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Abstract—\We consider the issue of segmenting an action in  (OSILA) which stores the actions as human-readable and ma-
the leaming phase into a logical set of smaller primitives in  pjpuylable templates. This algorithm, addressing the “hotv-
order to construct a generative model for imitation learning question in imitation, attempts to reduce the number ofstria

using a hierarchical approach. Our proposed framework, ad- . . . - . I~
dressing the “how-to” question in imitation, is based on a one- involved in learning and increase the model manipulability

shot imitation learning algorithm. It incorporates segmentation As suggested in [10] and [11], actions represented as
of a demonstrated template into a series of subactions and movement primitives are a prerequisite for imitation |éagn
takes a Pigtrarc?ict:al apprr](_)ach to generatte_ the tasl_<r aCtiO“t byf with biological evidence in human. A significant proportioh
using a finite state machine in a generative way. Two sets o L .
expegriments have been conductedgto evaluate tr¥e performance Pb'_:) models focus on 'm'tat'o'_" learning at t"?‘Sk level [8],][12
of the framework, both statistically and in practice, through ~ Which are capable of performing the task with good accuracy.
playing a tic-tac-toe game. The experiments demonstrate that th ~ As compared to the primitive approach, actions learned with
proposed framework can effectively improve the performance b these models are more difficult to be useful in novel tasks.
the one-shot learning algorithm and reduce the size of primitive Even in many primitive-based imitation learning algoritym
space, without compromising the learning quality. he list of primiti . hausti d I tethwi
Index Terms—imitation learning, one-shot learning, generative the lis 9 P””," IVes IS exhaustive Ian manua y Crea? ,V,Vl
model, path planning, humanoid robots human intrinsic knowledge of basic actions. These priragiv
might not be the most natural set of basic actions and are
limited for application in an unseen task. However, there is

little literature in addressing the issue of breaking down a

In recent years, programming by demonstration (PbD) hagrimitive into a |Ogica| set of smaller primitives at |ea“g|
received ever greater attention in Robotics researchcidlye  ©Of the action phase.
in the domain of human-robot interaction (HRI). It provides In this paper, we propose a biologically-inspired Hierar-
a user-friendly teaching framework for robots (in partaoyl chical Imitation Learning Approach that exploits the sgén
humanoids) to learn new skills from humans and other agentsf the OSILA (HILA-OSILA) in a primitive-based learning
through imitation of actions. This has spawned a range oframework. We present a system that handles both perception
computational architectures that allow robots to match thend action in robot learning, addressing the “how-to” gigest
demonstrated actions to its internal representations wi¥ag in imitation. In short, a clustering algorithm is applied to
lent motor commands [1]-[4]. a given demonstration of action, breaking the demonstrated

Many of these models are capable of extracting and genera@ction down into a sequence of logical subactions with actio
ising important features for a given task, although theyiregq tags. When a novel task, which can be expressed as a sequence
numerous demonstrations of the same task to successfaily le Of learned/stored templates and/or sub-templates in aggror
the action. This means that in a complex environment, whichs requested, the system makes use of a Finite State Machine
involves non-expert users, any given PbD framework can helfFSM) [13] and generates the task action by applying the OS-
robots with high degrees of freedom (DoF) to drasticallylLA to the sub-templates in the new constrained environment
reduce the search space and hence speed up the learning pro\We showed in our previous work, by cross-validating the
cess, but the issue of fatigue for giving demonstrationgilis s results on a set of 75 experiments conducted on human ssibject
unresolved. Furthermore, the fact that most of such pamnaglig [14], that the OSILA is capable of reproducing satisfactory
encode the perceptual information as a set of model statisti path in imitating simple tasks. In the following sections of
or internal states [5]-[8] hinders manual manipulationtof t this paper, we will present the HILA-OSILA framework and
models by the demonstrators. This is of cardinal importancextend the same dataset and evaluating metrics to test the
when a robot is placed in an unstructured environment fostatistical fithess for breaking-up the templates in cattnath
continuous learning because for every mistake in learrtieg t the original mappings. We will also draw up discussions on an
model parameters, it takes many more perfect demonstsatioxperiment to compare the implementation of this framework
to correct the model in these systems. In our previous wdrk [9 in performing a real-life tic-tac-toe game on a humanoidotob
we have proposed a One-Shot Imitation Learning Algorithmwith our previous implementation detailed in [9].

I. INTRODUCTION
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II. THEHILA-OSILA FRAMEWORK

Template Action Path

In this work, we consider the case of generating a new . .. constraint ThS/n/,_D/ate Possible Action Mé”’m“m
action, thetask in a 3-D environment which can be constructed ~  Points W;ﬂ’)’;ﬁg Path Points Rozjltirg’én
by stitching portions of seen demonstrations, referredsttha o coammrons
templatestogether. We assume that all required input feature: Generatdd Action

are observable from vision, i.e. in our case a pair of sterec P
cameras. This general framework of HILA-OSILA, shown in
Fig. 1, is built upon three concepts:

Final Action Path

Check Waypoint
Contradictions

VR Contradicted Pairs
- Template of Constraint Points
.—»Demonstrator Segmentation Fig. 2: The schematics of OSILA
(Clustering) Action
Hierarchical Primitive set of candidate waypoints for the target trajectory in sk
Task Action ———»{ Approach Database space using this feature distortion warping algorithm.
(FSM) 2) Minimum-Energy Route PlarBased on the time series
OSILA |« encoded in the set of possible waypoints in tiask the
~— goal-directed trajectory is simply represented by satgcthe

Fio. 1° The schematics of the HILA-OSILA Learning F « Thi best point from each time stamp. As we believe that the

fra?n'ewl)rk go?]%ist??)flﬁﬁeotwoeparts of imitatioﬁalggpr%ngr.agn?ﬂvé?rgg'bloé?( _mam criterion fOIt SUCh rOUt(_a lies 'n energy cpnsumptlon, _We

above the dotted-line denotes perception while that beloev dotted-line  implement an efficient algorithm using dynamic programming

denotes action. The three fundamental algorithms involveddanoted by [17] strategy to optimise for minimal translational energy

the rectangles in the centre and explained below. 3) lterative Plan Adjustmenttn a complex and variable en-

vironment, the trajectory generated using the above dlguri

g X : is then checked against extra invariant feature pointseptes
efficient model for generating a giverask based on j, thetaskspace, such as forced waypoints or obstacles. If the
constraints mapping with a matchegmplate route generated does not conform to these feature points, we

2) A suitable template segmentation algorithm that segyge an iterative method [9] by finding the corresponding fsoin
ments a demonstratéemplateinto a natural set ofub- i, thetemplatespace and append these spatial constraints into

tem'plates : _the ICPs. The algorithm is then used again to generate a new
3) A hierarchical approach that generates an accuratenactiqqte ntil the trajectory conforms to the constraints.

plan based on possible combinationsteplateand/or The ultimate aim of the OSILA is to produce a desirable

sub-templates path by imitation in a given scenario by inferring from a past

: - demonstration. Furthermore, not only should the algorithm

A. The Basic Building Block - OSILA be able to generate such path with great level of stability,
The OSILA is a template-based path imitation algorithmbut more importantly have some resemblance to the path

by invariant feature mapping. This one-shot learning atjor  produced by human under similar circumstances. This has bee

consists of three components. Briefly, it first generatesaiap demonstrated in our previous works [9], [14].

mapping of possible path locations from tlemplateto the )

task based on minimal distortional energy warping betweerP: Template Segmentation

the corresponding spatial constraints in both scenarios. A As we believe that an action constitutes a sequence of basic

probable route is then created from the time-series infioma movements [18], PbD should therefore have the robustness to

associated with these possible locations using minimuenggn  learn, segment and reproduce a given action as a chain-event

strategy. Finally, the generated route is subject tingaractive ~ Of subactions. This is useful even from an engineering point

Plan Adjustmenstrategy for route correction. Fig. 2 shows the of view:

schematics of OSILA and each of the component is briefly 1) It significantly reduces the redundancy involved in learn

1) The basic building block of OSILA that acts as an

explained below. ing. For instance, a robot is shown how to move an arm
1) Feature Distortion Warping:According to [15], if a to a range of objects, grasp them and bring them back to
set of feature points in space that maintain a fixed spatial the demonstrator in turn. It is subsequently required to
relationship in two distinct scenes can be identified, a min- imitate all these actions. We can see that the redundancy
imum distortion function can be used to describe the spatial is at actuating the arm to the object and back. Therefore,
correspondence of all points in both spaces using Thin Plate  if the robot smartly learns these actions as a series of
Spline (TPS) warping. Assuming a given scene-matching al- basic movements, the redundancy can be minimised.
gorithm, such as SIFT [16], can provide a set of correspandin  2) The learned subactions can be integrated in a generative
Cartesian coordinates from both ttemplateand thetask as model to produce new actions without having to learn

the invariant control points(ICPs), it is possible to genera the task. For example, a demonstrated action consists
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of a sequence of Subactions A-B-C. The robot is therthe experiments, demonstrations were captured by theostere
asked to perform an unseen action that constitutes theameras on the iCub with camera frame rate set at 20Hz and
sequence of C-B-A-A-C. With the proposed generativeframe resolution set at 320 X 240 pixels (example shown in
model, the robot no longer has to learn this new actionFig. 4b & 4c). Markers were placed on demonstrators (e.g.
3) In contrast to the traditional primitive-based imitatio Fig. 4d) to simplify the task of tracking the points of intste

learning, decomposing and learning the basic primitives
at perception phase gives more generative flexibility in
adopting new primitives/subactions without subjecting
and limiting these subactions to human intrinsic knowl-
edge of basic actions.

To simplify the problem, we shall assume that the task
actions consist of simple subactions and are separable in
spatial-temporal manner. Thus, in these kinds of situatiore
can apply the k-means clustering algorithm [19] for temgplat
segmentation. In more complex situations, we believe that a
more robust algorithm such as the one proposed in [20] is
capable of detecting changes in parameter space and time.

(d)
Fig. 4: The experiment set-up for testing the path planning algorihm.
The iCub in (a) is developed by the RobotCub Consortium. It hastal

In [21], the authors Suggest that there exists a hierarbhic@f 53 DoFs, while each of its arms has 16. (b) and (c) are anriostaf

C. The Hierarchical Approach

. .. a human subject with markers captured by the left and right casnef the
control structure in the human cortex that executes actions iCub respectively.(d) shows the locations of markers plamethe left arm of

terms of superordinate chunks, simple chunks and singte actthe human subjects in Experiment A.
Since an action can be broken down as a series of subactions,

we can tag the action and each of the subactions in such a

hierarchy. Multiple action and subactions can be integrat®® ~ A. Experiment A

a new action in a hierarchical manner. Fig. 3 is an illustrati

of this approach. Assuming a robot learns compound actionﬁ]

sHe alggn'luafilgnv;\;?"og;miu?tabC:SizzllDhggdlegrnvgghalflst'elmplatetion using our HILA approach. The benchmarking dataset of
9 g ' y 75 trials on 5 different experiments was taken from [14] and

from A to .G' When the robot S requested_ to peTfO”" AMijjustrated in Fig. 5. Each of the experiments consists of 15
unseen action J, it breaks the action down hierarchicatly in bserved paths

a minimum set of subactions H-D-E-I. This can be modelled0 P '

and implemented as an FSM.

In this experiment, we test the hypothesis on the improve-
ent of performance accuracy and robustness in path genera-

R
Demonstrated H I 7 i e,
actions A | B | E C | G | D | | F | }j///// |j :/,»7,”,@ y// );;/j
(Al [(B] [c] [bp] [E] @ () © (d) (e)
Learned actions Fig. 5: The sketches of the 5 conducted ExperimentS-he hand positions
LF] el [H] [1] in the diagrams indicate the starting points of the experimehte subjects

have also been requested to approach the object with tliekafons orthogonal
to the blue strips indicated in the diagrams. All experimenéscanstrained as

New action example J planar movements apart from (c) where the demonstrators hasppimach
H | D I E | | the object from the top. The black patch indicated in (e) desithe waypoint

area the subject have to navigate their arms through. Thettggised paths

Fig. 3: An example of the Hierarchical Approach of Template Integraon ~ @ré denoted by black slashes in the diagrams. Detailed fdéeos of the

experiments can be found in [14].

I1l. EXPERIMENTS The spatial constraints of each path are mapped to the

We implement and validate the HILA-OSILA framework constraints of all other paths, including its own, so that a
with two sets of experiments on the iCub (Fig. 4a), a hu-Set of 75<75 paths can be generated by warping the input
manoid robot developed by the RobotCub Consortiuin  Path based on the constraints mapping according to the OSILA
Experiment A, we evaluate the relative merit of segmentingn©del. To test the stated hypothesis, we simulate the teenpla
the templates against that of the unsegmented ones in terri§gmentation, making it a controlled variable, by dividthg
of statistical fitness. In Experiment B, a practical applma  Path intoN € 2... 4 equal segments and input into the HILA-
of the framework is deployed to perform the same task orPSILA model to generate three other sets of corresponding

the actual robot with OSILA and HILA-OSILA. Throughout paths. The set of 4 generated paths are then statistically
compared to the path demonstrated by human under the same

Lwww.RobotCub.org spatial constraints.
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B. Experiment B 1) Correlation Coefficient R?): Assuming that the pro-
The task of this experiment is to investigate the perforreancPosed algorithm is an estimation of the resulted path géegtra

of the HILA-OSILA framework on the iCub by playing the tic- by human under similar circumstance?? is an indicator of

tac-toe game. During the perception phase, shown in Fig. 6&0W likely our proposed algorithm can be used to predictpath

the iCub is given one single demonstration of how to move td°roduced by human.

a grid space, place a mark and move away. While the human

subject is instructed to demonstrate a planar movement, the ) Eij\;1(mi —m) - (m, —m’)

iCub is to play the game in a new grid space of different size R = ~ = ~ = 1)

at a completely new location with its arm initially parked at \/(Zi:l(mi —m)?)(3 ;2 (m; — m')?)

a ranglom location above the grid, shown in Fig. 6b. In thisyherem denotes the arithmetic mean of;.

experiment, we assumed that the pen was always on the hand ) \ean Squared Difference (MSDyve make use of MSD

of the iCub and the invariant features were the four cornérs oy estimate the squared difference between the calculatéd p

the cell on the grid and the starting position of the arms. Inynq the demonstrated path to gauge how close the generated
contrast with our previous experiment on the same game [9baths are to human demonstrated ones.

we aim to remove any redundancy in terms of unnecessary

subactions. We first segment the demonstrated templatg usin 1 & , )
k-means clustering, then according to instruction buildadn MSD =+ >l mf—m; | (2)
hoc deterministic FSM to execute the action. i=1

In practice, we cannot ensure all demonstrations are com-
pleted at the same duration. Since both performance metrics
require the input vectors to be of the same lengths, we shall
employ the cubic spline interpolation to lengthen the paith w
fewer waypoints to match that of the longer one.

IV. RESULTS AND DISCUSSIONS
A. Experiment A

(@) (b)
Fig. 6. Experimental setup for Experiment B. (a) shows how the As we were to generate four paths per input-output pair of
demonstrator drew a circle in a A4-sized grid. The iCub waseetqul to spatial constraints in the algorithm and there were 75strial

play the game in scene (b), where the grid was 20% smaller,etbtand

20cm above that in (a). in total, this produced a #575x4 tensor of paths for cross-

validation. We assessed the performance of the framework
primarily in two ways - stability and generalisation.
C. Implementation of the Algorithm Stability of the algorithm is achieved when the output

From Fig. 4b & 4c, we can see that both cameras on th@ath resemble_s the input one if the same spatial_ points_ are
iCub have some degree of fish-eye distortion. Thus, beforgsed as bo.th |n_put and ogtput constraints. ASS“”"”Q agien
processing the captured frames, we undistort the imagés wiflemonstration is the_ optimal p.ath, any self-mapping case
a set of calibration parameters discussed in [22]. The markeShOUId preserve maximally the input path. TABLE | shows

positions are extracted using the technique presented3i [2 the correlatlon coefficients for the 75 self-mapping cgmd
ccording to number of segments. We can see that in all cases,

As we know that there is uncertainty in the image, assumin , S X ,
y g flge confidence indicator is almost 100% which suggests that

the extraction process treats the noise properly, the least. - .
amount of uncertainty associated is therefore 0.5 pixel, WeW|th and without the use of subaction templates, the frannkewo

thus, applied Gaussian Radial Basis Function (RBF) smogthi maintains output stability as the spatial constraints aesfin
with smoothing parameter of 0.5 pixels to the extracted gath these cases.

In the OSILA module, we also relax the threshold of theyag|E |: The averaged Correlation Coefficient of self-mapping cases
distortion to 2 pixels from the mapped locations. The finalgrouped in experiments.

3-D iCub-body-centred action path can be found by using
independently generated paths from both cameras with their
the intrinsic parameter. In Experiment B, the intended gsith
then passed to the inverse kinematics module of the iCub for
execution.

No of Segments|| Exp1 | Exp2 | Exp3 | Exp4 | Exp 5
0.996 | 0.999 | 0.991 | 0.991 | 0.994
0.999 | 1.000 | 0.999 | 1.000 | 1.000
0.999 | 1.000 | 0.999 | 1.000 | 1.000
0.999 | 1.000 | 0.999 | 1.000 | 1.000

A WN B

D. Statistical Performance Evaluation By pulling cases of similar input-output constraints tdget

To evaluate the statistical fithess of the model, we intreduci.e. grouping by experiments, if the statistics suggest the
two performance metrics, namely Correlation Coefficierd an output paths generated match well with the intended paths,
Mean Squared Difference. We denote the generated path #%e algorithm is said to generalise well. TABLEs IIl and II
m and that to be compared as’. Both consist of N tabulate the statistics grouped by input-output experirpaits.
corresponding waypoints. As shown in the first line of each row in TABLE II, when only
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TABLE Il: The averaged Correlation Coefficients for mapping from one TABLE |ll: The averaged Mean Squared Difference for mapping from
experiment to another. Columns indicate input while rowsdat# output.  one experiment to another. Columns indicate input while rondicate
Within each cell, the statistics correspond to No of Segmés 1 to 4 output.Within each cell, the statistics correspond to NoSefjments from

respectively. 1 to 4 respectively.
Expl | Exp2 | Exp3 | Exp4 | Exp 5 Expl | Exp2 | Exp3 | Exp4 | Exp 5
0.961 | 0.953 | 0.817 | 0.414 | 0.380 176 298 1222 | 7388 | 8390
Exp 1 0.979 | 0.941 | 0.860 | 0.800 | 0.791 Exp 1 74 177 682 538 562
0.987 | 0.976 | 0.948 | 0.949 | 0.934 31 63 133 120 156
0.989 | 0.984 | 0.977 | 0.978 | 0.966 18 30 58 55 76
0.993 | 0.995 [ 0.941 [ 0.740 | 0.711 117 57 1899 | 2809 | 5095
Exp 1 0.970 | 0.998 | 0.877 | 0.972 | 0.964 Exp 2 436 26 2448 378 444
0.989 | 0.999 | 0.970 | 0.994 | 0.990 152 8 356 78 136
0.995 | 0.999 | 0.988 | 0.997 | 0.995 70 4 122 28 56
0.861 | 0.444 | 0.891 | 0.774 | 0.747 799 2832 399 962 2869
Exp 3 0.910 | 0.896 | 0.941 | 0.877 | 0.847 Exp 3 385 316 231 619 852
0.952 | 0.948 | 0.967 | 0.963 | 0.954 143 117 122 110 140
0.966 | 0.968 | 0.982 | 0.980 | 0.973 70 55 62 57 68
0.757 | 0.817 | 0.871 [ 0.957 | 0.938 1548 667 1164 203 343
Exp 4 0.872 | 0.845 | 0.798 | 0.977 | 0.967 Exp 4 606 551 2317 148 176
P 0.929 | 0.922 | 0.938 | 0.987 | 0.981 P 211 219 397 69 94
0.944 | 0.954 | 0.969 | 0.992 | 0.987 115 111 175 41 59
0.835 | 0.816 | 0.872 | 0.885 | 0.962 1139 834 1286 459 280
Exp 5 0.875 | 0.879 | 0.840 | 0.966 | 0.977 Exp 5 758 478 1963 222 133
0.937 | 0.935 | 0.935 | 0.979 | 0.987 255 261 428 124 75

0.952 | 0.960 | 0.965 | 0.984 | 0.991 151 172 215 92 44

OSILA is in use (no segmentation of the path), 32% of the
results havek? < 0.8 which suggests that the algorithm cannot
generalise well in these experiment pairs, such as mappipg E
5 path into Exp 1. This is also confirmed by statistics from ‘
TABLE llI. ®)
In previous work [14_']’ W.e suggested .that_thls was due tq:ig. 7:iCub playing tic-tac-toe. The iCub started the game by marking the
the lack of complete invariant information in the complex centre cell (a) with the path learned from demonstration sSgbently, it then
cases. Thus, by breaking the paths into smaller segments, werked on top-left (b) and top-right (c) cells
introduced extra spatial constraints into mapping. Thisudh
improve the performance of imitation. From TABLE Il, we the game. Close comparison of the circles generated in Fig.
can see that as soon as template segmentation is introducedand in Fig. 3 suggests that breaking up the templates into
92% of the correlation coefficient are greater than 0.8. Whesubactions did not undermine generalisation. The coioslat
the number of segment goes up to 4, nearlyZllare greater coefficient of the corresponding circles is greater than h9
than 0.95. We thus believe that our previous claim can béact, the circles imitated at the same location (centre) d b
sustained and the HILA-OSILA algorithm can reduce thealgorithms are statistically congruent to the demonstratee.
cost and burden of repeated demonstrations, while mainggin
good generalisation.

V. CONCLUSION

_ In this paper, we have presented a biologically-inspired

B. Experiment B one-shot hierarchical primitive-based learning framéwiar

Fig. 7 captured a series of snapshots of the game playawbot path imitation. This algorithm has been implemented
by iCub. In our previous work [9], the iCub imitated the and statistically evaluated using cross-validation tssftbm
demonstrated action &dsklevel, i.e. after placing a mark, the the paths demonstrated by human subjects with a range of
arm was moved back to a parking position (Fig. 8b). Under théemplate segmentation sizes. It has also been implemented
HILA-OSILA framework, the template segmentation moduleto allow a humanoid robot to play the tic-tac-toe game by
(with £ = 3 for k-means clustering) separated the demon-+educing redundant movements in execution. The experahent
strated action into 3 logical subactions (Fig. 8a), whichldo results show that the HILA-OSILA framework is capable
be tagged as reach cell, draw circle in cell and retract. Thef reproducing highly satisfactory paths by imitating slenp
iCub was then instructed to draw circles in the cells withotxa tasks as compared to the OSILA algorithm alone. However,
same sequence from previous experiment. However, aftér eathe experiments have been conducted with assumptions, such
drawing, the FSM had the next state as reaching cell insteaals sufficient invariant feature points were given for magpin
of retracting until the end. The new path is plotted in Fig. 8c and untested in a dynamic environment. This inexpensive

From Fig. 7, we can see that the size and the position oélgorithm is capable of not only pure imitation, but also
marks were fairly accurately drawn by iCub. Although lindite with generative component to increase primitive skillss&te
by the inverse kinematics module, the shape drawn did ngblan to extend our research to include automatic detection o
affect the discrimination between the 2 different symbals i known subactions in the primitive database and segmeng thes



Preprint version; final version available at http://ieeexplore.ieee.org
|IEEE International Conference on Control, Automation, Robotics and Vision (2010), pp: 453-458
DOI: 10.1109/ICARCV.2010.5707349

iCub View of the Demonstrated Path Lab. The authors would also like to express their gratitude
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Fig. 8: Paths imitated from one single demonstration.(a) shows the
demonstrated path seen from the left camera of the iCub seginbgitd-
mean clustering algorithm witk = 3. (b) shows the generated paths during
the game by OSILA, while (c) shows the HILA-OSILA generatedhga [20]
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templates online in the perception phase possibly by usiag t
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