries. In this work, we propose a new notion of obfuscation, which we call partial-indistinguishability. This notion is based on computationally universal groups with efficiently computable normal forms, and appears to be incomparable with existing definitions. We describe universal gate sets for both classical and quantum computation, in which our definition of obfuscation can be met by polynomial-time algorithms. We also discuss some potential applications to testing quantum computers. We stress that the cryptographic security of these obfuscators, especially when composed with translation from other gate sets, remains an open question.Comment: 21 pages,Proceedings of TQC 201

    Efficient approximate unitary t-designs from partially invertible universal sets and their application to quantum speedup

    Full text link
    At its core a tt-design is a method for sampling from a set of unitaries in a way which mimics sampling randomly from the Haar measure on the unitary group, with applications across quantum information processing and physics. We construct new families of quantum circuits on nn-qubits giving rise to ε\varepsilon-approximate unitary tt-designs efficiently in O(n3t12)O(n^3t^{12}) depth. These quantum circuits are based on a relaxation of technical requirements in previous constructions. In particular, the construction of circuits which give efficient approximate tt-designs by Brandao, Harrow, and Horodecki (F.G.S.L Brandao, A.W Harrow, and M. Horodecki, Commun. Math. Phys. (2016).) required choosing gates from ensembles which contained inverses for all elements, and that the entries of the unitaries are algebraic. We reduce these requirements, to sets that contain elements without inverses in the set, and non-algebraic entries, which we dub partially invertible universal sets. We then adapt this circuit construction to the framework of measurement based quantum computation(MBQC) and give new explicit examples of nn-qubit graph states with fixed assignments of measurements (graph gadgets) giving rise to unitary tt-designs based on partially invertible universal sets, in a natural way. We further show that these graph gadgets demonstrate a quantum speedup, up to standard complexity theoretic conjectures. We provide numerical and analytical evidence that almost any assignment of fixed measurement angles on an nn-qubit cluster state give efficient tt-designs and demonstrate a quantum speedup.Comment: 25 pages,7 figures. Comments are welcome. Some typos corrected in newest version. new References added.Proofs unchanged. Results unchange
    corecore