1,436 research outputs found

    Efficient Template-based Path Imitation by Invariant Feature Mapping

    No full text

    Towards One Shot Learning by Imitation for Humanoid Robots

    No full text

    Hierarchical Learning Approach for One-shot Action Imitation in Humanoid Robots

    Get PDF

    Hierarchical learning approach for one-shot action imitation in humanoid robots

    Full text link
    Abstract—We consider the issue of segmenting an action in the learning phase into a logical set of smaller primitives in order to construct a generative model for imitation learning using a hierarchical approach. Our proposed framework, ad-dressing the “how-to ” question in imitation, is based on a one-shot imitation learning algorithm. It incorporates segmentation of a demonstrated template into a series of subactions and takes a hierarchical approach to generate the task action by using a finite state machine in a generative way. Two sets of experiments have been conducted to evaluate the performance of the framework, both statistically and in practice, through playing a tic-tac-toe game. The experiments demonstrate that the proposed framework can effectively improve the performance of the one-shot learning algorithm and reduce the size of primitive space, without compromising the learning quality. Index Terms—imitation learning, one-shot learning, generative model, path planning, humanoid robots I

    Learning Generalized Reactive Policies using Deep Neural Networks

    Full text link
    We present a new approach to learning for planning, where knowledge acquired while solving a given set of planning problems is used to plan faster in related, but new problem instances. We show that a deep neural network can be used to learn and represent a \emph{generalized reactive policy} (GRP) that maps a problem instance and a state to an action, and that the learned GRPs efficiently solve large classes of challenging problem instances. In contrast to prior efforts in this direction, our approach significantly reduces the dependence of learning on handcrafted domain knowledge or feature selection. Instead, the GRP is trained from scratch using a set of successful execution traces. We show that our approach can also be used to automatically learn a heuristic function that can be used in directed search algorithms. We evaluate our approach using an extensive suite of experiments on two challenging planning problem domains and show that our approach facilitates learning complex decision making policies and powerful heuristic functions with minimal human input. Videos of our results are available at goo.gl/Hpy4e3

    Action Recognition in Videos: from Motion Capture Labs to the Web

    Full text link
    This paper presents a survey of human action recognition approaches based on visual data recorded from a single video camera. We propose an organizing framework which puts in evidence the evolution of the area, with techniques moving from heavily constrained motion capture scenarios towards more challenging, realistic, "in the wild" videos. The proposed organization is based on the representation used as input for the recognition task, emphasizing the hypothesis assumed and thus, the constraints imposed on the type of video that each technique is able to address. Expliciting the hypothesis and constraints makes the framework particularly useful to select a method, given an application. Another advantage of the proposed organization is that it allows categorizing newest approaches seamlessly with traditional ones, while providing an insightful perspective of the evolution of the action recognition task up to now. That perspective is the basis for the discussion in the end of the paper, where we also present the main open issues in the area.Comment: Preprint submitted to CVIU, survey paper, 46 pages, 2 figures, 4 table
    corecore